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ABSTRACT The Internet of Things (IoT) is envisioned as a ubiquitous computing infrastructure in which
everything becomes connected, enabling gigantic information exchange among Things and people. These
connected smart Things generate an enormous amount of data which need to be efficiently managed to
form a unified global IoT. Unfortunately, due to the lack of acceptable open standards, communication
protocols, and support for device/service discovery, the recent IoT deployments in smart environments
(e.g., smart home, smart building, smart city) are posing imperative challenges related to interoperability,
discovery, and the configuration of deployed objects, since the number of objects is expected to grow over
time. Therefore, it is of utmost importance to provide open and scalable solutions for the discovery of
devices (i.e., Things), their configuration, and data management. This paper introduces an open and scalable
IoT platform by adopting the modular characteristics of edge computing for smart environments. This
paper: (i) performs a systematic literature review of IoT-based infrastructures and analyzes the scalability
requirements; (ii) proposes a layered IoT platform for smart environments that fosters heterogeneity,
interoperability, discovery, and scalability; and (iii) demonstrates the applicability of the proposed solution
by relying on a comprehensive study of a Väre smart building use case at Aalto University.

INDEX TERMS Internet of Things, hashing, edge computing, discovery, communication standards,
scalability.

I. INTRODUCTION
The evolution of the Internet of Things (IoT) technology
has triggered the currently marketed digital world in which
everything becomes connected, leading to the distinct meth-
ods of ephemeral device communications on the platform
of technologies such as GSM, WiFi, ZigBee, and Blue-
tooth [1]–[3]. Nonetheless, the objective is not only to facil-
itate device communications but also to be informed about
non-communicable real-world objects in the surrounding
environments. This paradigmatic shift unfastens additional
services for the future as stated by Mark Weiser [4]: ‘‘The
most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they
are indistinguishable from it’’. This perception is the motiva-
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tion for the current communication channels andminiaturized
technologies. Hence, the future lies in hundreds of physical
objects (i.e., Things) for each person effectively communicat-
ing with each other to assist the current smart way of living.
Further, the IoT kindles the necessity of scalable solutions for
constantly changing environments, such as smart home, smart
city, or smart building, to efficiently integrate an enormous
amount of data collected from heterogeneous IoT devices [5].
Such relevant heed is also exhibited by the emergence of
fog/edge computing which contains decentralized edge nodes
for supporting escalated scalability and low latency [6], [7].
This pushes for solutions based on edge computing that can
perform data publication and consumption on the network
edge, as cloud-based IoT deployments are unable to meet the
increasing demands of clients, due to their complexity and
cost. Typically, IoT-based platforms should be able to manage
the volume, velocity, and variety of real-time data produced
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by heterogeneous IoT devices at the edge-level. In fact, they
should be able to process millions of user and service requests
for optimal systems performance.

Unfortunately, the recent IoT deployments in smart envi-
ronments lead to four challenges due to the lack of acceptable
open standards, edge computing-based data management,
and no support for device/service discovery. (i) Scalability:
The IoT applications should be able to scale upwith respect to
the increasing number of users and computing environments,
thereby handling a large number of user requests which
cover a larger virtual or physical space required for sensing,
aggregation, and computation of data. (ii) Data management:
The real-time data should be handled at the edge of the
network to optimize data publication, data consumption, and
network latency. (iii) Interoperability: There is no unified
communication model for overcoming vertical silos (data
being siloed in a unique system and staying there [8]), which
poses interoperability and openness issues. (iv) Device dis-
covery: In smart environments, mobile devices should be able
to discover themselves to publish their data and/or services.
It is also crucial to automatically discover IoT devices when
they move from one location to another.

To overcome the above-mentioned challenges, this paper
proposes an open and scalable IoT platform for heteroge-
neous devices in smart environments that provides hetero-
geneity, interoperability, discovery, and scalability. Overall,
the paper offers three contributions: (i) It performs a com-
parative study of the existing state-of-the-art IoT frameworks
based on different characteristics and formulates the scal-
ability requirements. (ii) Based on these requirements, it
introduces a scalable IoT platform by adopting a consistent
hashing mechanism [9] for balancing real-time data closer to
the data sources (i.e., at the edge). We also employ the Open
Messaging Interface (O-MI) and Open Data Format (O-DF)
standards, proposed by the Open Group consortium [10],
[11], as a unified IoT edge node/server1 for providing inter-
operability and data semantics. The proposed solution allows
data publication and consumption on the edge, provides effi-
cient load balancing of sensor data, and dynamically dis-
covers IoT mobile devices. (iii) The paper demonstrates the
applicability of the proposed solution in aVäre smart building
use case at Aalto University campus.

This article is further organized into five sections.
Section II details the state-of-the-art IoT architectures pro-
posed in the current literature. Section III proposes an open
and scalable IoT platform for smart environments which
solves scalability, interoperability, data management, and dis-
covery challenges. The practicability and replicability of the
proposed platform have been showcased by applying it to the
Väre smart building use case in Section IV. Section V illus-
trates the experimental results, accompanied by conclusions
in Section VI.

1In this paper, node and server for O-MI are used interchangeably

II. BACKGROUND AND RELATED WORK
The advancements in the IoT paradigm have yielded sev-
eral core concepts to provide more accurate insights into
real-world IoT implementations in smart environments. The
edge computing concept enables an intelligent computing
infrastructure by placing computation and data storage closer
to data sources [12]. In contrast, fog computing provides a
decentralized computing platform in which the data, com-
pute, storage, and network servers are located somewhere
between the data source and the cloud [13]. This location for
computation can either be on a network gateway or the edge.
On the other hand, cloud computing facilitates the on-demand
delivery of various services/data through the Internet, includ-
ing data storage, servers, and databases [14]. FIGURE 1 lists
the basic features for IoT applications at the edge, gateway,
and cloud levels. In the following, we review existing state-
of-the-art IoT frameworks that provide scalability, discovery,
interoperability, and data management solutions at one or
more of these levels.

FIGURE 1. Basic features of edge, gateway, and cloud for IoT applications.

A. SCALABILITY
To foster the cities in providing smarter services for their cit-
izens, many technological challenges are posed by IoT [15],
cloud [16], and big data [17] in the IoT-based develop-
ments. A manageable, scalable, and transparent IoT archi-
tecture is proposed by Guo et al. [18] as a response to
these challenges. The architecture is evaluated as an effi-
cient solution in terms of energy consumption for resource
management and on-demand service provisioning of IoT
objects. Similarly, a cloud-based architecture for coordinated
emergency management in smart cities is designed, which
adopts cloud computing to manage data computation and
storage resources [19]. An open-source microservices-based
IoT platform called InterSCity is proposed for enabling coop-
erative development of extensive services, systems, and appli-
cations needed for future smart cities [20]. The authors also
mention a smart city simulator for generating realistic work-
loads for a Smart Parking scenario in Brazil. In another study,
a scalable modular framework applying machine learning is
put forth to reduce latency and processing redundancy with
minimal impact on accuracy [21]. Many context-aware IoT-
based systems have also been examined for real-time decision
making and scalability concerns in smart environments [22],
indicating that scalability is affected by different archi-
tectural choices. Furthermore, a CEB IoT architecture for
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cloud-sensor systems is proposed along with an event-based
programming model for the development of IoT applica-
tions [23]. The experiments are conducted to demonstrate
scalability features and capability of dynamic load adaption
for cloud-sensor systems. Another IoT/M2M platform called
oneM2M has been designed based on fog computing by
organizing the middle nodes into highly scalable hierarchical
container-based fog nodes [24]. In this solution, a mechanism
for dynamically scaling the middle nodes is also designed to
provide scalable solutions. For developing reliable systems,
a fault tolerant and scalable approach is designed for health
monitoring application to address the traffic bottleneck and
sink node hardware malfunction caused by high-receiving
data rates [25]. Another study analyzes the FIWARE per-
formance under different platform configurations to compare
cloud-only and edge/cloud cases for smart water management
in agriculture [26]. The experimental results demonstrate
that the system performance is not always improved by fog
computing, making it worse in some cases. Similarly, another
scalable and flexible IoT architecture based on network func-
tion virtualization is proposed for processing huge amounts of
sensor data [27]. Other widely-adopted platforms including
Microsoft Azure, Amazon AWS, and Google Cloud can also
be referenced, which deliver extensively integrated cloud
services alongwith IoT deployment, configuration, and scala-
bility; however, these platforms are proprietary cloud systems
and do not provide interoperable solutions. TABLE 1 lists
some basic characteristics of these platforms. All three cloud
systems follow pay-as-you-go pricing model, which depends
on the instance type, volume usage, storage, and other factors.
As an example, TABLE 1 only shows on-demand pricing
based on the standard instance type. In contrast, our platform
is free and open-source.

TABLE 1. Basic features of IoT middleware along with our proposed
platform.

B. DISCOVERY
Several frameworks for IoT discovery have been proposed in
the literature, which enable IoT applications to access data
without the need to know the data source, sensor description,

or location [28]–[30]. In complex, heterogeneous, and con-
stantly changing environments, such as smart home or smart
building, it is crucial to devise efficient discovery schemes.
In the existing literature, discoverymechanisms can be classi-
fied into two categories [31], [32]. (i)Device discovery allows
amachine (or user) to retrieve a list of IoT devices available in
the residing network. The most widely-adopted technologies
for device discovery are UPnP (Universal Plug and Play) [33],
mDNS (multicast DNS) [34], and DLNA (Digital Living Net-
work Alliance) [35]. (ii) Service discovery allows a machine
(or user) to retrieve and understand services provided by
the previously identified IoT devices or systems. The most
common service discovery protocols are UDDI (Universal
Description, Discovery, and Integration) [30], OWL (Web
Ontology Language) [36], WSMO (Web Service Modeling
Ontology) [37], and SPARQL [38]. Some technologies cover
both device and service discovery, such as AllJoyn [33] and
DPWS (Devices Profile for Web Services) [39].

C. INTEROPERABILITY
To make Things accessible through a single universal com-
munication protocol, it is crucial to ensure the interoper-
ability of data models, which define the format, syntax,
and semantics of given data, thereby resolving vertical
silos. According to [42], interoperability covers six distinct
levels: 1-Technical, 2-Syntactic, 3-Semantic, 4-Pragmatic,
5-Dynamic, and 6-Conceptual. In the literature, inter-
operability among different IoT systems mainly investi-
gates: (i) Syntactic level, which includes data interchange
and language-independent formats, such as O-DF [11],
JSON(-LD), or RDF/XML; and (ii) the Semantic level, which
addresses the ontology- and vocabulary-based approaches,
such as SSN and schema.org. To this end, a multi-layered
platform is proposed to overcome the scalability and interop-
erability issues for IoT applications [43]. Another interopera-
ble and distributed IoT architecture is designed to address the
heterogeneity of IoT devices and enable seamless inclusion
of new devices in IoT applications [40].

D. BIG DATA MANAGEMENT
Since many devices are interconnected in IoT-based sys-
tems, they generate huge volumes of data, which need to
be managed for efficient Big Data management. A NoSQL-
based centralized data management system is proposed by
Li et al. [44] for storing enormous amounts of IoT data.
Another NoSQL-based distributed database called Apache
Cassandra is used in the literature for managing large-scale
IoT data which can take an unstructured, structured, or semi-
structured form [45]. Similarly, another alternative is Mon-
goDB,2 which is a general-purpose document-based NoSQL
database used to store huge volumes of data in JSON-like
documents. These databases adopt a hashing-based system to
balance the load across multiple servers. However, although
both Cassandra and MongoDB facilitate frequent read and

2[Online]. https://www.mongodb.com/, last accessed in Nov, 2020
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TABLE 2. State-of-the-art comparative analysis between the existing frameworks and the proposed solution.

write operations with a key-value storage, it features no
data subscription functionality for automatic data/services
updates in contrast to other systems, such as O-MI and
O-DF standards. Furthermore, another distributed mecha-
nism for load-balancing in cloud data centers is proposed
by Tian et al. [46], allocating physical and virtual servers by
considering memory, CPU usage, and network bandwidth.
Similarly, Singh et al. [47] propose another load-balancing
algorithm for agile data centers, which can manage the
hierarchical data distribution to multiple servers. How-
ever, the functionality of distributing subscription-based data
remains underexamined in this approach. To balance the load
in mobile edge computing, Yu et al. [48] implement a scal-
able and dynamic software load balancer based on minimal
perfect hashing. Although this solution improves the network
performance, there is no support for publish/subscribe mes-
saging, which is the core building block of our proposed IoT
platform.

E. COMPARATIVE ANALYSIS
Based on the above-mentioned challenges and discussions,
we review state-of-the-art technologies, protocols, and stan-
dards for scalable IoT-based applications. This comparative
analysis is elaborated in TABLE 2. The proposed methodol-
ogy based on various characteristics is also compared with
the existing IoT-based platforms. As seen in TABLE 2,
the IoT application lists the use cases on which any particular
technique has been tested or validated. The scalability type
can be classified into either horizontal (i.e., if IoT devices
are increased), vertical (i.e., if the number of resources is
increased), or Load scaling (increasing the workload). The
level of scalability refers to the system on which any par-

ticular method has been applied, and the levels in our case
are cloud, edge, and gateway (fog). Further, another crite-
rion is the communication protocol adopted by the platform
and support for IoT discovery, such as device and service
discovery. Finally, the virtualization criteria verifies whether
the existing solutions support hypervisor- or container-based
virtualization.

III. THE SCALABLE IoT PLATFORM
Most of the related works in the literature only present
cloud-based architectures for scalability and focus mainly
on the design and implementation at the cloud-level. Also,
they seldom analyze these approaches on real-life use
cases. Therefore, based on the above-mentioned compar-
isons, we propose an open and scalable IoT platform for smart
environments by adopting the modular characteristics of edge
computing. The proposed framework balances the load by
relying on consistent hashing, combined with a distributed
storage mechanism, thus providing discovery and scalability
at the edge-level (i.e., where data are published and con-
sumed). In addition, this layered design supports interoper-
ability using open messaging standards, which are described
in Section III-D. TABLE3 lists the scalability requirements of
our proposed solution, which are derived from earlier related
work in various domains [49]–[51]. FIGURE 2 shows the
high-level overview of our proposed solution, which consists
of three main Planes: Discovery, Storage, and Service.

A. DISCOVERY PLANE
The Discovery plane provides device discovery and data
translation features, which allow IoT devices and/or smart
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TABLE 3. Scalability requirements for IoT applications.

FIGURE 2. Scalable IoT platform containing three planes.

objects to communicate openlywith the entire systemwithout
any vendor lock-in obstacles.

1) DEVICE/SERVICE DISCOVERY
In IoT, discovery mechanisms refer to the naming and locat-
ing schemes for identifying available devices in the network,
the services they offer, and ways to connect with them [28],
[32]. In large, heterogeneous, and constantly changing IoT
deployments, it is important for the devices to be discov-
erable on the site to publish/consume their data, otherwise
the installation and maintenance costs could be too high.
We implement a device discovery mechanism to handle the
WiFi connection configuration of devices in a WiFi-based
IoT network as the WiFi operates at a much faster rate. The
mechanism enables the IoT network to share configuration to
new devices automatically instead of requiring the installer
personnel to run manual configuration steps. As compared to
a WiFi-based network, we can also adopt Bluetooth technol-
ogy as an alternative to provide wireless connectivity between
devices. This technology is available at low cost in many
hardware.

2) DATA TRANSLATION
Once the devices have been discovered, the published
real-time data need to be processed before converting them
into a standardized API format. The standardization of data

is imperative as the data can be made clear and persis-
tent through this method, which ensures the relative under-
standing, identification, and management of related data by
employing the common format and terminology [52]. Our
proposed work (i) acquires the data items in raw format
from different data sources, for instance, XML and JSON;
(ii) converts the data into standardized format (e.g., RDF and
O-DF); and (iii) stores the translated data using distributed
storage mechanism, as explained in Section III-B.

B. STORAGE PLANE
The Storage plane is responsible for distributing the load to
multiple servers. We adopt a consistent hashing mechanism
to evenly distribute data items among diverse servers; the
proposed design is analogous to Apache Cassandra. Never-
theless, our design offers the publish/subscribe messaging
which is understudied in Cassandra. In consistent hashing,
each server is allocated for the administration of multiple dis-
tinct key ranges. As an example, the optimal load-balancing
behavior can be ensured by assigning an adequate number
(15+) of key ranges per server [9]. The consistent hashing
is adapted to attain higher accuracy in contrast to the other
load balancing mechanisms (e.g., Round Robin [53]) as it has
a comparatively low number of data changes in the case of
servers joining or leaving the system.
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FIGURE 3. An example of identifier circle with m = 4; servers 1, 5, 8, 12, 15, respectively, manage key ranges k1 . . . k5.

Consistent hashing can be conceptualized as an identifier
circle which supplies a key space for mapping keys (e.g.
server or data) in a clockwise fashion. The same key space
is used to map both the server and data IDs. Generally, a hash
function (e.g. SHA-2 [54]) is calculated for assigning an m-
bit key identifier to each individual ID. To ensure that no two
IDs have similar key identifiers, the length of m should be
sufficiently large. The hashing operation works as follows.
First, the keys are ordered in an identifier circle with the help
of modulo 2m. Then, the key k is assigned in a clockwise
fashion to the first server with an identifier equal to key k.
In the process, the next server that follows the previous key k
is used for data mapping if the server with key k is unavail-
able. An exemplary hashing circle in which the key space has
16 keys (m = 4) from 0 to 15 can be seen in FIGURE 3.
FIGURE 3(a) shows the mapping of four servers to keys
1, 5, 8, 12 in which each server is in charge of at least one key
range (from ranges k1, k2, k3, k4). The blue circles correspond
to the data keys. During the mapping process, the successor
of key 4 is 5 as this key belongs to the k2 range, which is
handled by the server 5. A similar case is followed for keys
13 and 0 as the successor for both keys is server 1. From the
implementation viewpoint, these data and their identifiers are
stored as key-value pairs in a Distributed Hash Table (DHT),
providing lookup and storage schemes similar to a hash table.

FIGURE 3(b) depicts a scenario in which a new server
is added to the system and mapped to key 15. As a result,
the key range k1 is sliced into a new key range k5 (shown in
brown color) and assigned to server 15. Accordingly, the data
location with key 13 is shifted to the new server. Similarly,
FIGURE 3(c) depicts the behavior of removing the server,
which causes the server with key 8 to manage both k2 and k3
key ranges. For both addition and removal cases, the data need
to be migrated to a new server, thereby showing that only a
certain portion of key range is re-assigned without affecting
the entire key space.

C. SERVICE PLANE
The Service plane of our proposed platform is responsible for
creating and managing different services that are accessible
to end-users or IoT applications. It provides three functions.
First, data indexing allows efficient retrieval of data selected
by the users, thus optimizing the performance of the system.

Deep learning is the most widely-adopted concept for data
tagging and indexing, commonly adopted to identify patterns
and extract features from complex unsupervised data without
any human interaction [55]. Second, data analytics allows
analyzing large-scale data sets with varying data proper-
ties, thereby extracting substantial conclusions and action-
able insights. Third, data visualization allows presenting raw
data in a meaningful manner that is derived from different
data streams. Some IoT data visualization tools and tech-
niques can be referenced, such as Grafana, Google charts, and
Databox [56].

D. UNIFIED MESSAGING STANDARDS
To ensure interoperability in the proposed IoT platform,
O-MI is adopted as the application-level messaging proto-
col which supports both client/server and publish/subscribe
communication models. O-MI supports the CRUD (Create,
Read, Update, Delete) model, which is the key in any given
IoT application and provides six communication interfaces
(operations), as listed in TABLE 4. One of the core proper-
ties of O-MI is that it is protocol agnostic, meaning that it
can be implemented over different protocols, such as HTTP,
WebSocket, SOAP, or TCP-IP [57], [58]. An open-source
reference implementation for the O-MI standard has been
developed,3 which contains three main components: (i) the
API endpoint handles user requests and currently supports
both HTTP and WebSocket protocols; (ii) the Agent sys-
tem contains multiple software agents, which are used to
pull/push data (e.g., sensor data values) from and to the
internal database; and (iii) the User/Web interface is used for
executing O-MI operations, listed in Table 4. Furthermore,
FIGURE 4 shows an example of the O-MI read message,
which applies the read operation (see line 2) for requesting the
temperature data. The requested services use a standard com-
plementary to O-MI named O-DF (Open Data Format) [11],
as highlighted in FIGURE 4. Just like the HTTP protocol that
can embed formats other than HTML, O-MI is designed to
be independent of O-DF and can embed any other payload
formats.

The O-DF standard is defined using the XML schema
to represent any IoT object. It is intentionally presented

3[Online]. O-MI implementation available: https://github.com/
AaltoAsia/O-MI, last accessed in Oct, 2020
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TABLE 4. O-MI Communication Interfaces (supported operations).

FIGURE 4. O-MI/O-DF read message requesting for temperature data.

similarly to data structures in object-oriented program-
ming. The hierarchical tree structure is organized as fol-
lows (refer to FIGURE 4): it starts with its top element as
Objects element which can contain Object sub-elements
of any number. In a similar vein, any number of proper-
ties (referred to as InfoItems) can be contained within
the Object elements as well as any number of Object
sub-elements. Therefore, the resultant Object tree can
consist of a number of levels. There is a mandatory sub-
element, called id by every Object used for identification
of the Object. It is ideally unique for a specific appli-
cation or a residing network. From a semantic viewpoint,
O-DF can be extended with domain-independent and/or
domain-dependent semantic vocabularies, such as SSN and
MobiVoc [59]. In the message given in FIGURE 4, O-DF can
be enriched with schema.org tags in the Objects level (using
‘‘type’’ parameters).

The security management component of our proposed
platform is designed by integrating it with the O-MI secu-
rity module developed by Aalto University,4 which provides
access control (i.e., authorization) and authentication fea-
tures. This security module consists of two components:
• Authentication: enables new user registrations and man-
ages user sessions. It currently supports three methods:

4[Online]. O-MI Authentication and Authorization modules:
https://github.com/AaltoAsia, last accessed in June, 2020

(i) password-based authentication; (ii) OAuth 2.0-based
registration using any service provider; and (iii) LDAP-
based authentication.

• Authorization: grants control privileges to the
O-MI users for managing the data/service items. It fur-
ther provides two functionalities: (i) access control to
verify that the user is allowed to process and access the
requested data items; and (ii) administrator console for
O-MI node owners to manage access policies.

IV. REAL-LIFE USE CASE: VÄRE SMART BUILDING
The proof of concept is accomplished for the Väre build-
ing in the Aalto University campus with the entire building
comprising 24 blocks on three floors with a total property
area of 34,000m2. The interactive system views of the dimen-
sional representation are depicted in FIGURE 5 including
two main building components: the building floor plan and
3D model. These interactive views help in understanding and
interpreting the visual information in the building spaces. The
Väre building data are collected frommultiple room facilities
including heating and cooling valve, presence and tempera-
ture sensors, together with sensor data assembled from five
electrical systems installed throughout the building and data
dashboard to visualize the collected data. Different technolo-
gies, such as WiFi, O-MI reference implementation, and sen-
sors enable connections in the Väre building for intelligently
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FIGURE 5. The floor plan and 3D view of Väre smart building at Aalto
University campus.

managing and storing the abundant data produced by the
sensors for smart observations. Data exchange is performed
by the datamessaging interface and data format standards (i.e.
O-MI and O-DF) for seamlessly integrating heterogeneous
sensors.

A. IMPLEMENTATION DETAILS
The discovery mechanism is depicted in FIGURE 6 along
with our proposed algorithm in Algorithm 1.5 The first
installed device checks for a hidden WiFi access point. If it
is not found, the device needs manual configuration via a hot
spot access point with WiFi credentials for the device to con-
nect to. After configuration, the device connects to the given
WiFi but also configures a hidden WiFi access point known
only to devices intended for this IoT system. The next devices
can then find the hidden WiFi if installed nearby and they
will use standard protocols, such as O-MI/O-DF, to retrieve
the configuration. Therefore, they can automatically connect
to the correct WiFi network and access the rest of the IoT
system. It should be noted that the hidden WiFi should not be
accessible for outsiders, otherwise they could find the WiFi
password. The WiFi credentials need to be kept secret and
encrypted for security against physical attacks. For encryp-
tion, the security features of the processor should be used in
the IoT device. For example, the ESP32 micro-controller has
a flash encryption and secure boot feature, which immensely

5Implementation available [Online]. https://github.com/AaltoAsia/
wifiDiscovery, last accessed in Sep, 2020

FIGURE 6. Discovery mechanism based on WiFi hotspot.

Algorithm 1: Device Discovery Based on WiFi

Function device.discovery()
Input: device1, device2, device3,. . .
// Three different ways to connect
connSuccess← false
if ! SSID.isEmpty() then

// 1. Try to connect to saved
WiFi

WiFi.begin()
connSuccess←WiFi.waitForConnectResult()

end
if ! connSuccess then

// 2. Connect to WiFi
credentials provider

connSuccess← connectWifiProvider()
end
if ! connSuccess then

// 3. Using WiFiManager portal
for asking credentials

startWifiManagerPortal()
end
// Connected
setupWifiProvider()

Algorithm 2: Data Mapping and Storage

Function map.dataItem()
Input: data, hashTable[hashKey,server]
hashKey← SHA-2(data)
foreach element e of the hashTable[hashKey] do

hashKey′← hashTable[e]
if hashKey ≤ hashKey′ then

server← hashTable(hashKey′)
else

server← hashTable(min(hashKey′))
end

end
// If data write/update request
write(server, data)
// If data read request
data = read(server)

increases the difficulty of stealing security keys from the
program code in the flash chip. For enhanced communication
security, the TLS server and client certificates could be used
for encryption and better trust between the credential provider
and the receiver.

Algorithm 2 depicts a mechanism in which the data are dis-
tributed to multiple servers. The data and hashTable are the
inputs to this algorithm, resulting in data storage in servers.
Initially, the servers are mapped with the corresponding ran-
dom SHA-2 keys in the hashTable. The hash table entries
are then sorted from smallest to largest keys. The algorithm
then proceeds as follows by (i) generating the SHA-2 key
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of the requested data, (ii) searching for the corresponding
server in the table, and (iii) storing and/or retrieving the data
item to/from the server. We consider SQLite as a persistent
database system for implementing the hash table [60].

V. PERFORMANCE ASSESSMENT AND DISCUSSIONS
To assess the performance of our proposed platform, we con-
sider the Väre building use case. We measure scalability
under two conditions: (i) Strong scaling indicates the increase
in the number of servers for an application, and (ii) Load
scaling indicates the change in the number of user requests for
an application. For each condition, we calculate the latency
and throughput. FIGURE 7 displays the experimental setup,
which has four components. (i) Väre APIs for collecting
real-time data from sensors attached to each room. We use
ESP8266 microchips that collect real-time data and send
them to our framework. There are around 100, 000 data items
collected from numerous sensors all over the blocks (i.e.,
A to Y). These sensors include an air conditioning system
(data related to CO2 concentration, inlet pressure, exhaust
air) and a heating system (data related to heating temperature,
valve adjustment, set point, snow melting pressure). (ii) Our
implementation is executed on an HP EliteBook Windows
laptop with specifications: RAM 8GB and 2.40GHz Intel
Core i5 CPU. (iii) TheO-MI nodes run insideDocker contain-
ers (v17.12) on a separate Linux machine with specifications:
RAM 16GB and 3.20GHz 8-cores Intel CPU. In addition,
the O-DF objects hierarchy of the Väre building data is
depicted in one of the O-MI nodes user interface. (iv) The
Apache JMeter (v5.0) runs on MacBook Pro with a 16GB
RAM and 2.30GHz Intel CPU. This open-source software is
used to send concurrent requests, which helps in simulating
massive loads on the O-MI nodes.

FIGURE 7. Running implementation of our proposed platform for Väre
smart building.

A. SCENARIO 1: LOAD SCALING
In this scenario, we perform load testing by varying the
number of users. FIGURE 8(a) shows the concurrent users

progression with time, in which the number of users grad-
ually increases to 500 (at t=450s) in a group of 100 users.
At t=550s, the users begin to decline with a ratio of
100-by-100 until the end of the experiment (at t=1000s).
With this setup, we measure the latency and throughput for
each user group (ug) by sending random read messages. The
data in the O-DF format are exchanged between the users and
our framework, in which the users send O-DF messages and
receive the requested data (i.e., in O-DF response).We use the
compression feature of HTTP to reduce the request size. The
size of the data is≈950 bytes per O-DF InfoItem, which also
varies by the amount of InfoItem(s) in the same read request.
The graphs in FIGURE 8 represent the latency measurements
distribution, providing data read latency as ‘‘latency’’ bins
on the horizontal axis, and the frequency as the number of
cases/requests obtained in each latency bin on the vertical
axis for five different user groups. In this paper, latency is
the time taken by the O-MI server to respond to a user’s read
request. As seen in FIGURE 8(b), the latency significantly
rises when we increase the load as more time is needed to
process thousands of concurrent requests. The highest num-
ber of requests (i.e., 2, 700 requests) is handled with latency
0.3 × 104ms/request. When the load is at its maximum (i.e.,
at t=500s when all user groups are active), around 1, 500
requests are processed with the latency of less than 1 ×
104ms/request. Similarly, more requests (i.e., 3, 800 requests)
are processed in the case of 7 servers in FIGURE 8(c) with
the latency of 0.3×104ms/request. In addition, when all user
groups are active at t=500s, the latency is almost similar to
the 3-server case with value less than 1 × 104ms/request.
This shows that the system is scalable; even when the num-
ber of servers increases, the latencies do not often change.
Compared to FIGURE 8(b) and FIGURE 8(c), FIGURE 8(d)
shows enhanced latency of value 0.5 × 104ms/request when
the load is at its maximum. However, the number of requests
is significantly smaller than the requests for 7- and 3-server
cases. Overall, it can be observed that when the number
of servers increases, the latency decreases but the number
of requests becomes lower. Subsequently, the solution is
sufficiently scalable and can adapt itself to the increasing
number of servers as well as the number of concurrent users
(i.e., load).

In addition to the latency distribution graphs, we measure
the throughput in requests/sec (req/s) and average latency for
each ug for 1, 3, 7, and 15 servers. The results are presented
in TABLE 5. As can be seen, when the O-MI node scales
up, the throughput increases as well, which shows that more
requests are handled. In the case of 15 servers, the average
latency for all user groups is higher, which is also the case
with the throughput values. For ug1, the latency is 5182ms
with a throughput of 18.6req/s (i.e., throughout the experi-
ment in which the load is increasing and then decreasing).
Although there is no significant difference in the throughput
and latency for 1 and 15 servers, they allow us to confirm the
previous results. However, the single O-MI node is unable
to complete the request (timeout = 300s) for ug1, ug2, and
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FIGURE 8. Latency measurements distribution for five user groups (ug) in three different server configurations. Frequency refers to the
number of read requests in each ‘‘latency’’ bins obtained in our experiment.

TABLE 5. Throughput analysis for various user groups with increase in the number of servers. ‘‘∗’’ refers to timeout.

ug3with the errors of 0.86%, 1.43%, and 2.04%, respectively.
Hence, it can be observed that our proposed solution can sig-
nificantly improve the throughput by efficiently distributing
the load to multiple O-MI edge nodes.

B. SCENARIO 2: STRONG SCALING
This scenario increases the number of concurrent users from
20 to 100 in steps of 20 and measures the data read latency.

We also increase the number of servers to analyze the impact
on read latency of O-MI servers. The experimental results are
shown in FIGURE 9. These graphs display a boxplot with the
minimum, 1st quartile, median, 3rd quartile, and maximum
of the latency calculated over the increasing number of users
for each 1, 3, 7, and 15 server. For each user case (i.e.,
20, 40, 60, 80, 100), the experiment was executed for 600s
each. The latency values remain almost constant for all the
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FIGURE 9. Impact of data read latency by increasing the number of concurrent users from 20 to 100 in steps of 20 with respect to
the increasing number of O-MI servers.

O-MI servers for the fixed number of users.When the number
of O-MI servers increases in FIGURE 9(d), there is no sig-
nificant increase in the latency values for other server cases.
This explains why our framework is sufficiently scalable as
the latency does not increase even with a smaller number of
servers. We are saving the cost of more servers as the data
load is handled much efficiently with fewer servers without
the need of more servers. Hence, it can be observed that
our proposed solution is capable of handling the load much
efficiently even with a smaller number of servers.

VI. CONCLUSION, LIMITATIONS, AND FUTURE
DIRECTIONS
In this paper, we propose an open and scalable IoT platform
for smart environments based on edge computing. It allows
dynamic discovery of devices (i.e., Things, actuators), their
configuration, and data management. Our proposed solution
offers four features. (i) Scalability with respect to the number
of users/inputs and computing environment, which implies
that it can handle an increased number of users. (ii) The
platform overcomes vertical silos by providing standardized
communication protocols and the semantic data models that
are open and should not change from one smart environment
to another. (iii) The device discovery in which the mobile IoT
devices are able to discover themselves to publish/consume
data and/or services. (iv) The data management is performed
at the edge of the network by relying on a consistent hash-
ing load balancing to optimize data publication, data con-
sumption, and network latency. This new IoT platform is

composed of Discovery, Storage, and Service planes. The
proposed solution is evaluated on the Väre building use case
in the Aalto University campus by calculating latency and
throughput measurements. The key component of this use
case is the O-MI node, which is developed by adopting the
O-MI and O-DF messaging standards. It can be concluded
from the experimental results that the proposed platform
improves latency without any additional overhead of adding
more servers, ensuring an interoperable and scalable solution.

A. LIMITATIONS
Despite commendable improvements in the IoT technology
for smart computing systems, some limitations still remain to
be addressed in the proposed system:
• For the discovery mechanism, there is no method of
automatically retrieving the WiFi SSID when the net-
work has been changed for mobile devices. It can be
performed by creating a list of possible WiFi SSIDs and
programming it into the system.

• The mobile devices should be aware of the endpoint
for their discovery and data publication. This can be
achieved with any local area network service discovery
protocol after connecting to the correct WiFi network.
For example, DNS-SD (DNS Service Discovery) can be
used to advertise and discover the endpoint. This has
been implemented in the O-MI node reference imple-
mentation.

• All mobile devices need to have a shared secret, which is
used to keep the WiFi credentials (SSID and password)
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safe from any other users. If this secret leaks, either
by employee or by hardware reverse engineering, all
devices will be vulnerable to local attacks.

B. FUTURE WORK
Our future work will address the above limitations for
enhanced discovery and security features. Further, the related
future research avenues could include:

• The optimization of a consistent hashing module by
implementing WebSocket communications.

• The integration of our platform Service plane with the
O-MI security module to provide authentication- and
authorization-related security management.

• Methods for more secure automatic sharing of WiFi
credentials during the WiFi network discovery.
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