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ABSTRACT
Amateur ground stations are gaining increasing importance as
both academic and hobby activities. However, due to the limited
energy resources available in amateur satellites, ground stations
need to be located in isolated places in order to establish a reli-
able communication. This usually implies limited Internet access.
Hence, ground stations need to be able to recognize incoming sig-
nal without completely relying on an Internet connection. For this
reason, we propose an algorithm to estimate parameters such as
amplitude, center frequency, bandwidth and modulation type for
amateur radio applications. For signal detection, we use an absolute-
valued sinc approximation which estimates the center frequency
and bandwidth of signals with signal-to-noise ratios over -6 dB with
a precision of 5% and 2% respectively. In addition, Support Vector
Machines (SVM) binary classifiers are used in series to classify the
four most common modulation types used in amateur satellites.
With accuracies over 90%, SVM outperforms solutions based on
Artificial Neural Networks.

CCS CONCEPTS
• Computing methodologies → Supervised learning; • Ap-
plied computing→ Aerospace.
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1 INTRODUCTION
The current number of active satellites orbiting the Earth is around
2218, from which approximately 150 are amateur satellites [2, 7, 8].
This type of satellites use unlicensed frequency bands for uplink
and downlink transmissions. Such bands include VHF (Very high
frequency), UHF (Ultra high frequency) and, in some few cases, the
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S (2.4 GHz) band [2]. By using unlicensed bands, amateur satel-
lites allow amateur radio operators to decode their transmissions
using their own ground stations. However, to be able to decode
such transmissions, some information has to be available for the
ground stations, e.g., carrier frequency and modulation type. This
information is usually publicly available in multiple websites [7, 11].
Nevertheless, some ground stations are located in difficult access ar-
eas where there is no Internet connectivity. In such cases, a ground
station with offline information about satellites will be quickly un-
able to track them and decode their signals. Even if the antenna is
able to capture a satellite signal, it will not know with certainty its
source, i.e., the satellite that generated it. As a result, the ground
station does not have the required information to decode the signal
[13].

To address this problem, we propose an algorithm to detect sig-
nals from unknown satellites and determine their amplitude, center
frequency, bandwidth and modulation type in order to proceed
with its demodulation. Particularly, our algorithm uses an absolute-
valued sinc approach to model signal features such as amplitude,
center frequency and bandwidth with no previous information
of it. While for the modulation classification, a comprehensive
study on feature extraction is presented and evaluated under two
Machine Learning (ML) techniques. Namely, Artificial Neural Net-
works (ANN) and Support Vector Machines (SVM). We consider
the four most common modulation types in amateur radio: BPSK
(Binary Phase-Shift Keying), BFSK (Binary Frequency-shift Key-
ing), CW (Continuous Waveform) with a Morse code encoding
and GMSK (Gaussian minimum-shift keying). Such modulations
are present in 13.4%, 54.6%, 30.6% and 23.3% of the active amateur
satellites, respectively. Note that the sum of the given percentages
is higher than 100% since satellites usually support multiple modu-
lations.

The contributions of this paper are as follows: (i) we propose
an algorithm for signal detection and modulation classification
targeting, specifically, amateur satellite signals. (ii) we present a
comprehensive study on feature extraction for the modulation clas-
sification problem. Such an study is, to the best of our knowledge,
the first one for amateur satellite communications. (iii) we test our
proposed algorithm in both simulated and real data.

This paper is organized as follows. Section 2 presents the related
work in signal detection and modulation classification. Section 3
details the models used to approximate the signal features, while
Section 4 provides the methods used for modulation classification.
Section 5 shows the performance evaluation of the algorithm when
applied to simulated and real data. Finally, Section 6 gives some
concluding remarks and future work.
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2 RELATEDWORK
Signal detection techniques have been widely used in cognitive
radios to detect transmissions from primary users in a specific fre-
quency band. Namely, energy detection [1], matched filtering [6],
and cyclostationarity detection [12] are the most common tech-
niques. Such methods, however, do not provide information about
the signal features, instead, they only determine the presence of
signals in a certain frequency band.

On the other hand, Automatic Modulation Classification (AMC)
has also been extensively addressed in the literature [5]. For in-
stance, in [3] ANN are used to classify seven different modulation
types. While [10] exploits deep learning techniques to classify both
digital and analog modulations. [4] uses the constellation diagram
of signals to classify different levels of QAM (Quadrature Amplitude
Modulation), ASK (Amplitude-Shift Keying), and PSK modulations.
Although all these approaches present AMC solutions, none of
them target satellite communications, which typically have low
SNR (signal-to-noise ratio) values due to the low-power nature of
small satellites such as nano and picosatellites. In contrast, our pro-
posed algorithm is able to successfully classify this type of signals
while also providing signal detection and parameter estimation.

The work in [14] address ACM and signal detection in satellite
communications. However, such work focuses on PSK, APSK and
QAM modulations. Instead, our work also targets the CW and FSK-
type modulations which are widely used in amateur satellites.

3 SIGNAL DETECTION
The parameters of the received signal are estimated by approximat-
ing its amplitude, center frequency and bandwidth. Such approx-
imation is done by modeling the FFT (Fast Fourier Transform) of
the signal with an absolute-valued sinc function, as proposed in
[15]. The parameters of the sinc function are adjusted in an itera-
tive fashion until the best fit is found. The models used for each
parameter are discussed in the following.

3.1 Amplitude model
The amplitude of the sinc function is adjusted by minimizing the
mean squared error between the signal FFT (𝑉𝑙 ) and the sinc ap-
proximation (𝑆𝑙 ). However, only the data contained in the main
lobe of the sinc are used. Eq. 1 shows the objective function for the
amplitude approximation.

min(𝐸) = min

(∑
𝑙𝜖𝐿

[𝑉𝑙 − Δ𝐴𝑆𝑙 (𝑥𝑙 )]2
)
, (1)

where 𝐿 is a set that contains all of the elements in the main lobe
of the sinc and Δ𝐴 is the amplitude of the sinc function. Note that
Δ𝐴 is the parameter that must be optimized. Deriving Eq. 1 respect
to Δ𝐴 and optimizing, we obtain Eq. 2.

Δ𝐴 =

∑
𝑙𝜖𝐿 [𝑉𝑙𝑆𝑙 (𝑥𝑙 )]∑
𝑙𝜖𝐿 [𝑆𝑙 (𝑥𝑙 )]2

. (2)

The amplitude of the sinc is updated iteratively following Eq. 2.
This process runs until an error restriction is reached.

3.2 Frequency model
The initial frequency approximation (𝑥off ) is done at the point where
the maximum value of the FFT is located, as in Eq. 3.

𝑥off = argmax(FFT) . (3)
For the frequency calculation, we use the model presented in

[15] which consist of a torques balance. In this model, the areas
under the right-side (𝑀𝑅 ) and the left-side (𝑀𝐿) of the sinc are to
be balanced. Such areas are calculated as in Eq. 4.

𝑀𝐿,𝑅 =
1
𝐿

∑
𝑙𝜖𝐿𝐿,𝑅

[𝑉𝑙 − 𝑆 (𝑥𝑙 )], (4)

where

𝐿𝑅 = {𝑙 : 𝑙 𝜖 𝐿, 𝑙 > 𝑥off }, 𝐿𝐿 = {𝑙 : 𝑙 𝜖 𝐿, 𝑙 ≤ 𝑥off }. (5)
Then,𝑀𝑅 and𝑀𝐿 are compared with each other and the offset

is adjusted accordingly to balance the areas. The offset is moved
only one unit at a time to avoid divergence in the subroutine. This
subroutine runs until the offset returns to the same point it was in
the previous iteration.

3.3 Bandwidth model
For the bandwidth calculation, the main lobe of the sinc is approxi-
mated with the function shown in Eq. 6, as proposed in [15].

𝑄 (𝛼, 𝑥) = 𝐴 −𝐴

(
Δ𝛼
𝐿

)2
(𝑥 − 𝑥off )2 , (6)

where 𝑄 (𝛼, 𝜑) is defined as in [15].
Then, the error for the values contained in the main lobe are

defined as in Eq. 7
𝐸 =

∑
𝑙𝜖𝐿

(𝑥𝑙 − 𝜑𝑙 )2 . (7)

With the previous error, Δ𝛼 can be calculated for the bandwidth
update, as follows

Δ𝛼 =

∑
𝑙𝜖𝐿

[
Γ2
𝑙

]
∑
𝑙𝜖𝐿

[(
𝑥𝑙 − 𝑥𝑜 𝑓 𝑓 𝑠𝑒𝑡

)
`Γ4

𝑙

] , (8)

where

Γ𝑙 = 𝐿

√
𝐴 −𝑉𝑙

𝐴
. (9)

This subroutine runs 50 times and a record of the mean squared
error is stored in order to determine the value of Δ𝛼 that minimizes
the error.

Each of these models for amplitude, frequency and bandwidth
run as a subroutine in the algorithm published as open source code1.
In such algorithm, the incoming data is first transformed by FFT,
then a peak approximation is done, which is performed by linear
interpolations between two peaks in a window (this approximation
is shown in Figure 1). Later, the amplitude, frequency and band-
width subroutines run until the error conditions are reached. Then,
if the error condition for the whole signal FFT window is not ac-
complished, a new approximation is done and the algorithm returns
1https://github.com/VeronicaToro/Signal-identifier
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Figure 1: Signal FFT with a peak and a sinc approximation

a double-approximation, which is represented by two different sinc
functions (Figure 1b). The double-approximation approach is in-
deed necessary for BFSK signals, as they contain two main peaks
in its FFT. Finally, the algorithm returns the computed parameters.

4 MODULATION CLASSIFICATION
Four modulation types were considered for the modulation clas-
sification problem: BPSK, BFSK, CW and GMSK. To address such
a problem, we consider Support Vector Machines (SVM) with a
linear kernel and Artificial Neural Networks (ANN) with different
parameters to finally choose the method and the set of parameters
that achieves the highest accuracy. On the other hand, to effectively
choose the set of features that allow accurate classifications in any
of the ML methods, we used the Scikit-learn univariate feature se-
lection algorithm2 to visualize the features that highly affect the
classification.

We evaluate the following 8 features: (i) the standard deviation
(as shown in Eq. 10) of both, (ii) the instantaneous frequency (Eq.
11) and (iii) the instantaneous phase (Eq. 12) of the signal. The
correlation coefficient (𝜌) between the signal and either (iv) a BFSK
signal (𝜌 𝑓 ), (v) a BPSK signal (𝜌𝑝 ), (vi) a sine wave of the same
frequency as the signal (𝜌𝑠 ), or (vii) a one-period sine wave (𝜌 ′𝑠 ). And
(viii) the mean amplitude of the signal (𝐴). Note that the reference
signals used in features (iv) - (vii) are noise-free simulated signals.

𝜎 =

√
1
𝐿

[∑
𝜙2 (𝑖)

]
−

[∑
𝜙 (𝑖)

]2
, (10)

𝜙 𝑓 (𝑡) =
1
2𝜋

𝑑 [arg (𝑧 (𝑡))]
𝑑𝑡

, (11)

𝜙𝑝 (𝑡) = unwrap [arg (𝑧 (𝑡))] , (12)
where

arg (𝑧 (𝑡)) = arctan
(
Im{𝑧}
Re{𝑧}

)
. (13)

In the previous equations, the Hilbert transform of the signal 𝑧 (𝑡)
was used, which has a real (Re{𝑧}) and an imaginary part (Im{𝑧}).
Table 1 shows the obtained scores for each of the evaluated features
in this base case.
2
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html

Feature number Feature Score
3 𝜙𝑝 17254.75
4 𝜌 𝑓 237.72
6 𝜌𝑠 66.42
5 𝜌𝑝 12.44
8 𝐴 9.89
7 𝜌 ′𝑠 7.98
2 𝜙 𝑓 1.51
1 𝜎 0.12

Table 1: Scores of the evaluated features.

The selected features have different importance for each modu-
lation. For instance, the difference between the mean amplitude 𝐴
of a CW signal is highly different to that of any other modulation.
However, this difference is not important when you compare a BFSK
and and GMSK signal. For this reason, we also evaluated the scores
of each feature when only two modulation types are considered. As
a result, we obtained the scores for each pair of modulations. We
call this classification problem, the binary case. Table 2 shows the
two features with the highest scores for each set of modulations.

Modulations Feature number Feature Score

BPSK, BFSK 3 𝜙𝑝 15867.17
4 𝜌 𝑓 89.35

BPSK, CW 3 𝜙𝑝 7971.31
5 𝜌𝑝 6.67

BPSK, GMSK 3 𝜙𝑝 2660.47
6 𝜌 ′𝑠 2.93

BFSK, CW 3 𝜙𝑝 1421.78
5 𝜌 𝑓 78.87

BFSK, GMSK 3 𝜙𝑝 5723.50
8 𝜌 𝑓 94.19

CW, GMSK 3 𝜙𝑝 1458.53
7 𝐴 4.48

Table 2: Features with highest scores in the binary case.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
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Figure 2: Success rate and error percentage for BFSK and BPSK signals.

To determine the modulation type of a test signal in the binary
case, such signal is passed through each binary classifier. At the end,
the correct modulation type is the one with the highest aggregated
probability. This is similar to the voting process in a random forest
approach.

In Section 5.2, we evaluate the accuracy of both: the base case
and the binary case.

5 PERFORMANCE EVALUATION
The performance of the signal detection algorithm is evaluated in
terms of error percentage, i.e., the difference between the approx-
imations made and the real values, divided by the real value. On
the other hand, the modulation classification methods are assessed
by their accuracy. In order to evaluate such metrics, we used and
modified the algorithms in [9] to simulate signals with different
SNRs, varying from -10 dB to 18 dB. For each SNR value, 25 datasets
were created with 1024 samples each, at a sample rate of 32 kHz.
The following sections shows the results for the used approaches.

5.1 Signal detection
The performance of the signal detection algorithm for BFSK and
BPSK signals can be seen in Figure 2. Specifically, the success rate
(SR) and percentage of double-approximation (DA) are shown in
Figures 2a and 2c, respectively. For the tested datasets, the SR refers
to the number of times the algorithm converged to a solution, while
DA indicates the number of times the algorithm performed a second
approximation. Clearly, a double-approximation is expected from a
BFSK signal, while it is undesirable for a BPSK signal. In fact, it can
be seen that for the tested BFSK signal, double-approximations are
made in 100% of the cases already at -6 dB. However, this percentage
drops at high SNR due to the low content of noise, i.e., after the
first approximation is made, the root mean square error is lower
than the threshold and thus, no second approximation is performed.
On the other hand, the BPSK signal achieve a SR of 100% and a DA
percentage of 0% at 2 dB and higher SNR.

Figures 2b and 2d depict the average error percentage of the
amplitude, center frequency and bandwidth approximations made
for the signals with each available SNR. As expected, the error
is higher at low SNR, however it is always less than 10% for all
the parameters in the BPSK signals with SNR values higher than
0 dB. In particular, BFSK signals with SNR values over -6 dB are
approximated, on average, with an accuracy of 11.32% for amplitude,
5.11% for frequency and 2.90% for bandwidth. While BPSK signals

with SNR values over 2 dB present accuracies of 0.78% for amplitude,
6.83% for frequency and 0.59% for bandwidth, on average.

On average, the amplitude is the parameter with the lowest
error, while the frequency has the highest error. This is due to the
asymmetry introduced by the noise in the FFT, i.e., if the signal FFT
has a higher contribution of lower frequencies, the signal detection
algorithm tends to converge at lower frequencies.

The signal detection algorithm was also tested for real signals
transmitted by commercial modules in different frequencies and
with BFSK modulation. The data were acquired using an Ettus N210
with a daughterboard UBX. The results for this experimental signals
are presented in Table 3.

Band SR [%] DA [%] AE [%] FE [%] BE [%]
VHF 87.50 100 47.65 0.66 49.99
UHF 97.50 100 0.60 0.73 23.92
S 99.50 100 15.00 0.33 6.52

Table 3: Results of the signal detection algorithm for real
signals.

In the experimental results, the parameter estimation algorithm
had the poorest results for VHF signals. This is due to the noisy
environment where the tests were performed, as there were many
signals interfering in that bandwidth.

5.2 Modulation classification
As discussed in Section 4, we use 8 different features to classify
between BPSK, BFSK, CW and GMSK signals. For training the
machine learning algorithms, we use the 80% of the previously
mentioned datasets, while 20% are left for testing. In particular,
5 datasets of each SNR is used for testing, while 20 are used for
training. Moreover, we define two classification problems: the base
case and the binary case. Particularly, we use SVM for the binary
case, while ANN with different numbers of neurons and layers are
used for the base case. Specifically, we tested one and two layers
with numbers of neurons varying from 2 to 20 in each layer. Figure
3 shows the classification accuracy obtained for each modulation
type in both the base and the binary cases. Note that only the 4
ANN configurations with the best results are shown in the figure.
The other results were omitted for clarity of the figure.

We observe that the best classification accuracies in the base
case were obtained when only one layer was used for the ANN.
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Generally, BPSK signals present the lowest accuracy, even though
the most relevant feature is always the standard deviation of the
instantaneous phase of the signals. This can be explained by the
fact that BPSK signals highly overlap with other signal from dif-
ferent modulations, specially, at SNR values from -10 dB to 2 dB.
This can be seen in Figure 4, where the standard deviation of the
instantaneous phase of the signals is plotted against their SNR. In
the figure, all the values inside a color bar, have the same SNR.

Although all approaches achieve similar results, we observe
that the binary case with SVM has consistently high accuracies at
all modulations. In contrast, the ANN approach with 1-layer and
20-neurons can classify GMSK signals with an accuracy of 89.3%,
however, it achieves only 70.6% with CW signals.

Based on the presented results, SVM binary classifiers are bet-
ter than the ANN to accurately classify the studied modulations.
Moreover, since the implemented SVM use linear kernels for the
binary classifications, the time complexity for testing new signals is
negligible. In addition, all calculations can be made with a window
of only 1024 samples, which makes the proposed approach suitable
for real-time implementations.

6 CONCLUSIONS
This paper presented an algorithm for signal detection and mod-
ulation classification of signals typically used in amateur satel-
lites. Specifically, our algorithm estimates the amplitude, center
frequency and bandwidth with an error of less than 10% for signals
with SNR higher than 0 dB. Moreover, our approach uses SVM to
classify four different modulation types. By defining the classifica-
tion problem as multiple binary classifiers in series, our approach
achieves higher accuracies than ANN. As future work, we expect
to embed the presented algorithm into an out-of-tree module in
GNURadio.
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