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Abstract—This article presents a method to create a digital
twin for sauna. The digital twin deploys a data analytics method
based on fuzzy similarity measure for data summarization to
provide real-time actionable instructions. The intended outcome
of the digital twin is enhanced safety and improved sauna
experience. In this research, we collected the data through
experimentation with a testbed and interviews. Our implemented
digital twin simplifies the readings of nineteen sensors into a
single graphical form for the user that illustrates the overall
sauna conditions and assists the sauna manager with condition
optimization. Results illustrated the effectiveness of the digital
twin in achieving an enhanced sauna condition for the users and
providing the sauna manager with a decision support system.
The method of creating the digital twin described in this article
has potential implications for the condition monitoring, predictive
maintenance, and enhancing the safety and security of complex
systems.

Index Terms—Digital twin, Internet of Things, big data ana-
lytics, smart building

I. INTRODUCTION

Internet of things (IoT) is now entering a new era of
commercial and industrial applications as (i) the use cases
become clearer [1], (ii) inexpensive and low-powered com-
puter chips and sensors become widely available, and (iii) the
network capabilities and capacities required to carry the big
data created by large numbers of always-connected devices are
realized (e.g., LTE-M, 5G) [2]. The potential economic impact
of IoT is vast, [3], [4] and its security implications are broad
[5]. One of the areas poised to immensely benefit from IoT
is buildings and residential facilities [6]. Increased efficiency,
improved comfort, and augmented security throughout the
building life cycle are among the benefits achievable through
the integration of IoT systems in the construction industry [7]
and the creation of digital twins [8].

Digital twin is a concept that builds upon the advancements
in the IoT systems and data analytics technologies and allows
for the creation of an accurate, real-time digital simulation
model for any physical system. Digital twin have applications
in system behaviour analysis and what-if analysis to enhance
the predictive maintenance [9]. Examples of real world im-
plementation of digital twins can be found in aerospace, and
heavy duty equipment industries.

In general, one of the main challenges faced by digital twin
of systems is the real-time analysis of big data generated by
numerous systems and sensors for enhanced decision making

[3], [10]. Dataset errors and noise recognition and elimination
are important considerations when improving accuracy [11].
In this research, we describe in detail a methodology in the
context of an experiment where the actionable data is system-
atically evaluated, filtered, summarized, and used to improve
situation awareness for sauna users while also providing real-
time suggestions for possible improvements. Moreover, the
security implications of this method are discussed.

Sauna as a building service is very important in some
countries. For instance in Finland, it is estimated that there are
approximately two million saunas [12]. Therefore, studying
saunas as spaces in buildings which are constantly under
temperature and humidity variation stress is worthwhile.

Although the concept of IoT for smart buildings has been
studied extensively in various contexts, the utilization of a
framework for creating a digital twin for household services
(e.g., saunas) to significantly simplify and enhance real-time
decision-making based on sensory data needs additional study
[13], [14], [15]. In this research, we contribute to filling the
gap related to the creation of a real-time analytics system sup-
porting the digital twin in interpretation of large IoT datasets.
Moreover, the proposed method creates situational awareness
for the users while also initiating actionable decision-support
conclusions for the system manager or for service automation.
The extent of this study also covers the security benefits of
our proposed digital twin.

II. DIGITAL TWIN FOR SMART BUILDINGS AND SAUNAS

Modeling and the creation of simulations have become
standard methods used to enhance system design, maintenance
and testing. The resulting models and simulations play a
decisive role in validating system properties and supporting
design tasks. Nonetheless, early simulation-based solutions
are best known for failure prediction and operation optimiza-
tion [16]. The digital twin emerged in the manufacturing
industry as a result of two processes. Firstly, production
systems and machinery became more digitalized. Secondly,
sensor networks were getting increasingly integrated. Digital
twins primarily differ from using simulations in the design
phase on the basis that the former includes the usage of a
sensor network and physical assets, whereas the latter does
not [17]. Therefore, [18] presents the following definition:
”digital twins will facilitate the means to monitor, understand,



and optimize the functions of all physical entities, living as
well as nonliving, by enabling the seamless transmission of
data between the physical and virtual world.”

The concept of the digital twin of the building is defined
by [19] as the ”interaction between the real-world building’s
indoor environment and a digital yet realistic virtual rep-
resentation model of building environment, which provides
the opportunity on real-time monitoring and data acquisi-
tion.” The authors of this definition envision that for indoor
environments information on the lighting condition, airflow,
air temperature and relative humidity (RH) are measured,
whereas the digital virtual representation indicates luminance
level and computational fluid dynamics. Substantial benefits
for the creation of a digital twin of a build are: 1) optimizing
building services, 2) analyzing irregularities in the data, and
3) collecting, generating and creating visualizations of the
environment of the building.

The application of the IoT for smart buildings is an active
area of research with an extensive related body of knowledge.

A. Related works

Research has been focused on various subjects such as the
comfort and efficiency of occupants [20], [7], security [21],
entertainment and even medical applications [22]. Digital twin
in construction, on the other hand requires further investi-
gation. Construction industry is well-known for its slowness
and reluctance in adoption of digital technologies [23], [24].
Therefore, the subject of digital twin in construction, where
distinct IoT devices and sensors in combination with data
analytics yield actionable information and predictions requires
additional exploration to verify the potential implementation
gains.

Recently, various articles and investigations presented sys-
tems for data analytics in the context of smart buildings.
Researchers in [25], [26], [27], [28], and [29] have proposed
frameworks for IoT data analysis. [25], explored the analytics
of data for smart homes with access to cloud-based historical
data. Study in [26] worked on the usage patterns of appliances
in the smart homes using multidimensional patterns mining
method.

Study presented in [27] illustrated the implementation of
gateway-based framework for detection and configuration of
new IoT appliances to enable cloud-based data analytics. A
novel framework suggested by [28] introduces a new way for
the adaptivity of smart home and procedures of self-learning.
[30] builds upon the creation of an analytical engine for smart
buildings user behavior analysis. In [29], authors propose an
Hadoop ecosystem-based IoT big data analytics framework
for cities to work with sensor inputs from various events and
functions of a smart city. [31], and [32] deal with challenges
arising from edge big data analytics such as data latency
issues. These studies suggest distance reduction between the
edge computing resources and data sources as a solution.
However, none of the prior studies utilize fuzzy similarity
based summarization for smart home decision support system.

Moreover, in the context of the smart sauna, previous
research has described the potential benefit of an IoT-enabled
sauna in preventing household fires [13], however, the study
falls short of utilizing multi-sensor system and combing it with
advanced data analytics to create a digital twin for safety.
Moreover, a prior study of IoT for saunas has focused on
the establishment of a sensor network in a sauna [14] but has
not explored the possibilities that arise from data abstraction
and real-time decision support analytics. Additional possibil-
ities related to automation according to user preferences and
security remain to be further investigated.

III. RESEARCH METHOD

The methodology used to conduct this research was exper-
imentation using a testbed. A network of nineteen sensors
was installed in a sauna to collect the data related to the
environmental parameters. After the initial dataset analysis and
selection of the relevant sensors, the data was summarized
using a mathematical method. A web application was then
developed to control the sauna parameters according to a user’s
preference. Interviews were conducted to set these preferences.

For this research we created the three main elements of a
digital twin which are the IoT wireless sensor network (WSN),
data integration and analytics, and 3D model components. The
nineteen senors were connected to a Raspberry Pi (RPi) 3B
via Bluetooth low energy (BLE) technology to create a WSN,
the collected data was uploaded to the cloud every second
and also stored on the RPi as a .CSV file. The data analytics
method used in this research is based on the fuzzy number
similarity which enables summarization of big data. The 3D
model of the sauna was created in Unity software which also
allows for the integration of sensor data and analytics results.

Fig. 1. Sensor configuration in the sauna for the experiment.

As Fig. 1 illustrates, the sensors of the testbed inside the
sauna were installed in eight different locations, including the
stove core (temperature), the stove surface (temperature), the
ceiling above the stove (temperature, relative humidity), the
ceiling above the bench (temperature, relative humidity), the



bench seat (temperature, CO2 concentration, relative humidity,
absolute humidity, moist gas energy, O2 concentration), the
bench footrest (relative humidity, absolute humidity, tem-
perature), the door (temperature, relative humidity), and the
outdoors (temperature, relative humidity).

Eight sensors were selected through the analysis of the
system and by determining sensors dependencies (Tables III
and IV). To determine the optimal sauna conditions, 29
sauna users were interviewed (after their stay in the sauna)
to collect feedback about their sauna experience, and sauna
characteristics were monitored in real time. Participants were
asked four main questions related to the personal qualitative
evaluation of the sauna temperature (temp.), relative humidity
(RH), and air quality (AQ) as well as the estimated time of
their stay in the sauna and any additional comments (Table I).
The qualitative answers were quantified on a scale from 0 to
10, with 10 being perfect feedback. The feedback for sauna
temperature, humidity, and air quality were then visualized on
separate timelines to facilitate their comparison to the sensor
readings. This setup allowed us to realistically determine the
optimal sauna parameters for our model.

TABLE I
A SAMPLE OF THE TABLE USED TO PRESENT THE INTERVIEW RESULTS

 

 

 

 

 

 

No. Time Temp. Humidity AQ Stay period Comments 

1 16:20 Good Good Poor 10 min Near the door is cold 

 

A fuzzy similarity method developed by Jaribion et al. [15],
[20] was used to summarize the data from the eight selected
sensors (Table II) by comparing them with the parameters of
the sauna in optimal condition.

A. Details of raw sensor data processing

The measurements of the sensors contained various pa-
rameters (e.g., time, temperature, absolute humidity, relative
humidity, O2 concentration, CO2 concentration, and moist gas
energy). According to the work of Jaribion et al. [15], in a time
series, each measured parameter can be defined as a variable
and indicated by x(i). The data can therefore be presented
by a vector “x” that consists of the number of variables “i.”
However, only some of these variables were considered when
comparing the similarity of the sauna status to an optimal
and preferred sauna condition. In this case, the selection of
the considered parameters was made with the assistance of
experts, analysis of the system, and the determination of
sensor dependencies. As a result, two different data packages
were used separately for the users and the manager of the
sauna (facility manager) to describe the sauna conditions. The
parameters that the decision maker considered for the users’
data package and manager’s data package are illustrated by

TABLE II
USERS’ DATA PACKAGE AND MANAGERS’ DATA PACKAGE

 

Data 

package 
Sensor Considered parameter Unit Variable 

Users  

Bench O2 concentration % 𝑦(1) 

Bench Temperature ℃ 𝑦(2) 

Bench CO2 concentration ppm 𝑦(3) 

Floor Temperature ℃ 𝑦(4) 

Manager 

Stove core Temperature ℃ 𝑧(1) 

Bench Moist gas energy kJ/kg 𝑧(2) 

Bench Relative humidity % 𝑧(3) 

Bench CO2 concentration ppm 𝑧(4) 

 

  

vector “y” and vector “z”, respectively, that each of them
consists of four variables (Table II).

B. Data analytics and summarization

Jaribion et al.’s data summarization method [15] was se-
lected to analyze the data and to provide comprehensive, accu-
rate, and actionable information. According to [15], the units
must be normalized to compare the similarity of the sauna
to optimal conditions. According to the decision maker, for
the users’ data package, the value of 0.1% O2 concentration
change was equivalent to a five-degree temperature change and
a 100 ppm CO2 change. For the manager’s data package, the
value of a 10 degree temperature change was equivalent to a
10 kJ\kg moist gas energy change, a 1% relative humidity
change, and a 100 ppm CO2 change.

Based on the four considered parameters related to each data
package, “y” was used to create a trapezoidal fuzzy number
Ã, which is presented in (1) and is related to the users’ data
package. The variable “z” was used to make a trapezoidal
fuzzy number C̃, which is presented in (2) and is related to
the managers’ data package.

Ã =
(
y(1), y(2), y(3), y(4);wÃ

)
=

(
a1, a2, a3, a4;wÃ

)
(1)

C̃ =
(
z(1), z(2), z(3), z(4);wC̃

)
=

(
c1, c2, c3, c4;wC̃

)
(2)

Based on the results of the conducted interviews, optimal
sauna parameters were set with regard to the considered
parameters of the data packages (Table II) by comparing the
exact time of the reports and the sensor readings at that time.
For each data package and its interface, two different ideal
reference point were introduced.

After normalization, the ideal reference point related to the
users’ data package and the manager’s data package can be
represented by the trapezoidal fuzzy numbers B̃ (3) and D̃
(4), respectively.

B̃ =
(
yo(1), yo(2), yo(3), yo(4);wB̃

)
=

(
b1, b2, b3, b4;wB̃

)
(3)

D̃ =
(
zo(1), zo(2), zo(3), zo(4);wD̃

)
=

(
d1, d2, d3, d4;wD̃

)
(4)



Based on the decision maker’s opinion, the heights of all
fuzzy numbers (wÃ, wB̃ , wC̃ , and wD̃) are equal to one in all
calculations.

According to the results of the conducted interviews (Table
I), in this case of the users’ data package, the value of a
21% O2 concentration, 70 degrees Celsius temperature for the
bench, and 35 degrees Celsius temperature for the floor were
optimal and preferred for sauna users. However, the level of
the CO2 concentration should not exceed 800 ppm. For the
manager’s data package, the value of a 290 degrees Celsius
temperature for the stove, 300 kJ\kg moist gas energy, and
18% relative humidity were optimal and preferred for sauna
users, and the level of the CO2 concentration should not
exceed 800 ppm. Moreover, these ideal reference points can
be modified to meet the needs of sauna users according to
their preference.

In order to compare the collected data with ideal reference
points, Zuo et al.’s similarity measure [33] was utilized. The
calculation process for measuring the similarity of two non-
standard fuzzy number Ã and B̃ was described in detail by
Zuo et al. [33], and a more complementary explanation was
presented by Jaribion et al. [15]. However, (5) can be used to
measure the similarity of Ã and B̃ as well as C̃ and D̃:

S
(
Ã, B̃

)
=

(
1−

∑4
i=1|ai−bi|

4

)(1−|x∗
Ã
−x∗

B̃
|
)
×

min
(
P (Ã),P (B̃)

)
+min

(
a(Ã),a(B̃)

)
max

(
P (Ã),P (B̃)

)
+max

(
a(Ã),a(B̃)

) (5)

After measuring the similarity between the value of consid-
ered variables and the ideal reference points of the decision
maker related to sauna conditions, the acceptable range for
considered variables and an appropriate time interval should
be specified. Based on the range of similarity percentage,
three different sauna experience can be defined for both users
and manager: a perfect sauna experience, a mediocre sauna
experience, and a poor sauna experience. In this way, the data
can be significantly summarized, and the users and manager
can identify the current sauna status and complete the required
implementation to improve the sauna experience. The accept-
able percentage of similarity and desired time interval depend
on the acceptable data range of the decision maker, which has
been determined by interviews related to the experience of
sauna users. Classification of the similarity percentage of three
different sauna experiences can be calculated by computing
the similarity percentage of borderline points. According to
the decision maker, for both users and manager, more than
85% similarity to the ideal reference point was identified as a
“perfect sauna experience.” A similarity of between 60% and
85% of the optimal reference point was identified as “mediocre
sauna experience,” and a similarity that was lower than 60%
to the optimal reference point is identified as a “poor sauna
experience.”

IV. DEVELOPMENT OF THE WEB APPLICATION

Python code was developed according to the methodology
detailed in the previous section as the back-end system. Fig.

2 depicts the process flow of the web application.

Thresholds are set 

based on survey

Mathematical 

model for big data

summarization

Sensor readings 

(data)

Back-end code

Facility 

manager

Users

Front-end

Action

Improvement loop

Fig. 2. The process flow of the web application.

The complete experimental setup consisted of multiple
components. These components are schematically represented
in Fig. 3. The sensor data follows a linear path from its source
(the sensors) to the end user. The various sensors present in
the sauna regularly publish their measurements to an Internet-
connected database. This database enables other devices to
retrieve both the most recent measurements and historical data.
All data is publicly accessible and offered over a REST API.
The implementation of the mathematical model is deployed
separately from the business logic, in order to maintain a clear
separation of concern. A serverless function running on the
Google Cloud Platform is responsible for retrieving the latest
data from the REST API, process it using the mathematical
model, and making the results accessible to the end user.
Serverless functions are self-contained pieces of code, which
automatically provision their resources based on the demand,
thus yielding a highly scalable solution. Lastly, the end user
can access the aggregated data using a simple and easy to use
responsive front-end interface.

Location

Component

Responsibility

Sauna Cloud Application

Sensors REST API
Serverless

Function

Responsive

Web Fronted

Collect 

Data

Forward and 

archive data

Data inference 

using the 

mathematical model

Present actionable 

results (for users 

and managers)

<Raw data>

<Raw data>

<Raw data>

<Request> <Request>

<Aggregated data> <Aggregated data>

Fig. 3. Component overview of the data processing pipeline.

Discussion with experts made it apparent that the data
packages of the sauna should differ based on the role of the
end user. Distinct similarity measures were therefore computed
based on the intent of the end user. The two roles supported
by the front-end interface are the direct “Users” of the sauna
and “Facility Managers,” the latter who, in the case of a sauna
in a spa, oversee the quality control process of several saunas.

The front-end is designed such that it offers actionable
data in a simplistic view, ensuring high usability for novice
users. The simplistic view consists of the similarity percentage
depicted as a happy, neutral, or unhappy smiley face for
similarities near the optimum, with a minor deviation from



the optimum, or strongly diverging from the optimum, respec-
tively. On the other hand, in the facility manager’s interface,
when the sauna is in a non-optimal condition, for example as a
result of maloperation, the system offers suggestions for how
to restore the sauna to an optimal state.

Fig. 4 presents the interface of the created digital twin of
the sauna used by the manager to keep the sauna in optimal
condition for the users. In this snapshot which is represented as
point D in the Fig. 5, the sauna manager is given a suggestion
by the analytics algorithm to turn on the ventilation system in
order to reduce the CO2 level inside the sauna. Moreover, the
digital twin (Fig. 4) provides the manager a quick summary of
the sauna condition in simple graphical form complemented
with the a figure that illustrates the similarity of current sauna
condition to ideal. The interface also gives a real-time view
of the sensor readings, sensor locations and also a root-cause
evaluation for sauna condition degradation. The cause of sauna
condition degradation in Fig. 4 is shown to be a high CO2

level while the readings from other sensors are inside the
predefined limits. The exact reading of the CO2 sensor in
this example is 1203 ppm.

z(2)=244.09 kJ/kg

z(3)=17 %

z(4)=1203 ppm 

z(1)=308.44°C

Similarity to ideal

=77%

Manager’s interface

Time: 22.15

T: 

E: 

RH: 

CO2: 

Suggestion: 

Turn on air ventilation

Fig. 4. Digital twin interface of sauna for the manager

Fig. 5 presents a time series showing the effectiveness
of the digital twin developed in this research in action. In
this time series, changes in the similarity of sauna to ideal
condition over a period of 47 minutes is tracked. At point
A, the similarity value shown on the managers interface is
73 percent. The deterioration of sauna condition causes the
similarity measure to fall to point B or 26 percent. At this
time the user’s similarity measure is at point C, 86 percent
which has fell from 88 percent. Manager intervenes with a
corrective action at point B and the sauna condition similarity
measure starts to improve on the manager interface and also
the decline on the user’s interface stops. The large difference
between the similarity measure on manager’s interface with
user’s interface is due to the design and sensitivity of these
measures. The managers similarity measure is more sensitive
to changes and is based on different sensors that are positioned

to allow early warning of the condition deterioration that can
effect the sauna condition for the users in a number of minutes.
Therefore, with corrective actions based on the digital twin
algorithm a sauna manager can keep the sauna continuously
in a optimal condition for users.

V. DISCUSSION

One of the clear applications of the digital twin discussed
is providing the users and manager of the system with real-
time abstract situational awareness, which can lead to more
accurate decisions to correct the system when it deviates
from predefined optimal conditions. This method depicts the
most relevant environmental parameters before applying a
summarization algorithm to them. This assists the system
manager, as he should not deal with large sets of data collected
from numerous sensors. The system manager is able to take
actions that are suitable and proportionate to the system
changes and potential anomalies. Such a system can control
the environmental parameters of a large facility and only point
out and address the issues when they take place. Another use
case of the system detailed in this research is the provision of
advanced system security. Based on the large historical data
sets collected from the digital twin in the regular annual op-
eration of a household sauna, a “digital ghost” can be created
[34] to complement the digital twin in monitoring the system
behavior and preventing anomalies caused by internal system
failure. Moreover, this has application in smart connected
homes where the cyber security is of utmost importance.

VI. CONCLUSIONS

A method to create the digital twin of a sauna is presented.
A web-based digital twin was developed based on a fuzzy
similarity measure algorithm to provide the users with a simple
real-time graphical representation of the sauna while keeping
the sauna manager aware of the most important parameters
to control the system. After the user has set a preference for
the sauna condition involving temperature, humidity and air
quality, our proposed digital twin effectively keeps the sauna
conditions close to the optimal state. The output of the digital
twin can be sent to the sauna manager or to an automation
system for action. The implications of this method go beyond
smart saunas, as the digital twin can be used to enhance
condition monitoring and maintenance planning in complex
systems.
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