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Abstract
Even though the concept of tie strength is central in social network analysis, it is
difficult to quantify how strong social ties are. One typical way of estimating tie
strength in data-driven studies has been to simply count the total number or
duration of contacts between two people. This, however, disregards many features
that can be extracted from the rich data sets used for social network reconstruction.
Here, we focus on contact data with temporal information. We systematically study
how features of the contact time series are related to topological features usually
associated with tie strength. We focus on a large mobile-phone dataset and measure
a number of properties of the contact time series for each tie and use these to predict
the so-called neighbourhood overlap, a feature related to strong ties in the
sociological literature. We observe a strong relationship between temporal features
and the neighbourhood overlap, with many features outperforming simple contact
counts. Features that stand out include the number of days with calls, number of
bursty cascades, typical times of contacts, and temporal stability. These are also seen
to correlate with the overlap in diverse smaller communication datasets studied for
reference. Taken together, our results suggest that such temporal features could be
useful for inferring social network structure from communication data.

Keywords: Social networks; Tie Strength; Call Detail Records; Communication
networks

1 Introduction
During the past few decades, the use of auto-recorded data, such as mobile phone logs
or data from online platforms, has expanded our understanding of human dynamics and
networks [1–4]. Such data have also been useful in applications ranging from spreading
dynamics [5] to human mobility [6], recovery in disaster areas [7], and health-care opti-
mization [8]. In particular in social network studies, the strength of a tie is a central concept
associated with the qualitative value that people place on relationships. Tie strength is not,
however, something that can be directly measured or quantified [9–11]. Therefore, one
has to rely on proxies. For networks reconstructed from data on communication events,
such as call networks, a common approach is to use a measure of communication intensity
as a proxy [1, 3, 12–18]. Communication intensity can be defined as the total number of
communication events or the total time spent communicating across a tie. One motiva-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-020-00256-5
http://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-020-00256-5&domain=pdf
http://orcid.org/0000-0003-2763-9747
mailto:javier.urenacarrion@aalto.fi


Ureña-Carrion et al. EPJ Data Science            (2020) 9:37 Page 2 of 20

tion behind this choice is that intense communication implies temporal and sometimes
even financial commitment to a relationship [1]. Communication intensity is, however, an
aggregated measure that discards a lot of possibly relevant information contained in the
underlying time series of dyadic interactions. This temporal information is at the focus of
the present paper.

In addition to such internal details of a social tie, the network structure surrounding a tie
is known to be informative about the nature of the tie. The seminal paper “The strength of
weak ties” [19] by Mark Granovetter was one of the first efforts to relate tie strength with
local network structure and to connect the micro and macro levels by considering the
role of weak ties in diffusion and social mobility. Granovetter argued that strong ties tend
to be associated with overlapping circles of friendship, while weak ties serve as bridges
between such circles. This implies that weak ties serve are more important for network-
wide information diffusion than strong ties.

In this study, we assume that the strength of a tie is a latent variable expressed both in
patterns of dyadic interactions and in network topology, the latter following Granovetter’s
overlap hypothesis [19]. This way, we use neighbourhood overlap as a benchmark that al-
lows us to compare different characteristic features of communication events taking place
on a tie: we use a feature’s predictive capacity for neighbourhood overlap as proof of as-
sociation with the latent strength of a tie. This approach is shown schematically in Fig. 1.
Our method builds heavily from existing literature, yet the contribution of our work is to
use a purely data-analytic approach, combining information about communication and
network topology thorough the lens of Granovetter’s theory.

This paper is structured as follows: first, we discuss how tie strength has been con-
ceptualized and measured in previous research, both from the sociological and network-
scientific perspectives. Then, we explore different modelling approaches to human com-
munication which serve as a theoretical basis for our predictive features. We address the
temporality of our data (a) as time series or sequences of interactions and (b) as events that
occur within natural daily rhythms and weekly social cycles. Following this, we present re-
sults obtained for linking temporal features with neighbourhood overlap in a large-scale
communication network. We determine the importance of different variables as proxies
for topological tie strengths, and show that many alternative features that can be used in
network construction as opposed to using a default number of contacts. We further test
our hypothesis with additional communication datasets. We conclude with discussion.

Figure 1 Representation of our conceptualization of tie strength as a latent variable that drives both network
topology and patterns of human communication (black arrows). While the tie strength is unobserved, we
argue that using characteristic temporal features of human communication to predict topology (green solid
arrow) allows us to determine those features that best reflect this latent variable (green dashed arrow)
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2 Measuring tie strength
2.1 Historical background
Despite its relatively intuitive definition in terms of emotional closeness [10], the strength
of a tie is a sociological concept with no direct indicator and its measurement requires
prior theoretical definition and empirical validation [9–11, 20]. We can broadly distinguish
two methodological variants: early studies often borrow from social psychology and rely
on self-reported surveys, whereas more recent studies build on the availability of large sets
of auto-recorded and behavioural data, which have spawned a wide array of methods and
lines of research.

The first conceptualizations of tie strength focused on intrinsic tie-level characteristics,
such as relationship ‘closeness’ or kinship (e.g., relatives have strong ties while neighbors
have weak) [10]. Alternatively, some researchers highlighted the effect of ties on the nodes,
such as the provision of emotional support [21], or the ability to handle multiple contexts
[19, 22]. In his paper, Granovetter did not delve deeply into the definition of tie strength,
characterizing it as a “possibly linear” combination of four constituting dimensions—time,
emotional intensity, intimacy, and reciprocity [19]. Many early studies analyzed social ties
via standardized surveys that enquired about friendship, emotional support, frequency
of contacts, or advise seeking [9, 10, 20, 23], while acknowledging the limitations of self-
reported and, to a large degree, unilateral data for dyadic interactions [10, 23, 24]. Marsden
and Campbell [10] used survey data to determine which proxies for Granovetter’s dimen-
sions were most strongly associated with self-identified tie strength, suggesting that tie
strength could be a multidimensional concept.

Other lines of research have highlighted the temporal and dynamic aspect of human re-
lationships, characterizing qualitative differences by relationship stages: initiation, main-
tenance and decay [23, 25, 26]. Gradual stages of reciprocity were identified as a key com-
ponent in friendship formation [23, 27]. Burt [28, 29] argued that factors associated with
strong ties (homophily, social status, embedding, and inertia) are also associated with
slower tie decay, but that tie decay is guided by nodes via selection processes and learning
of social routines. Notably, both relationship initiation and decay were conceptualized as
involving topological changes in social networks [25]. Burt [28] found evidence that em-
bedded ties were associated with slow decay, but that disruptions in embedding implied
even faster decay. Some of these topological changes around tie decay were later be exam-
ined in dynamical contexts [17, 30, 31]. Moreover, even ties that were neither nascent nor
decaying were established to be highly dynamic [26], with Wilmot arguing that relational
stability does not imply that relationships are static, but that there is a minimal agreement
about the relationship which is reflected on communication patterns [25, 32].

From a socio-psychological perspective, Feld [33] focused on how ties appear in social
contexts that facilitate interaction, named foci. Tie strength was thus theorized to be de-
termined by sociological roles: a small and constraining focus (such as a nuclear family)
might imply higher strength, but the interaction of multiple foci explains the multiplexity
of ties, thus conveying the idea that two people interact in different contexts and social
groups. The concept of foci was more recently exploited by [30] to identify romantic part-
ners, finding that people in romantic relationships have a focalized network structure—
they both share a large number of common friends, but these friends belong to different
foci, so they are dispersed, or not connected among themselves.
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In the recent decades, technological advances and the advent of telecommunication de-
vices and social media platforms have provided access to an unprecedented collection
of auto-recorded data [34]. This has generated new methodologies and conceptualiza-
tions of tie strength, which depend not only the underlying social network, but also on
the data source with the appearance of distinct communication channels, such as phone
calls or emails, but also of specific social platforms, such as Facebook, MySpace or Twit-
ter. This has opened various previously unattainable lines of research, such as research
on large-scale network properties [1], characteristics of human communication networks
[35], temporal networks [36], link prediction [37], and link decay [38]. In these cases, many
studies adopted quantifications of tie strength in terms of communication intensity, such
as the total number or duration of contacts [1, 20, 31, 36, 39]. Other approaches have
complemented the use of auto-recorded data with either surveys on emotional closeness
[18, 20, 40, 41] or tagged human interactions in online platforms, such as interactions
with spouse or close friend [30, 34], while other studies have determined features inspired
by Granovetter’s four dimensions; Navarro [31], for instance, determined that strong ties
were those that were unlikely to decay and identified features that predicted this.

2.2 Tie strength and network topology
In this paper, we focus on untagged human interactions, where our goal is to infer the
latent tie strength from behavioural features of communication. We conceptualize tie
strength as a latent variable that manifests independently in both network structure and
communication patterns, so that strong ties are embedded in dense network communi-
ties while weak ties serve as inter-community bridges [19, 22]. The network structure and
communication patterns are considered independent in the sense that no data used for
computing network structure around the tie is used again for computing the temporal
features of the tie’s communication patterns. Under our framework, the embeddedness
or friendship overlap of a tie serves as a baseline that relates tie strength to features of
communication. In this sense, variables with good predictive performance of topological
features serve as better proxies for tie strength, at least to the extent they are reflected in
local network topology.

We measure embeddedness using topological overlap [1], Oij, which is defined as the
Jaccard similarity of the sets of neighbors of two nodes i and j, a measure that can be
interpreted as the percentage of common neighbors around a tie. Formally the topological
overlap is defined as

Oij =
|Ni ∩Nj|
|Ni ∪Nj| , (1)

where Ni is the set of neighbors of node i. The Granovetter effect—the increase in em-
beddedness along with tie strength—was previously observed using overlap and number
of calls (wij) and total call time (l) as proxies for link weights [1, 39]. Previous research
has also found that different communication patterns entail topological changes in social
networks [25, 30, 31, 39], and indeed tie evolution has also been associated with distinct
features of human communication for both tie creation and decay [31].

On this matter, our focus is not on detecting topological change. This is because (i) topo-
logical variations have been shown to occur over long periods of time [30, 31, 39] which
correspondingly requires long-term longitudinal data and (ii) they entail the additional
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problem of uncoupling bursty communication patterns from changes in the underlying
social structure [31, 35]. This issue is heightened by different social strategies empirically
observed in communication networks, where explorers display a large turnover of weaker
ties, while keepers prefer a smaller circle of stronger ties [39]. In addition, we know over-
lap to be a decreasing function of the aggregation window for communication networks
[13]. To address these problems, we assume that tie strength remains constant during our
observation period, which we expect to be true for most relationships in a span of a few
months [25, 26, 32], and provide a dynamic measure of overlap that penalizes ties that are
not active over a long period. We measure overlap in a dynamic manner by establishing
a smaller aggregation window, �T , which we shift over the full period and to obtain a
time series of overlap values {Ot

ij}Nt
t=1. We use the average of our time series as a measure of

temporally averaged overlap, Ôt
ij. This variable emphasizes edges that are relatively close

in time. We obtained dynamic overlap with �T = 1 month, which we justify since empir-
ical evidence on similar datasets [13] has found overlap to become relatively stable at an
aggregation window of this size. To serve as a baseline, we repeated the same experiments
using the static overlap over the full observation on Additional file 1.

2.3 Source data
Our main data set is a single large-scale database of Call Detail Records, from which we
derive the key results of this paper. For comparison, we also use public or previously-
published communication datasets that, although smaller in scope. We selected the latter
datasets by systematically examining network repositories and other available sources.
We excluded datasets that did not meet validity criteria, namely, that the data contained
sufficient topological information around ties, and that the data displayed evidence of the
Granovetter effect when using contact counts for tie strengths — an initial assumption of
our analysis. In more detail:

1 We use a Call Detail Records (CDRs) database from a single operator in a European
country [1], with an observation period of four months during 2007 and a market
share of 20%. CRDs are communication logs recorded by mobile service providers,
where basic information of the interaction is sequentially stored, including, e.g.,
caller, callee, timestamp and duration. CDRs from single operators are functionally
a statistical sample of a complete dataset of interactions [1]. Despite lacking a full
network, our dataset does provide full ego networks centered on our operator’s
subscribers. We thus focus our study on the strength of ties that fully belong to our
operator (both nodes in a tie are subscribers), involving ∼ 6.5 million nodes and
∼ 26.4 million ties; however, for network topology we also use ties of non-company
users, which correspond to an additional ∼ 76 million nodes and ∼ 530 million ties.
This methodological choice guarantees that there is no bias related only single
operator links being included in the overlap calculation. This mitigates the concerns
that our dataset is not a random sample - because family ties, friendship
recommendations and regional differences in market share may be drivers when
customers choose a mobile service provider, and these differences might result in
biased estimates of overlap.

2 We use four additional datasets, which have all been anonymized:
• Forum: The Forum dataset [42] contains activity of 6269 users in an online

community during a period of around 7 years. The data is anonymized as to
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only contain interaction information (user ID, time since beginning of
collection period). Users in the community have access to profile pages that
includes movie tastes, list of friends and rated movies. A contact record is
created if user i comments on a thread posted by user j. For this case we found
strong evidence for the Granovetter effect.

• Enron: Enron dataset obtained from the Network Repository [43], an email
dataset of communication within a company. The dataset contains 20165 users
and 297456 edges. Note, however, that the sampling of the data might give
more importance to certain individuals within the company, so we lack
knowledge to know how this might affect the end results. This dataset displayed
mild evidence for the Granovetter effect.

• FB: A dataset of wall-posting on Facebook in New Orleans [44]. The network
contains 40981 nodes and 183412 edges, and a link is created if a user has
posted on another user’s wall. The dataset was obtained by crawling public
profiles in January 2009 and focuses on activity during each link’s first year of
communication. This dataset showed strong evidence for the Granovetter
effect.

• Copenhagen: Copenhagen Networks Study [45], a dataset of the
communication of more than 700 university students during four weeks, that
includes text messages, phone calls, Facebook friendships and proximity data.
We use text messages as our communication data, and we construct a network
using a combination of text messages, phone calls and Facebook friendships,
where at least one message, one call or Facebook friendship suffices for the
creation of an edge. For this dataset we found weak evidence for the
Granovetter effect, possibly due to the small sample of students.

We focus on the mobile CDR database for studying communication patterns and topol-
ogy for three main reasons. First, the sampling is independent of social foci [33]; it is
thus more representative of many everyday social interactions, and not biased by schools,
workplaces or communities. Second, our CDR dataset potentially captures the main com-
munication channel at the time of collection [36]. Taking place in 2007, we expect a smaller
effect of multiple communication channels, which have become more common in recent
years [36, 45, 46]. Last, the large-scale of the dataset allows us to extract large amounts
of information (for example about weekly behaviour), which might not be available oth-
erwise. For these reasons, we expect our CDR data to be a suitable tool for understanding
communication patterns and network topology, and the Granovetter theory to hold.

The four additional datasets allow us to expand the scope of our analysis and test
whether similar relationships hold under different circumstances, including much nar-
rower social foci, different communication channels and both online and offline social
networks. While one cannot generally expect the Granovetter picture to be valid for net-
works that are not necessarily good proxies for “everyday” social interactions, the four
chosen datasets were nevertheless in line with this picture.

3 Features of human communication
Our aim is to determine features that might encode information on the tie strength not
captured by intensity variables. Figure 2 illustrates this idea by showcasing ties in our data
of similar communication intensity w that differ both in overlap and communication pat-
terns. In the following, we expand on these temporal features of human communication,
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Figure 2 Differences in neighbourhood overlap (top and bottom) and selected temporal features of human
communication (columns) for ties of similar communication intensity (w ∈ [40, 55)). Weak (top) and strong
(bottom) ties are defined by low and high overlap, respectively, where we analyze communication patterns of
red ties (ij), blue ties represent common neighbors (Ni ∩Nj ), and grey ties represent neighbors of either i or j
but not both. (Left) IET distribution; we model the time between two consecutive calls as a homogeneous
process via a random variable τ , and obtain statistics on the IET distribution, such as τ̄ and στ , both measured
in days. (Center) Bursty Cascades; given a parameter �t, we identify event bursts E as sub-sequences of calls
that are placed at most �t seconds within each other. NE is the number of events. (Right) Temporal stability;
we focus on the first and last events and their distribution within the observation period (red dashed lines),
and determine the age as the time until the first call, the temporal stability TS as the time window where we
observed events, and freshness f as the time between the last event and the end of the observation period

and use them as predictors of overlap, comparing them with the widely-used number of
contacts as a communication-intensity measure.

A key assumption of this work is that differences in the strengths of ties are reflected
in communication patterns of dyadic interactions. Based on these data, we collected vari-
ables from existing literature that model different aspects of human communication and
developed some new indicators. We roughly divide our approach in two: measures build-
ing on the sequential nature of our data and measures focusing on daily and weekly be-
haviour.

3.1 Intensity features of human communication
Features related to communication intensity have commonly been used as a proxy for tie
strength [1, 3, 13]. We denote the number of contacts as w, as this is commonly used as link
weight in social network analysis. The definition of the number of contacts will depend on
the communication type of communication activity, e.g., calls for the CDR network. We
further analyze communication intensity in terms of total call time l =

∑w
i=1 li where call i

has length li, as well as average call time l̂ = l/w.
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We also characterize the reciprocity r as an intensity feature [27, 31], which we measure
via

rij =
∣
∣
∣
∣
�wij

wij
–

1
2

∣
∣
∣
∣, (2)

where �wij is the number of calls placed by i to j, so that r ≈ 0 implies that both users placed
a similar amount of calls, while r ≈ 0.5 reflects an imbalance.

3.2 Sequential features of human communication
At the level of ties, CDRs and our other data sources record a time series of events. Most
of the measures based on these time series are based on the intuition that regular contacts
are more significant than for example brief periods of large contact intensity; we exemplify
some of these modelling approaches in Fig. 2. In this section, we first focus on measuring
the number of time periods during which the tie has been active. Second, we consider
the time elapsed between consecutive contacts via the inter-event time (IET) distribution.
Third, we focus on correlated bursty behaviour and memory effects, using the distribution
of event bursts. Last, we focus on behavioural changes within the observation window,
with variables that have been previously associated with tie creation and decay.

3.2.1 Counting active periods
The regularity of a time series can be measured by counting the active periods, such as
hours or days, with at least one contact. We record the number of hours and days with
events, ah and ad , respectively. Since we know human communication to be bursty [5, 47–
49], this aggregating process serves to remove temporal correlations to different degrees.
These variables also allow for the incorporation of different communication channels,
such as phone calls and text messages [46].

3.2.2 Inter-event time distribution
We measure the IET, the elapsed time between consecutive calls (τ ), depicted in Fig. 2
(left). Given the set of interaction times {t0, t1, . . . , tn}, we obtain the kth inter-event time
τk = tk+1 – tk , and in practice may estimate moments from this distribution from the em-
pirical observations {τk}.

The IET distribution encodes uncorrelated information about the times between con-
secutive calls. This uncouples temporal correlations between events [50] while discarding
possible memory effects between consecutive inter-call times. This allows us to obtain
general call patterns such as the mean IET τ̄ and the standard deviation of the IET στ ,
where a small τ̄ would imply more frequent communication, which has been theorized
to occur when ties are strong [25]. Previous research has estimated the IET distribution
to be heavy tailed [48, 51] and bursty, so that short spikes of activity are followed by long
periods of inactivity [47, 48]. In this sense, the IET distribution provides a natural way
to characterize uncorrelated burstiness via the burstiness coefficient B = στ –τ̄

στ +τ̄
[48], which

takes value B = –1 for completely regular IETs, B = 0 for Poissonian behaviour, and B = 1
for completely bursty or irregular behaviour. A related measure is the average relay or
waiting time τR, which is defined as the time between a random point in time and the next
event. It can be used as a local measure of the speed of information spreading over the
link, and when normalised with τ̄ it has been shown to be a non-linear function of B [52].
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3.2.3 Bursty cascades
Temporal correlations, neglected by the IET distribution, are common in human commu-
nication [47]. Our next set of features places a larger importance on bursts as determined
via a parameter �t. Karsai et al. [47] define a bursty cascade by the number of consecutive
communication events E that took place within a time period of �t or less; in other words,
events k and k + 1 are part of the same bursty train iff τk = tk+1 – tk ≤ �t, as depicted in
Fig. 2 (b).

This approach has been used to find that P(E), the distribution of the number of events
in a bursty cascade, is also heavy-tailed over a range of �t values [47, 50]. In contrast, if the
event times are uncorrelated but follow the same IET distribution, there is an exponential
decay for P(E). The structure of correlations that can be constructed from the bursty cas-
cades at different resolutions �t is completely independent of the IET distribution [50].
This allows for a flexible characterization of human communication, where the main fo-
cus is not on calls, but on call cascades. In this respect, this shift of focus provides new
features of communication frequency via the number of cascades, but also via how calls
are distributed within cascades.

We use a set of variables related to bursty cascades, including the mean number of events
per cascade Ē, the standard deviation σ E , the coefficient of variation CV E = σE

Ē and the
number of bursty cascades NE . We chose to use �t = 26 hours, since preliminary tests
showed that this yielded the best association with overlap. These results, available in the
Additional file 1 (SI), corroborate that P(E) is not overtly sensitive to the choice of �t.

3.2.4 Temporal stability
The above approaches implicitly assume that behaviour doesn’t change in time, that is,
they measure communication activity while assuming that the underlying social relation-
ship remains constant. As previously stated, it is not trivial to disentangle bursty com-
munication patterns from the underlying dynamic relationship, where long IETs might be
interpreted as tie decay [35]. We may, however, measure behavioural changes during the
observation window, for which we use two sets of variables. For the first set of variables,
we divide the observation window into three sub-intervals, measuring a) the age of a tie
as the first observed communication event [53] b) the temporal stability (TS) of a tie as
the elapsed time between the first and last communication events, and c) the freshness of
a tie f as the time elapsed between the last communication event and the end of the ob-
servation window [31, 38, 41, 53]. For the last variable, we use relative freshness f r = f /τ̄ ,
which allows us to compare the time elapsed with no communication with the average
IET, a metric which has been used to predict tie decay [31].

3.2.5 Distribution of bursty cascades
Next, our goal is to characterize when communication takes place within the observation
window, in a similar fashion to temporal stability features. The previous measures, how-
ever, used only the first and last communication events, while we will now work on the
whole set of interactions. We decouple correlated bursty behaviour by focusing on the
distribution of bursty cascades within the observation period, as opposed to the distribu-
tion of calls.

We define our variables as follows: given a parameter �t and a sequence of interac-
tion timestamps {tj}w

j=1, where each tj has been normalized to the interval [0, 1] defined
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by the observation window, we obtain a sequence of timestamps for bursty trains {t∗
i }NE

i=1,
where t∗

i corresponds to the first observed event within bursty train i. We define the av-
erage interaction time t̄ = 1

NE
∑

i t∗
i , and the associated standard deviation σt . We found

that overlap decreases for average interaction times that were skewed on the observation
window (average values t̄ij far from t = 0.5). For this reason, we included a feature that
measures deviation from t = 0.5 as a test statistic for difference of means with unknown
variance T = t̄–0.5

σt
√

NE . We use log(T) to penalize outliers.

3.3 Daily and weekly features
Human behaviour is regulated by the interplay of natural and social factors that deter-
mine different degrees of activity during, e.g., the day-night cycle or weekday-weekend
cycle [54–57]. Our goal in this section is to determine whether these fluctuations are also
reflected in network topology. We focus on two main sets of variables: first, we analyze
differences in daily activity patterns, and second, differences in call profiles during the
week.

3.3.1 Differences in daily patterns
Although humans typically follow 24-hour cycles determined by daylight, behaviour dur-
ing these cycles has been found to be highly heterogeneous [58, 59]. In particular, there
are prominent individual differences among the morningness or eveningness of people
[55, 60, 61]; that is, the propensity to be more active during the morning or evening. We
look for differences in daily call patterns of people forming dyads, and use these as a can-
didate measure for predicting tie strength. This variable is conceptually different from the
previous ones as it is defined using information from two nodes instead of a single tie.
Our hypothesis is that there are several reasons why people linked by strong ties have
more similar daily call rhythms: people might have habitual calling patterns, the activities
of friends might be synchronized through joint activities, or there might be latent drivers
of call behaviour that are also associated with homophily [62, 63], such as age.

For each person, we compute a 24-hour daily distribution P = (p0, . . . , p23) of the frac-
tion of outgoing calls placed during each hour. For each tie, we then measure differences
in the daily distributions by using the Jensen-Shannon Divergence (JSD), chosen for its
ability to handle zero-valued probabilities. The JSD is defined for two discrete probability
distributions P0 and P1 as

JSD(P0, P1) = H
(

1
2

P0 +
1
2

P1

)

–
1
2
(
H(P0) + H(P1)

)
, (3)

where H is the Shannon entropy, H(P) = –
∑

t p(t) log(p(t)).

3.3.2 Weekly activity profiles
Our last focus is weekly behaviour, where we identify times during the weekly cycle where
a distinct call profile might be associated to higher/lower topological overlap. The moti-
vation is that ties within different groups or foci might be associated with different call-
placing patters: activity between colleagues can be expected to differ from that between
family members or friends [33]. We follow a two-step procedure where we first divide the
week into 7 × 24 = 168 hourly bins, and to each bin we assign the fraction of calls placed
by both nodes in a tie. Unlike for the daily patterns, the focus is therefore on ties instead
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of node-level behaviour. This high-granularity approach yields features that are too sparse
to be interpretable; for this reason, as a second step we perform dimensionality reduction
based on the overall call profiles of the whole dataset. We base this dimensionality reduc-
tion on our 168-feature correlation matrix and their association with overlap. For details,
see SI.

4 Results
4.1 Clustering of weekly call patterns
Figure 3 depicts our results on how different weekly call profiles are associated with dif-
ferent overlap values. After our dimensionality reduction process, we obtained 15 clusters
{Ci}15

i=1 which constitute a weekly call profile vector C∗ for each tie; we normalize the com-
ponent contributions so that |C∗

ij| = 1. We find that there is heterogeneity in the association
between the call profiles and overlap: the fraction of a tie’s calls that belong to cluster C12

(weekend late morning and early afternoon) correlates positively with the overlap, whereas
there is a low negative correlation for late-night calls (cluster C1).

4.2 Predicting overlap from tie features
Our goal is to predict topological overlap using features computed for ties, and to compare
their performance to simple communication intensity measures. Table 1 contains a list of
the features used in our study, while Fig. 4 (i) depicts the Pearson’s correlation coefficient
for our features. We find high degrees of correlation for certain groups of variables —
such as ad and ah with w, which is expected—, yet their association to overlap differs. To
show that such features have explanatory power beyond the number of contacts w, we
have stratified ties into groups based on w and studied how the overlap depends on the
variable associated with each feature within the groups. This dependence is shown for

Figure 3 Composition of weekly call profiles of social ties and their association with the neighbourhood
overlap. Each bin represents an hour of the week (x-axis: hours, y-axis: days), and the number inside the bin is
the corresponding cluster index. The bin’s color indicates the level of Pearson’s correlation of each tie’s fraction
of events in the bin’s cluster with the overlap. E.g., a tie’s topological overlap correlates positively with the
fraction of calls across that tie that take place between noon and 4 PM on weekends
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Table 1 Features of human communication used in our analysis. Our feature types - Intensity (I),
Active Periods (AP), Inter-event time (IET), Temporal Stability (TS), Bursty Cascades (BC), Distribution
of bursty cascades (DBC), differences in daily patterns (DP) and clusters for weekly activity

Type Variable Name Cluster Description

I w Number of calls/contacts C1 Late night and early morning
I l Total call duration C2 Monday early morning
I l̄ Average call duration C3 Monday early morning
I r Reciprocity C4 Weekday 7 am
AP ad Active days C5 Weekday afternoon
AP ah Active hours C6 Weekday evening
IET τ̄ Mean IET C7 Weekday early morning
IET στ Std. Dev. of IET C8 Thursday early morning
IET B Burstiness Coefficient C9 Weekend evening
IET τ̄R Average Relay Time C10 Weekend morning
TS f̂ Relative freshness C11 Saturday Morning
TS age Age C12 Weekend afternoon
TS TS Temporal Stability C13 Saturday late afternoon
BC NE Number of busty events C14 Sunday morning
BC Ē Average calls per bursty event C15 Sunday afternoon
BC σ E Std. Dev. of event distribution C∗ Vector of clusters
BC CVE CV of event distribution
DBC t̄ Avg. interaction time
DBC σt Std. Dev. of interaction times
DBC log(T ) Test statistic for t̄
DP JSD Differences in daily behaviour

Figure 4 Exploratory analysis of features of human communication: (i) Feature correlation matrices measured
by Pearson’s correlation coefficient. Features are sorted according to their modelling approach, each case
divided by pink lines. Features display high within-group correlations, with lower between-group correlations.
Weekly clusters (last group) show no relevant correlations among themselves or to other variables, with two
main exceptions: negative correlations between clusters C1 (late night) and C5 (weekday worktimes), and
clusters C5 and C9 (weekend night). (ii) Average topological overlap given the ranks of three variables
correcting for three different levels of communication intensity (w), with the shaded area depicting 80% of
the distribution. From top to bottom: number of bursty trains (NE ), Jensen-Shannon Divergence for difference
in daily patterns (JSD), temporal stability (TS). Variable rankings are normalized to be on the [0, 1] interval

three features—the number of bursty trains (NE), the daily pattern difference (JSD), and
the temporal stability TS—in Fig. 4 (ii). It is clear that these features correlate with overlap
even within groups of ties with a narrow intensity range; this holds for other measures of
communication intensity and other features (IET, etc) as well. See SI for further details.
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For our predictive task, we applied machine-learning models (see below) to two different
scenarios: a) using each feature as a single predictor, b) using each feature along with the
best-performing features in the previous task, we include an additional scenario using the
full set of features in the SI. These scenarios allow us i) to identify the individual features
that encode most information on overlap and ii) to compare the performance of these
features with commonly used measures and see how complementary they are.

As there is no natural scale for overlap that would relate it to the latent tie strengths, we
take a nonparametric approach and focus on predicting overlap rank instead of overlap
values. The prediction problem itself was transformed into the binary decision problem
of predicting high/low overlap values. We selected a range of high/low overlap values ac-
cording to the overall distribution in our population, with cutoff points every fifth per-
centile, η(Ôt). As such, the goal of each binary prediction problem is to map the values
where each feature might gain importance, and thus most of most of the prediction prob-
lems have unbalanced training data over the overlap range. This however, allows us to
pose predictive problems without additional assumptions on the response variable. For
completeness, we include results with balanced training data via down-sampling in the SI,
where we find a similar results in terms of variable rankings, albeit with better extreme-
case performance. For each scenario, we ran four machine-learning models, which we
average in order to avoid any model-specfic shortcomings: logistic regression (LR), ran-
dom forests (RF), quadratic discriminant analysis (QDA) and AdaBoost classifier (ABC).
For the CDR data, we obtained a sample of 500,000 ties, performed 3-fold cross-validation
for our overlap prediction tasks, and measured the predictive performance of our models
via Matthews Correlation Coefficient (MCC) [64], a classification performance metric for
binary data related to Person’s correlation coefficient, and used for it’s ability to handle
imbalanced and asymmetric data [65].

The predictive performance of all individual features is shown in Fig. 5. Results are
shown for the averaged overlap, Ôt . For static overlap O, see SI. In addition, we include
C∗ = (C1, . . . , C15), the vector of cluster weights for a tie’s weekly call profile. Although C∗

is not a single variable, we include it as a means of comparing how much information is
encoded by the weekly call profile.

On average, nine features outperform the number of calls w in predicting topological
overlap: the number of days ad and the number of hours ah with calls, the number of
bursty trains NE , temporal stability TS, the weekly call profile C∗, three features of the
distribution of bursty cascades (DBC), and tie age. When comparing with the baseline,
however, only the first four features consistently show a higher predictive capacity than w.
In other cases, a feature’s performance varies might be higher or lower to w’s depending
on the overlap range.

The performance of predictors differs for low or high overlap cutoff percentiles η(Ôt),
which is indicative of how these measures perform overall: ad , ah and NE encompass a
broad spectrum of values centered around the median of the overlap distribution. The
weekly call profile C∗ has a wider spectrum and is one of the few features with nonzero
MCC for all percentiles, even though its predictive performance for mid-range percentiles
is smaller than that of the three top-ranking features. The features TS and DBC (TS, age,
σt , log(T) and t̄) tend to have higher predictive performance skewed towards smaller η(Ôt)
values. Note, that these results depict deliberately unbalanced datasets for small and low
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Figure 5 Results of binary overlap prediction using single features, where the x-axis represents features, and
y-axes depict: (top) Directionality of feature association, where green upwards arrows represent a positive
association between the feature and the averaged overlap, red downwards arrows represent a negative
association, and both green and red arrows represents non-linear association. (middle) Feature comparison
with the baseline communication intensity MCC (MCC∗ – MCCw , where ∗ is a feature) across all overlap
cutoff values. A distribution fully above the red line implies a feature completely outperforms w. (bottom)
MaximumMCC for four models trained with single-feature predictors, where each variable is used to predict
static overlap using RF, ABC, LG and QDA. The color represents the maximum MCC over the four ML models.
Variables are ranked according to their average performance over all cutoff values. For visualization purposes,
we exclude weekly profile variables with an average performance of less than MCC = 0.05

cutoff values. Using down-sampling techniques when training models allows the feature’s
predictive range to extend to a broader spectrum of overlap values.

The fraction of contacts in some component clusters of the weekly call profile is sur-
prisingly predictive of overlap. In particular the weekend day cluster alone (C12) has a
high predictive performance for mid-range values of η(Ôt). The cluster for early morn-
ing and weekday nights (C1) also ranks highly for average overlap prediction. In this case,
correlation with overlap was mostly negative, suggesting that a high fraction of calls at cer-
tain times might indicate weak ties. We provide a more complete analysis of the predictive
power and the importance of the different components of C∗ in the SI.

We include the directionality of the association where, for example, a larger number of
active days (ad) implies a larger overlap. Some features have non-linear associations, such
as the average interaction time over the observation window (t̄); in this case, the average
overlap peaks at central average interaction times, and decreases towards the beginning
and end of the observation window.

On Fig. 6 we compare the effect of including additional information on the prediction
task by using pairs of variables as predictors (F , X), where F is one of the three best-
performing features (ad , ah, NE) or the number of calls (w), and X is the set of all other
features. These variables’ performance increases moderately when used in tandem when
compared with the baseline single predictor, with an average increase of 16.8% for (ad, X)
against ad . Many features are highly correlated, which explains the small performance
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Figure 6 Comparison between single and dual-variable models (F,X) for F = NE ,w,ah ,wd , where we depict
the average MCC performance over all overlap cutoff values. For the single-variable case (X ), error bars are 2
standard deviations, obtained via bootstrapping

boost. For a small set of features, however, the average performance increases consider-
ably, up to 39.5% for (ad, σ̄ ). Notably, the compound effect of feature pairs is higher with
variables that have low single-feature predictive performance. This includes variables de-
rived from the IET, such as τ̄ , σ̄τ , differences in daily patterns JSD, and features of call
duration, l and l̂. In the SI, we include an additional analysis for predicting overlap using
the full set of features, which we consider to be an upper bound on the MCC for these
variables. In this case, the maximum MCC equals to 0.45.

4.3 Analysis of additional datasets
We performed the single-variable analysis for our additional datasets. To do so, we adapted
our measures according to the main communication channel, so that the number of con-
tacts (w) is now in terms of the number of emails (Enron), text messages (Copenhagen)
and wall or thread postings (FB and Forum, respectively); we discarded features that did
not have a direct translation such as total call time. We do not include the weekly activ-
ity profiles since most datasets do not contain sufficient data, missing either specific date
information or enough ties to use our clusterization process. Also, we use static overlap
O as a predictive variable. As before, we performed 3-fold cross-validation and evaluate
results with MCC.

Figure 7 depicts the results of our four additional datasets. We find the number of active
periods to still rank highly in the Forum and FB datasets, while displaying a mid-range
performance for Enron and Copenhagen. Noticeably, features of temporal stability and
the distribution of bursty cascades (TS, age and σt) remain ranking highly for predicting
overlap. A relevant difference in performance comes from JSD, the differences in daily
behaviour, which ranks highly for the four datasets. This could be an effect of the network
capturing specific foci (see Discussion) In addition, there is a stark difference in the per-
formance across quantiles for the Enron and Copenhagen networks. Particularly for the
latter, MCC does displays larger variability between adjacent percentiles. This is likely to
be an effect the small sample size in this network, where the small number of edges results
in an uneven overlap distribution.

5 Discussion
Human communication patterns encode information on their local network topology. In
this paper, we conceptualized tie strength as a latent variable that manifests independently
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Figure 7 Results for four additional datasets, where each table depicts the MCC values for temporal features
of binary classification over the overlap distribution. Features are sorted in the same order as Fig. 5 (bottom).
Datasets: (top left) Forum, (top right) Enron, (bottom left) Facebook, (bottom right) Copenhagen

as both local network topology and as patterns of communication between two nodes.
We identified which features of these dyadic interactions are the best predictors for the
neighbourhood overlap of a tie and therefore for the latent tie strength. We find that while
commonly-used aggregated measures such as the total number of calls are adequate in-
dicants of network overlap, our results show that alternative proxy measures contain in-
formation not captured by mere intensity features. We focused on quantifying different
temporal aspects of human communication, using both sequential and cyclical features,
and we assumed this topological tie strength to be constant during the observation period;
for linking dynamic topology with temporal features, see, e.g., [31]. We showed that sev-
eral of these distinct approaches capture information on network topology, results which
also stand across different communication foci.

The number of days and hours with contacts (ad and ah, respectively) outperformed
all other variables in our main prediction task, as did the number of bursty cascades NE .
Notably, these variables are conceptually similar to features measuring communication in-
tensity, but with the key difference that part of bursty behaviour is removed through tem-
poral aggregation. In addition to these, simple variables related to the time of the first and
last communication (TS and age) performed better than the communication-intensity fea-
tures. These variables ranked highly both in the main dataset and in the smaller datasets.

We introduced a weekly call profile C∗ and found it to be highly informative on the
neighbourhood overlap of ties. Notably, even though C∗ was not the best predictor, it
had the highest predictive power for the widest range of overlap cutoff values, provid-
ing a richer characterization that other features. Interestingly, C∗’s performance does not
increase significantly in combination with new variables, which might suggest that the
weekly profile contains information on intensity as well. A simple mechanism for encod-
ing a large number of communication events could be through several active clusters, for
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example. What is more, we found strong evidence that individual calling times during
the week convey information on network topology. Notably, for our dataset in a Euro-
pean country, weekend afternoons proved to have a higher correlation with overlap than
most other variables, whereas weekday nights and early mornings were associated with
low overlap. These results pave the way for interesting lines of research. For example, one
can use different data sets to compare the differences of weekdays and times of days across
contexts and cultures.

In the case of modelling bursty trains, the parameter �t determines the period where
two calls are considered to be correlated. Previous research had found that the distribution
of calls within trains did not vary significantly with different �t values [47]. Although
we did find differences in predictive performance, which included an optimal value of
�t∗ = 26 hours, we also found evidence that a wide range of �t values outperformed w.
This suggests that in practical applications, the aggregation of temporally correlated calls
might already improve the topological information encoded in the variable.

Measuring differences in daily call patterns (JSD) also proved to encompass topological
information, an effect more evident when predicting static overlap (see SI) and dynamic
overlap in our dual-variable scenario. For the additional datasets, JSD was either the best
or the one of the best-performing features. This was slightly surprising, as the relationship
to network topology is not as straightforward as other features. We hypothesized two pos-
sible explanations for this, which are not mutually exclusive. In the first case, there could
be a latent homophilic effect, where activity encodes information on, e.g., age or work rela-
tions. A second possible explanation is that strong ties engage in correlated events, where
person A’s contact is followed by the person B’s contact. Despite the strong association,
further research is needed to uncover the drivers of this relationship. The use of temporal
stability also provides a useful characterization, as it is one of the most simple features that
only requires two observations. Indeed, we do not delve into the effect of the observation
window into the use of this variable, where tie decay is more likely to occur, along with the
topological changes it implies [31, 39].

We found that these features were relevant in our main CDR dataset, but also in other
communication channels and in specific social networks. As in the main dataset, we found
that counts of days and hours, measures of temporal stability, along with the differences
in daily patterns, were the best predictors for the strength of ties. Granted, a relevant cri-
teria for these results was that the Granovetter effect was present for the contact counts.
Whether these results hold for different cases would require a more careful analysis of each
social network in question, and whether the underlying Granovetter hypothesis about
strong ties and overlapping circles of friends would be valid.

If one needs to pick a single simple measure for tie strength based on this study it would
be the number of days with contact. However, this measure would have only about two
thirds of the predictive power as compared to using the full contact sequence (when mea-
sured with MCC to predict Ôt). That is, the latent tie strength is a combination of multiple
features which reflects the different facets of human relationships. Our results suggest that
such important facets include regularity of contact, total amount of time spent, and the
type of interaction reflected by the time and weekday of the contact.

We should also note here that we did not investigate the direction of causality, but only
the association of variables. That is, we do not answer the question of if high overlap values
are followed by high latent tie strengths or the other way around. If each feature represents
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different aspects of the latent tie strength then one could also study each of them sepa-
rately as predictors of overlap in the future or vice versa. Moreover, our results might be
dependent on cultural features, communication medium, technology and other variables,
and thus might not be directly transferable to other data sets. However, if one has access to
a social network based on contact events, then it is straightforward to use the framework
we have set up here and find the features which are most important in a specific context.

Lastly, the list of features we constructed here is by no means exhaustive and it is based
on the current literature on analysing temporal social networks. However, our framework
provides a way to benchmark any new features as an independent predictor of the latent
tie strength, or as an additional facet of the tie strength by inspecting its performance
together with other features.
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