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ABSTRACT 

Data collection for street-level mapping is currently executed with terrestrial (TLS) or mobile 
laser scanners (MLS). However, these methods have disadvantages such as TLS requiring a lot 
of time and MLS being dependent on the global navigation satellite system (GNSS) and an inertial 
measurement unit (IMU). These are not problems if we use simultaneous localization and 
mapping (SLAM) based laser scanners. We studied the utility of a SLAM ZEB-REVO scanner for 
mapping street-level objects in an urban environment by analyzing the geometric and visual 
differences with a TLS reference. In addition to this, we examined the influence of traffic on the 
measurement strategy. The results of the study showed that SLAM-based laser scanners can be 
used for street-level mapping. However, the measurement strategy affects the point clouds. The 
strategy of walking trajectory in loops produced a 2 cm RMS and 4-6 mm mode of error even in 
not optimal situations of the sensor in the urban environment. However, it was possible to get an 
RMS under 2.2 cm and a 32 cm mode of error with other measurement strategies.  

1. INTRODUCTION

The most of the current city models are produced from the aerial data (Valencia et al. 2015, Lee 
and Yang 2018, City of Helsinki 2019, GIM 2019, and Rotterdam 2019). However, the 
combination of aerial and ground-based data collection (hybrid) has become popular because of 
more accurate geometry of objects and texture quality (Lee and Yang 2018). One example of a 
hybrid city model is the city model of Zürich, which combines aerial and ground images 
(ETHZurich 2019). The next generation of hybrid city modeling could use ground-based 
measurement methods, such as mobile laser scanning systems or simultaneous localization and 
mapping (SLAM) based laser scanners, for mapping street-level object geometry (Haala et al. 2008, 
Zhu et al. 2011, Adán et al. 2019, and Ma et al. 2018). The ground-based measurements could 
cover boroughs of cities more accurately or even connect indoor spaces to the city model. With 
data from indoors the monitoring and planning of city areas would be more comprehensive. 

SLAM-based laser scanners have many advantages versus stationary terrestrial laser scanners 
(TLS) and mobile laser scanners (MLS). TLS measurements take a relatively long time and MLS 
is dependent on direct georeferencing devices including the global navigation satellite system 
(GNSS) assisted with an inertial measurement unit (IMU). The most prominent advantages of 
SLAM-based systems are (1) more effective data collection than that of TLS because there is no 
need for multiple stationary measurement stations and their mutual registration, and (2) SLAM 
scanning can reach areas where GNSS positioning is not available, for example, in indoor and 
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underground environments (Adán et al. 2019, Ma et al. 2018, Sirmacek et al. 2016, and Holland et 
al. 2016). It has also been shown that SLAM-style algorithms can be applied to improve GNSS 
localization in challenging environments (Kukko et al. 2017). With these methods, city modeling 
could be facing a new era where data capture and subsequent modeling are carried out at street-
level. In addition, this may be a key element in creating comprehensive 3D city models by only 
using point clouds as presented, e.g., by Nebiker et al. (2010) and Virtanen et al. (2017). 

There are many SLAM-based laser scanners on the market, such as the Stencil and Contour from 
Kaarta, the Paracosm PX-80 and the Leica Pegasus Backpack. However, perhaps the most popular 
device has been the Zebedee by GeoSLAM. After GeoSLAM released the first ZEB1 model in 
2013, there has been a great deal of research into how the Zebedee laser scanners perform and what 
applications they can be used for (Cadge 2016). Some of the applications include underground 
mines (Zlot & Bosse 2014, Dewez et al. 2016, Eyre et al. 2016, Dewez et al. 2017, and Frangez et 
al. 2018); indoor environments; as-built information modelling and indoor navigation models 
(Thomson et al. 2013, Sepasgozar et al. 2014, Sirmacekaet al. 2016, Manan Samad et al. 2016, 
Maboudi et al. 2017, Lehtola et al. 2017, Nocerino et al. 2017, Staats et al. 2017, and Chiabrando 
et al. 2018); cultural heritage sites (Zlot et al. 2014, Farella et al. 2016, Micoli et al. 2018, and 
Tucci et al. 2018); landform mapping and tree modelling (So et al. 2015, Vanneschi et al. 2017, 
and Cabo et al. 2018); and multi-sensor surveys (Sammartano & Spanò 2018). In all of these 
applications, testing the system performance outdoors has been only a minor topic.  

The existing research on the outdoor use of SLAM systems can be categorized into three groups: 
(1) application tests; (2) filling of other point cloud data; and (3) experiments on how the SLAM
system algorithm works in different situations. In (1), there have been several studies comparing
Zebedee systems with other mobile laser scanners in outdoor applications. Tucci et al. (2018) and
Nocerino et al. (2017) have tested the Zebedee on cultural heritage sites and Frangez et al. (2018)
have performed experiments for gold mine modelling. In the research by Tucci et al. (2018), the
ZEB-REVO was found to be the best of the laser scanners examined for measuring renaissance
fortresses. However, it was found to face some problems in reconstructing planar and spherical
targets and capturing small architectural details (Tucci et al. 2018). In Nocerino et al. (2017) the
ZEB-REVO was also found to be the most suitable for measuring a cathedral square of the two
systems investigated in the study. In the study, the researchers also observed some registration
errors in the measurements (Nocerino et al. 2017). Frangez et al. (2018) noticed that the ZEB-
REVO had some advantages for mine modelling over terrestrial laser scanners.

In the second category, the use of the Zebedee for filling unmanned aerial vehicle (UAV) or TLS 
data has been reported by Vanneschi et al. (2017) and So et al. (2015) in mining and risk 
management applications. In these studies, it was proven that the Zebedee system can fill UAV, 
MLS and aerial laser scanning (ALS) data at a reasonable level of spatial accuracy. Approaching 
the third category, So et al. (2015) also proved that the maximum practical measurement distance 
with the Zebedee system outdoors was 15 m. They also tested the ability of SLAM systems in 
several outdoor conditions, for example near a rocky stream, on a rock slope, at a landslide site and 
on a natural hillside. The results of these tests show that it is possible to successfully use the 
Zebedee system in those conditions. Outdoors the Zebedee system can detect the main elements of 
target objects. However, Zlot et al. (2014) noticed that the point density depends on the 
measurement speed and misalignment errors of tens of centimeters were found when the target 
object was far away. Additionally, results from data filling studies suggest better point cloud 
registration results when target objects were scanned in two passes and that the drift error of the 
measurements could be minimized with a well-planned trajectory (Sammartano & Spanò 2018, and 
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Chiabrando et al. 2018). This highlights the importance of measurement strategy, in practice path 
planning, when performing SLAM-based MLS surveys. 

The objective of this study is to evaluate the impact of different measurement strategies on 
performance of SLAM laser scanning for mapping street-level urban environments. More 
precisely, the aim is to determine how different measurement strategies (path planning) affect 
street-level object mapping. We collected urban point cloud datasets using a ZEB-REVO handheld 
laser scanning system. The datasets included three alternative measurement trajectory strategies: 
(1) walking around buildings to form closed loops, (2) walking back and forth in front of buildings
and (3) walking trajectory in loops. The differences of these measurement strategies help to plan
and optimize SLAM-based laser scanning trajectory for mapping street-level urban environments.
We look at the potential influence of different measurement strategies on the building facades,
sidewalks and street objects by comparing the geometric and visual differences in the collected
data against a reference dataset. Additionally, we discuss the influence of traffic on the
measurement strategies. It was done by analyzing the number and type of vehicles visible in the
data during the scans, and SLAM conditions (GeoSLAM 2017) between the measurement
strategies.

2. MATERIALS AND METHODS

2.1 Study site 

The experiments were performed on the Aalto University campus in Espoo, Finland, focusing on 
the vicinity of Vuorimiehentie Street. The more specific study site is illustrated in Figure 1. The 
buildings of the street are three and four floor office buildings. The street scene represents a typical 
urban environment with features, such as trees, bus stops and alley crossings between the buildings, 
which are common in almost any urban scene. 

Figure 1. An aerial photograph of the study area. The test site is marked in yellow, and 
is 210 m in length. The gap between the buildings is marked with letter G. 

(Ortophotograph © Espoo City Survey Department, 2017) 
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Figure 2. The gap between the buildings is 22 m wide, with some road signs and a tree. 

 
The study site has some features, which potentially make SLAM-based laser scanning complicated. 
The road next to the study area is busy with frequent bus, car and truck traffic. The width of the 
street is 21 m including the sidewalks. The gap between the two opposing buildings next to the 
roadside is 22 m (Figure 2). Given the ranging capability of the ZEB-REVO system (15-20 m 
(Cadge 2016)) the selected scene may assume geometric challenges for data acquisition and SLAM 
computation. 
 
2.2 The reference data 
 
The geometric reference data of the street was collected with a Faro Focus 3D 120S laser scanner, 
having a nominal range accuracy of ±2 mm. To register the individual scans, we used six target 
spheres, which were 9 cm in radius. The target locations were changed by moving one or two of 
the target spheres at a time to follow the progress of the scanning. Altogether, there were 17 
scanning stations and 21 target sphere locations, which are shown in Figure 3. The scan parameter 
settings for most of the TLS scans were 6 mm in resolution at a 10 m distance with noise reduction 
using three repeated laser measurements. Altogether there were 16 scans with 6 mm resolution, 
and a single scan between the buildings at resolution of 3 mm at a 10 m distance. The noise 
reduction remained the same for all of the scans. The registration of the 17 scans was accomplished 
using the Faro Scene software (version 6.0.2.23). The resulting point cloud registration had a 6.4 
mm mean point error, a 18.0 mm maximum point error and a 56.8% minimum overlap. 
 

 
Figure 3. The reference point cloud from the top and a side view along the street. The 

scan locations are marked as blue stars except for the orange star, which was executed 
with different settings. The target sphere locations are shown as yellow dots. 
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2.3 The utilized SLAM system and measurement strategies 
 
The SLAM laser scanner selected for the case study was the ZEB-REVO scanner, which 
GeoSLAM released in 2016. The ZEB-REVO system uses a Hokuyo UTM-30LX laser sensor, 
which rotates continuously around the front pointing axis (Bosse et al. 2012). The relative accuracy 
of the scanner is 1-3 cm and the maximum measurement distance is between 15 m outdoors and 30 
m indoors. The rotation speed of the laser sensor is 0.5 Hz. The scanner profile frequency is 100 
Hz and the data acquisition rate is 43,200 points/sec (Cadge 2016). The SLAM algorithm of the 
ZEB-REVO scanner uses surface elements, which are matched to the point cloud and IMU 
parameters to compute a map of the environment. The computation is an iterative process. First, 
the point cloud is split into smaller slices according to the acquisition time. From these slices, the 
algorithm recognizes planar surface elements. Then the algorithm matches the detected surface 
elements of the following slices with the knowledge of the IMU parameters and corrects the 
trajectory with the matching information (Bosse et al. 2012). 
 
In our experiment with the ZEB-REVO, we utilized three different closed loop strategies, which 
are listed in Table 1. In the first strategy, we collected data by walking around buildings 1 and 3 
anticlockwise, as shown in Figure 4. This was repeated three times in separate measurements. With 
this strategy, we investigated whether it was possible to speed up the data collection by passing the 
measurement area only once. In the second strategy, the data was collected by detecting objects 
twice during the measurement, but from different directions. This was implemented by walking 
back and forth along the street while trying to maintain the same distance to the buildings in both 
directions, as much as possible. We repeated the measurement with different traffic conditions, 
because this method results in the largest number of vehicles passing while measuring. This 
strategy tests whether there are advantages when the area of interest is measured twice during the 
scanning. In the third strategy, we carried out the measurement by walking trajectory in loops, 
which includes loops around objects to maximize overlap of scanning profiles around the objects 
as in the Figure 4d. The objects such as poles, trees and bus stop in the study site are visible in 
Figure 5. We walked back and forth along the street and around every tree (to cover the otherwise 
occluded building wall sections) on the street side. With this strategy we examined whether it 
would substantially improve the accuracy and whether it was a significantly slower data collection 
strategy than the other two. The approximate speed of the walking was 5 km/h for all the 
implemented strategies. 
 

Table 1. Data collection strategies for taking the ZEB-REVO measurements. Every 
strategy has a short description, number of repeated measurements, and an abbreviation 

that is used in the text. 

Measurement strategy 
Number of 

measurements  Abbreviation  

Walking around the 
buildings 3 WalkR 

Walking back and forth 2 WalkBF 
Walking with inner loops 1 Loops 

5



 

 
Figure 4. The ZEB-REVO measurement paths are shown by the rainbow-colored line. 
The line colorization is from red at the start to blue at the end. The starting and ending 

points of each trajectory are marked with white circle. The mapping paths are shown for 
strategies WalkR (a), WalkBF (b), Loops (c), and zoomed path of Loops from white 

rectangle (d). (Ortophotograph © Espoo City Survey Department, 2017) 
 

 
Figure 5. The building facades and objects of the study area. 

 
The ZEB-REVO measurements were registered using the GeoSLAM Hub software (version 4.1.1) 
with its basic settings. The output point cloud format was set to ‘LAS’ and the point cloud density 
was set to 100% with shaded colors. In addition to these settings, we limited the processing of the 
measurement paths around the buildings (1 and 3) to cover only the area of interest. Because of 
this, we also set the start and stop points of the scan paths at different locations. During the 
processing, the data was set to be registered in ‘single floor’ mode and to prioritize the planar 
surfaces, as these were expected to be found from the study site, and virtually in most urban 
environments. In addition to these settings, we calculated the colorization for the ZEB-REVO point 
clouds according to time of observation in the GeoSLAM Hub software. The data collection and 
processing elapsed times for each data set are listed in Table 2.  
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Table 2. Data collection of the study area and processing times of ZEB-REVO and the 
terrestrial laser scanner reference. 

Measurement 
strategy 

Data collection 
time  

Processing 
time 

WalkR1-3 3,5 min 8 min 
WalkBF1 5.5 min 11 min 
WalkBF2 6 min 12 min 

Loops 8.5 min 16 min 
Reference 4 h 2 h 

 
2.4 Analysis Methods  
 
In order to analyze the measurement strategies, we started by comparing the collected data sets 
with the reference point cloud in Cloud Compare.  First, the registered point clouds and the 
reference were manually cleaned to eliminate error points. The point cloud was segmented into 
several subsets such as 1) building walls, 2) sidewalk and 3) the objects on the street side. After 
this, the point clouds were fit to the reference at first manually and then by using an iterative closest 
point (ICP) registration method. The parameters of ICP were 30 iterations, 50 % overlap and 
removed farthest points.  
 
Following the ICP, we analyzed the root mean square error (RMSE), skewness and the mode of 
error, which is the most frequent difference from reference (Thomson et al. 2013, Tucci et al. 2018, 
Nocerino et al. 2017, and Khalloufi et al 2020). The skewness was used for analyzing the 
distribution of the errors. For the mode of error in case of walls and sidewalk point clouds we used 
the Multiscale Model to Model Cloud Comparison (M3C2) plugin (Lague et al. 2013) with Weibull 
fitting. We chose Weibull fitting, because of the remaining ranging noise in the data. From the 
M3C2 calculations, we obtained the difference between the ZEB-REVO point cloud and the 
reference surface model.  
 
In addition to the aforementioned point cloud comparison metrics, we chose objects such as trees, 
poles, planar surfaces and building corners based on visibility in the reference point cloud and 
estimated their positional differences between the point clouds. The ICP registered point clouds 
were sliced between the heights 0.8 m - 0.95 m. From these slices, we manually measured the 2D 
differences to the reference point cloud in CloudCompare as in Figure 6. After the manual 
measurements we calculated the average differences to the reference. 
 
Because the measurements were executed next to the busy road, we calculated the number of passed 
vehicles during the measurements. This was done manually from videos that were recorded during 
the measurements with the attached camera. Additionally, we marked the approximate locations of 
the passing vehicles on the orthographic image. We separated the vehicles according to type into 
cars and busses. We combined this data with the SLAM condition trajectory information, which 
was calculated in the GeoSLAM Hub software. The colors change according to SLAM conditions 
starting from blue (good) via yellow to red (poor), as seen in Figure 11. A diagram of the analysis 
process is presented in Figure 7. 
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Figure 6. An illustration of 2D measurements. White point cloud is reference and the 
ZEB-REVO point cloud is back. The red line illustrates the distance between picked 

points of each point cloud. 
 

 

 
Figure 7. The diagram of the steps of the data collection and analysis.  
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3. RESULTS 
 
The results of the ICP registration and M3C2 distance calculations are presented in Table 3, and 
Figure 8 and 9. The results of manually measured differences to the reference are presented in 
Table 3 and examples of the object types are in Figure 10. The number of passed vehicles and 
SLAM conditions are presented in Table 4 and Figure 11. 
 

Table 3. The results of the RMSE come from the ICP calculations, and the mode of error 
distance from the CloudCompare M3C2 plugin calculations of the different measuring 
methods for the wall and sidewalk point clouds. The differences to the references of the 

objects are calculated from the manual measurements. 
 WalkBF1 WalkBF2 WalkR1 WalkR2 WalkR3 Loops 

Walls 
RMSE walls (m) 0.017 0.017 0.022 0.017 0.02 0.02 

Mode of error, walls 
(m) 0.32 0.074 -0.031 -0.022 -0.03 0.006 

Skewness of error, 
walls -0.81 -0.76 -0.842 -0.814 -0.733 -0.634 

Sidewalk 
RMSE sidewalk (m) 0.013 0.017 0.018 0.02 0.022 0.012 

Mode of error, 
sidewalk (m) -0.007 -0.008 -0.019 -0.031 -0.011 -0.004 

Skewness of error, 
sidewalk 0.219 0.31 0.187 0.202 0.797 0.372 

Objects 
RMSE objects (m) 0.012 0.014 0.014 0.014 0.018 0.014 

Average difference to 
reference (m) 0.136 0.145 0.105 0.171 0.12 0.062 

Minimum difference to 
reference (m) 0.039 0.012 0.005 0.035 0.025 0.011 

Maximum difference to 
reference (m) 0.263 0.254 0.191 0.319 0.398 0.119 

Average amount of 
points in object slices 

(pcs.) 
29 113 17 20 17 428 

 

9



 

 
Figure 8. Visual representation of the M3C2 calculations of the walls where the distance 
of the ZEB-REVO measurements are projected onto the reference point cloud. There is 
also a top view of the WalkBF1 and WalkBF2 with a white reference point cloud and a 

zoom in on a section of building 3. 
 

 
Figure 9. Visual representation of the M3C2 calculations of the sidewalk where the 

distance of the ZEB-REVO measurements are projected onto the reference point cloud. 
All distances range from -0.02 to 0.02 m. 
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Figure 10. The objects include a) trees b) poles c) plane surfaces and d) building 
corners. The point cloud collected using each strategy has a unique color, and the 

reference point cloud is plotted in white. 
 
 

Table 4. The number of passed vehicles. The vehicle results are separated based on 
measurement direction and the type of the vehicle. 

 WalkBF1 WalkBF2 WalkR1 WalkR2 WalkR3 Loops 
Amount of passed cars 

from start to middle  
(pcs) 

18 5 - - - 14 

Amount of passed cars 
from middle to end  

(pcs) 
13 8 - - - 13 

Total of passed vehicles 
(pcs) 31 13 13 14 11 27 

Amount of passed 
busses (pcs) 7 3 3 4 4 6 
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Figure 11. The SLAM conditions of the trajectories are colored from good (blue) to poor 
(red). The locations of the passing vehicles are marked with blue circles (cars) and 

black circles (buses). The White border of the circle shows that the vehicle was passing 
during the first direction of the measurement. (Ortophotograph © Espoo City Survey 

Department, 2017)

4. DISCUSSION

4.1 Comparison of measurement strategies 

Based on the results, measurement strategy clearly affects the street-level mapping. The WalkR 
strategy detects building walls and sidewalks with the mode of error of 1-3 cm (Table 3). However, 
with this strategy the average differences of the locations of street side objects were 10-17 cm from 
the reference. This method can map the walls and ground, but locating smaller objects such as trees 
and poles are more uncertain. The sidewalks do not have much noise because the error distribution 
is fairly symmetrical except in the WalkR3 case (skewness 0.80) However, the walls are noisy, 
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because the data is moderately skewed (skewness -0.73 and -0.84). The objects are detected only 
once in one direction, which leaves out a large amount of data regarding small objects. However, 
with this method we can quickly map large planar objects on the street-level. Additionally, based 
on the results the measurements can be repeated and the results seem to stay consistent. 
 
Appling WalkBF strategy the sidewalk can be detected in a mode of error of 1 cm (Table 3). It has 
marginal noise because the skewness is 0.22-0.31, which is fairly symmetrical. For the rest of the 
objects the mode of errors is between 7-32 cm and the difference from the reference for the objects 
is 14-15 cm. On the walls, the noise is slightly less than in the case of WalkR strategy, with 
skewness of -0.76 and -0.81. When comparing WalkR1-3 and WalkBF1-2 results for the smaller 
street side objects there is not much difference. However, the cases WalkBF1-2 present a more 
comprehensive dataset with double or more points for the objects. Nevertheless, the duration of 
data collection differs 35-57 % from the WalkR and Loops strategies. These strategies give better 
results for the street-level object mapping than WalkBF. 
 
The comparison of the Loops strategy (Table 1) with the others reveals that it has the smallest 
difference between the reference (Table 3) in every category. The mode of error in case of walls 
was 6 mm, which is five times smaller than with WalkR1-3, 11 times smaller than with WalkBF2 
and 53 times smaller than with WalkBF1. The walls are closest to symmetrical with a skewness of 
-0.63. However, it is moderately skewed and lightly noisy. The mode of error in case of the 
sidewalk was 4 mm, which is five times smaller than with WalkR1-3 and 2 times smaller than with 
WalkBF1-2. The skewness of the sidewalk is fairly symmetrical (0.37). The only larger variation 
from reference (average 6.2 cm) is with small street side objects.  
 
SLAM could improve city modeling, because the accuracy is the same as with MLS (Kaartinen et 
al. 2012, and Barber et al. 2008) and it can reach GNSS free areas. Street-level mapping by the 
SLAM-based laser scanners could be used for monitoring land use, façade deterioration and 
vegetation, as a base of new plans and analyzing for example safety and pavement condition and 
street infrastructure. However, there are some supposedly problematic areas for the SLAM 
algorithm in urban environments such as large parking lots and other such areas with limited 
geometric features, and narrow, possibly featureless, and repetitive lanes. In particular, open areas 
where the ranging capability of the scanner does not reach vertical planes, or point density is not 
enough for capturing other features, present a challenge. These environments do not have enough 
noticeable features for the SLAM algorithms. In addition, the missing or only partially colorized 
data from the SLAM-based laser scanners are reducing the feasibility of the devices at the moment 
(Sammartano & Spanò 2018, and Sammartano et al. 2019). However, a solution for the point cloud 
colorization will help them to complement, or even replace terrestrial laser scanners in the street-
level mapping of urban environments. In addition, the use of longer trajectories would require 
further studies because of possible drift errors and in order to create methods for correcting these 
errors. 
 
4.2 Influence of passing vehicles on SLAM 
 
The traffic did not have a significant influence on the WalkR strategies. The SLAM condition was 
poor in the respective locations (Figure 11) even though the passing vehicles were not present in 
these locations. However, at the end of the WalkR2 there were four busses detected passing by and 
the SLAM condition was better in that location than in the WalkR1 and WalkR3. Even though the 
SLAM condition was better, the resulting point cloud has ca. 1 cm larger difference between 
the mode of error values than those of WalkR1 and WalkR3. Based on this the busses that were 
passing by in a row had a small negative influence on the SLAM even though the SLAM condition 
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was seemingly better. We assume this is caused by the SLAM algorithm finding planar features 
from the passing busses, thus resulting in a "better" indicated SLAM condition, but leading to 
incorrect results, as these features are not in reality stationary. However, it is the only place where 
the repeated methods differ in SLAM condition values from each other. 
 
On comparing the traffic and the strategies, Loops and WalkBF1 had almost the same number of 
passing vehicles observed during the measurements. However, the SLAM conditions were more 
good for the Loops (Table 4). This shows that the traffic does not influence significantly when the 
sensor can observe stable landmarks while vehicles are passing by. These are locations where the 
SLAM condition was estimated good, and the data collection had been done with the loops (Figure 
11). It improves the performance and reliability of the SLAM. Additionally, the mode of errors and 
the difference from the reference values (Table 3) for WalkBF1 were weaker than those for the 
Loops strategy.  
 
The amount of traffic has an influence on the resulting point cloud such as is the case with the 
repeated WalkBF1 and WalkBF2 measurements. The WalkBF1 method has the largest variation 
of distances from the reference (Figure 8) and the largest mode of error (32 cm) (Table 3). The 
reason for these large values can be traced to an erroneous change in the angle between the 
buildings. In practice, building 3 appears slightly rotated (Figure 8) in the scan. The change on the 
angle can be due to the combination of traffic and the gap between the buildings (Figure 2) to create 
drift in the data. There were 7 vehicles passing when the measurement path was executed in the 
gap. These could have given some fake planar surfaces for the SLAM calculations. For these 
reasons we repeated the measurement with less traffic conditions. 
 
In the visual representation of the walls, the WalkBF2 shows that it fits the reference better than 
WalkBF1 (Figure 8). However, there is still a small part of building 3 that differs from the 
reference. The reason for the difference is that during the first time the erroneous area was observed 
the SLAM had problems because of vehicles passing around the corner (Figure 8 and 11). For the 
second observation it was slightly improved, but the SLAM solution had again problems for a 
moment because of passing vehicles. Despite the large difference between the mode of errors for 
the walls (WalkBF1 32 cm and WalkBF2 7.4 cm), the mode of error for the sidewalk was the same 
for both of the strategies (ca. 1 cm). 
 
Based on these results traffic with speed of ca. 40 km/h has an impact on the SLAM. Comparing 
the SLAM conditions of the WalkBF1 with 31 passed vehicles and WalkBF2 with 13 passed 
vehicles. It seems that every vehicle makes SLAM conditions poor for a moment and the longest 
effect was noted in the return direction in the gap when the bus passed just before the gap between 
the buildings (Figure 11). However, next to the bus stop the SLAM condition is good despite the 
passing vehicles in every strategy. It offers many planar features for the SLAM to locate itself. In 
conclusion, it is recommended to avoid traffic at open and featureless areas such as gaps between 
buildings.  
 
Accurately quantifying the influence of traffic on SLAM performance in urban scenes would 
require further experiments. The influence of traffic on the performance of the SLAM can be 
investigated with comparison of data collected in zero traffic conditions to that in presence of 
traffic. Also, the motion (speed, direction, frequency, vehicle size and size distribution, distance to 
the scanner) of the traffic should be determined so that the opportunities and limitations of SLAM 
technology in city modeling could be better identified. Thus, it could be determined whether certain 
traffic velocities have a lesser influence on the SLAM performance.  
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5. CONCLUSIONS 
 
In this study, the aim was to evaluate the impact of different measurement strategies on 
performance of SLAM laser scanning for mapping street-level urban environments looking at the 
potential influence of different measurement strategies. From the results of the case study, it can 
be concluded that the measurement strategy affects the performance of street-level mapping. The 
best results were obtained with the Loops strategy, forming the maximal number of closed loops 
in the walking path by e.g. circling individual trees. However, big street side objects such as 
building walls and the ground can be measured faster with the WalkR strategy. The WalkBF 
strategy does not improve the performance enough in comparison to WalkR1-3 and Loops to be 
truly feasible for street-level mapping. However, the study was executed in a challenging 
environment for the ZEB-REVO laser scanner. The differences between the strategies may be 
smaller in an environment with many features.  
 
The results indicate that traffic should be considered in planning and during the measurement. The 
effect of traffic was smallest with Loops because of many stable landmarks present in the scan. In 
the WalkR strategy the influence of traffic was more pronounced, but still rather small with a mode 
of errors under 3 cm in repeated measurements. The influence was largest with the WalkBF 
strategy. In terms of attained accuracy, the Loops strategy is therefore the best for street-level 
mapping, but it can be replaced with WalkR strategy if faster data collection is needed. The WalkBF 
strategy does not give enough benefits to be used as a measurement strategy for street-level 
mapping. 
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