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ABSTRACT
Cognitive load (CL) on a learner’s working memory has emerged as
an influential concept in computing education and beyond. CL is
commonly divided in at least two components, intrinsic load (IL) and
extraneous load (EL). We seek progress on two questions: (1) How
can CL components be measured in the programming domain?
(2) How should CL measurement deal with the “third component”
of germane load (GL)? We replicate two studies: Morrison and col-
leagues’ [49] evaluation of a questionnaire for self-assessing CL
in programming, which is an adaptation of a generic instrument;
and Jiang and Kalyuga’s [24] study, which found support for a two-
component measure of CL in language learning, with GL redundant.
We crowd-sourced CL data using Morrison’s questions at the end
of a video tutorial on programming for beginners. A confirmatory
factor analysis found strong support for a three-factor model, with
factors matching the items intended to capture IL, EL, and GL, re-
spectively. A two-factor model with IL-targeting and GL-targeting
items combined gave a poorer fit. Our findings strengthen the claims
of discriminant validity and internal reliability for Morrison’s CL
questionnaire for programming; construct validity for GL remains
open, however. We affirm the need for further research on the two-
component theory of CL and the sensitivity of CL self-assessments
to contextual factors.
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1 INTRODUCTION
Cognitive load theory (CLT) [63, 65] has established itself as one of
the leading theoretical frameworks to support instructional design.
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Its goal is to help learners construct new knowledge consciously, as
opposed to other educational objectives, such as the activation of
learners’ prior knowledge or unconscious automation through re-
peated performance of a familiar task [27]. CLT deals with the learn-
ing of domain-specific knowledge that is biologically secondary [63]
in that its value is a cultural construct unsupported by biological
evolution—programming knowledge is a good example.

CLT highlights how the severe limitations of humans’ working
memory constrain our ability to learn as we process new infor-
mation. From this premise, the theory has spawned many specific
design principles, or cognitive-load “effects” [63], examples of which
include the worked-example effect, which promotes studying exam-
ples over problem-solving while prior knowledge is low, and the
split-attention effect, which recommends integrating instructional
explanations into diagrams rather than presenting them separately.

In computing education research (CER), CLT has been applied
to example-based learning [40, 60, 70], course design [8, 61, 66],
multimedia and visualizations [46, 48, 59], novel practice tasks [15,
20], and complexity analysis [14], among other things. One review
identified CLT as one of CER’s more common theories [37].

One of the major open questions in CLT is how to measure cog-
nitive load; work is also needed on adapting generic cognitive-load
measures to the programming domain. We investigate these ques-
tions by replicating two studies. We will state our specific research
questions in Section 3 after providing some background for them.

2 RELATEDWORK
2.1 Basic Concepts of Cognitive Load Theory
Cognitive load theory rests on the widely accepted model of hu-
man cognitive architecture whose central components are working
memory and long-term memory [63]. Working memory (WM) is
extremely limited: it can hold only a handful of elements at a time,
for a short time. This is a bottleneck for learning, as all new informa-
tion must be first consciously processed in WM. On the other hand,
long-term memory is virtually unlimited in capacity and stores
domain-specific knowledge organized in schemas. Once learned,
even a complex schema can be treated as a single element in WM,
which is why people can deal with complex situations in familiar
domains. For CLT, learning essentially means schema construction.

Cognitive load (CL) refers to the demands imposed by a learn-
ing situation—i.e., materials and activities—on a learner’s working
memory; this is the intensity of cognitive activity required for a
specific learning goal during a narrow time frame [27]. To estimate
that intensity, CLT uses the concept of element interactivity, which
refers to how many elements the situation requires the learner to
simultaneously and consciously hold in WM. Too much element
interactivity means cognitive overload and unsuccessful learning.

CLT identifies two types of load: intrinsic load (IL) and extraneous
load (EL). The two are cut from the same cloth: they both stem
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from element interactivity and load WM similarly. The difference
is analytic: IL is the load that is unavoidable when aiming for a
specific learning objective with a certain level of prior knowledge,
and EL is the avoidable load that results from suboptimal materials
and activities. EL and IL add up to overall CL. [25, 62, 63]

2.2 Germane Load, Old CLT, and New CLT
The term “germane load” (GL) is associated with the idea that learn-
ing does not happen without WM activity; it refers to this positive
aspect of cognitive load. However, the more precise definition and
role of GL in CLT has shifted during the past decades. The ripples of
that change are still evident in the current literature, which draws
on various versions of CLT.

The 1998 formulation of the theory [65], which we will call “Old
CLT,” defined GL as an independent, comparable source of load
alongside IL and EL. In this view, GL is a third, additive compo-
nent representing load that makes learning happen and should be
maximized; IL and EL should be low enough for GL to also “fit
in” working memory. Some scholars stressed that GL is not just
any useful load but arises from those additional, effortful aspects
of learning that go beyond task performance, such as conscious re-
flection and self-explanation [25, 57]. When interventions based on
Old CLT target improvements to motivation and deep engagement
with learning materials, they are often phrased as increasing GL.

Old CLT was found to be problematic. Leading figures in CLT
complained that it suffered from conceptual flaws, failed to explain
various empirical results, used a GL construct that was unnecessary
and unjustified by results, and led to unfalsifiable circular interpre-
tations of findings [25, 57, 62]. Some who developed measurement
instruments for Old CLT [33] eventually gave up on the GL part of
the theory [5, 9, 34]. In 2010, CLT was reformulated.

“New CLT” [25, 62] is neater and narrower. The major change is
the removal ofGL as a third, additive component ofCL. All learning—
even that resulting from “additional” reflection—results from deal-
ing with IL. New CLT tends to view motivation as something that
is relevant to learning but external to the theory; motivated engage-
ment is not an additional load on a learner’s mind, but a part of
dealing with IL. In New CLT, the term “germane load” has been
(perhaps confusingly) repurposed to mean something conceptually
quite distinct from IL, EL, and Old CLT’s GL. It refers to the actual
use of WM resources by a learner to process IL, which happens
during learning assuming there is sufficient motivation. Overall, GL
tends to play a reduced role in studies that are based on New CLT.

The interpretation of the GL construct is important (to the present
work and otherwise) not least because GL is central to debates
around empirical measurement of CL, as discussed below.

2.3 Measuring Cognitive Load
Methods of CL measurement are commonly grouped into objective
and subjective ones. We will briefly comment on objective measures
but focus on those subjective measures that relate directly to our
work. For broader and deeper reviews, see, e.g., [31, 63, 69].

2.3.1 Objective measures of CL. So-called objective CL measures
do not require learners to reflect on and evaluate their mental effort
or learning. Many of these measures are based on physiological data
sources, such as such as eye-tracking [21], pupillometry [16, 45],

heart rate [54], and neuronal [3, 67] and electrodermal [52, 58] activ-
ity. Objective measures also include dual-task experiments where
some learners are required to perform a secondary task during learn-
ing so that cognitive load may be estimated from the differences in
resulting performance (e.g. [6]).

Objective methods do not depend on learners’ self-assessment
abilities. Another benefit is thatmany of them can be applied “online”—
i.e., during learning—as an index to real-time changes in load. On
the downside, many objective methods are intrusive and distracting.
Moreover, most objective measures cannot differentiate between
the different types of load, which lofty goal has been suggested
as CLT’s “holy grail” [4] and “mission impossible” [29]. Differen-
tial measurement of loads would enable more detailed predictions
and add incisiveness to interpretations, and it might be useful to
practitioners as well as researchers. Although some attempts have
been made to differentiate loads using objective methods [4], most
attempts to date rely on subjective ratings instead.

2.3.2 Subjective measures of CL. Subjective CL measures ask learn-
ers to report on their perceived mental effort or other aspects of
a learning episode that are expected to indicate cognitive load.
Paas’s [53] unidimensional nine-point scale for mental effort from
1992 is the time-tested instrument that continues to be used. How-
ever, this simple scale cannot differentiate between load types and
suffers from noisy measurements [32].

Several groups of researchers have created, adopted, and adapted
various questionnaires for subjectively assessing types of CL sepa-
rately. We will comment on a few.

In 2013, Leppink et al. [33] developed a CL self-assessment ques-
tionnaire (quoted in ourweb appendix [1] for easy reference), which
has been since adapted and used by the same group and various
others. It asks learners to indicate the level of their agreement with
ten claims such as “The activity covered formulas that I perceived
as very complex” on an eleven-point scale; IL, EL, and GL are tar-
geted by three, three, and four items, respectively. This initial study
took place in a statistics class, but Leppink et al. suggested that the
instrument could be readily adapted to other complex knowledge
domains by replacing words such as “statistics” and “formula” ap-
propriately. Through factor analysis, Leppink et al. [33] uncovered
a three-factor model that fit the data, with factors matching the IL-,
EL-, and GL-targeting items, respectively. However, the study failed
to support the hypothesis that high scores on the GL-targeting items
correlated with better learning, and similar results from a follow-on
study [34] led the authors to suggest that the third factor does not
represent germane load and to throw their support behind New
CLT. In later work, some of the same authors have discarded the
name “germane load” in favor of “self-perceived learning” [5] or
modified the instrument to focus on IL and EL only [9].

Drawing onOldCLT,Klepsch et al. set out to develop a CL compo-
nent questionnaire that would be even easier to transfer to different
domains than Leppink’s. Klepsch et al. also phrased (especially) the
GL-targeting items differently, seeking to probe whether students
had attempted to understand the lesson completely and holistically
(as shown in ourweb appendix [1]). Much like Leppink et al. [33, 34],
Klepsch et al. found that a three-factor model fit their data but the
GL-targeting items did not correlate with learning.
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A somewhat different questionnaire was developed by Yeung
et al. [68], who identified a four-factor model to predict cognitive
load, with factors representing learners’ perceptions of difficulty,
incompetence, negative affect, and investment of effort.

A recent report by Jiang and Kalyuga [24] sought evidence for
New CLT in the language-learning domain. The authors fitted a
two-factor model against data collected using a questionnaire simi-
lar to that of Leppink et al. [33] (see [1]). They hypothesized that
since New CLT’s GL represents the allocation of working-memory
resources on IL, the IL-targeting and GL-targeting questionnaire
items might capture the same construct from different perspectives.
A confirmatory factor analysis bore this out: a two-factor model fit
the data well, with the EL-targeting items in one factor and the IL-
and GL-targeting items together in the other. Were this result to be
replicated across contexts, it would indicate that the GL-targeting
items are redundant and strengthen the case for New CLT.

2.3.3 CL Measurement in Computing Education. There is some re-
search on objective measures of cognitive load in programming. For
example, Crk et al. [11, 12] used EEG (electroencephalography) dur-
ing program comprehension, while Andrzejewska and Skawińska
[2] tracked eyemovements andNourbakhsh et al. [51] measured gal-
vanic skin response and eye blinks. Duran et al. [14] have proposed
CL-inspired methods for analyzing the complexity of computer pro-
grams a priori for instructional-design purposes, but the work is so
far unsupported by direct empirical evidence.

Subjective mental-effort ratings were used in CER by Mason
et al. [42, 43], who surveyed programming students at a coarse
level across Australian universities. Once Leppink et al. [33] had
published their CL questionnaire for statistics in 2013, Morrison
et al. [49] adapted it to programming education (see [1] for the
instrument). A factor analysis by Morrison et al. [49] confirmed the
questionnaire’s internal reliability and discriminant validity in the
programming domain: it measured three factors, each of which was
internally consistent. Morrison’s instrument has been since used in
a number of studies in CER (e.g., [15, 20, 38, 48, 50]).

3 RESEARCH QUESTIONS
Robins et al. [56] note that Morrison et al.’s [49] CL questionnaire
for programming awaits replication. Jiang and Kalyuga [24], hav-
ing found support for a two-factor CL model in language learning,
prompt researchers to “conduct factor analysis on the categories of
cognitive load in a broader range of subject domains.” The present
work responds to these needs. More broadly, we answer recent calls
from the CER literature for more replication studies [19] and more
work towards standardized instruments of measurement [39].

Our study is opportunistic. We have a recent data set from an
as-yet unpublished study, which enables us to replicate analyses
from two earlier publications. We ask:
RQ1 Morrison et al. [49] report good discriminant validity and in-

ternal reliability for a programming-domain adaptation of
Leppink’s [33] CL questionnaire, which is based on the three-
component Old CLT. Do these findings replicate with a different
cohort and a different programming tutorial?

RQ2 In a language-learning setting, Jiang and Kalyuga [24] used a
questionnaire similar to Leppink’s [33] and found support for
New CLT’s two-component model of CL, with GL redundant.
Do the findings replicate in the programming domain?

Exploring the robustness of those earlier findings is an incremental
step towards solving the broader issues in CL measurement in CER
and beyond. Answering these questions will not—and we are not
attempting here to—show which version of CLT is “correct.” The
reader will note that our questions do not directly address construct
validity (i.e., whether the instruments actually measure what they
are meant to), which is a topic that we will return to in Discussion.

4 METHODS
4.1 Procedure
Participants were recruited and paid using Amazon MTurk1, a plat-
form for crowd-sourcing work that requires human intelligence.

Although already established as a powerful resource for research,
crowd-sourcing platforms suffer from variable quality of data [7,
23]. To alleviate this issue, we only accepted participants with 500
approved tasks on MTurk and a task-approval rate of at least 98%.

Participation consisted of three stages: (1) a demographic sur-
vey, (2) an instructional video on programming, and (3) a post-
instructional survey. The demographic survey asked about the par-
ticipants’ previous programming experience among various other
background questions and was designed to avoid hinting at the sub-
sequent programming-related instruction. The instructional video is
described below. The post-instructional survey contained a cognitive-
load questionnaire (see below) and a post-test on programming that
is outside the scope of this article.

4.1.1 Instructional Video. The 24-minute instructional video was
a beginner-level lesson to reading Python code, in English. The
video introduced the concepts of variable, expression, and value and
taught the participants to reason about short fragments of impera-
tive code consisting of assignment statements and print commands.
The video covered several short example programs, explaining the
code constructs and tracing each programs’ behavior in detail. The
video was configured so that once the participant clicked Play, it
could not be paused, rewound, or forwarded.

Because we collected this data in the context of an experiment on
presentation modalities in instructional video (not reported here),
the participants were randomly given one of three variants of the
same video. The variants differed in whether the program exam-
ples were accompanied by text, audio, or both. As we observed no
significant differences in CL scores between these groups, we are
combining the groups for the analysis presented herein.

4.1.2 Cognitive-LoadQuestionnaire. Tomeasure cognitive load,we
used the instrument previously adapted for programming by Morri-
son et al. [49] from Leppink et al.’s [33] original. Shown in Figure 1,
Items 1 to 3 target IL; items 4 to 6 EL, and items 7 to 10 GL. Below,
we will refer to the items as I1–I3, E1–E3, and G1–G4, respectively.
A minor difference between our instrument and Morrison’s is that
we used a ten-point scale while they used an eleven-point one.

4.2 Participants
A total of 307 MTurk workers participated. For the analysis pre-
sented here, we excluded 132 responses, leaving us with 175. Sixty
responses were excluded due to prior knowledge: we only included

1https://www.mturk.com/
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All of the following questions refer to the lecture that just
finished. Please respond to each of the questions on the fol-
lowing scale by circling the appropriate number. (1 meaning
not at all the case, and 10 meaning completely the case)

(1) The topics covered in the activity were very complex.
(2) The activity covered program code that I perceived as very

complex.
(3) The activity covered concepts and definitions that I perceived

as very complex.
(4) The instructions and/or explanations during the activity

were very unclear.
(5) The instructions and/or explanations were, in terms of learn-

ing, very ineffective.
(6) The instructions and/or explanations were full of unclear

language.
(7) The activity really enhancedmy understanding of the topic(s)

covered.
(8) The activity really enhanced my knowledge and understand-

ing of computing/programming.
(9) The activity really enhanced my understanding of the pro-

gram code covered.
(10) The activity really enhanced my understanding of the con-

cepts and definitions.

Figure 1: The CL self-assessment (based on [33, 49]).

participants who stated that they had no or little previous program-
ming experience. The rest were excluded for a variety of reasons,
such as log data suggesting they had “cheated” during the experi-
ment, and missing responses.

Of the 175 participants, 78 self-identified asmen and 97 aswomen,
with no-one picking the other options. Most (148) were from the US,
fourteen were from India, and the remainder from various countries.
English was 158 participants’ native language; the rest spoke a
mix of languages. Seven of the participants were between 18–24
years of age, 62 were between 25–34, 49 between 35–44, 37 between
45–54, and 20 were at least 55 years old. 108 of the participants
held a bachelor’s degree, 21 a master’s, one a doctoral degree, and
45 were school graduates. 118 participants reported having some
background in the humanities, 41 in natural and technical sciences,
and 16 reported no education beyond primary school. 123 had no
programming experience at all; 52 reported “a little.”

4.3 Statistical Analyses
Morrison et al. [49] found a three-factor interpretation for their data,
with items targeting IL, EL, and GL forming the three factors, re-
spectively. To replicate that analysis, we grouped the questionnaire
items in three, with I1–I3, E1–E3, and G1–G4 forming the factors.
We computed Cronbach’s alpha to assess the internal reliability of
each of these factors separately.

On the other hand, Jiang and Kalyuga [24] found a two-factor
interpretation with GL-targeting and IL-targeting items aligned. To
replicate that analysis, we grouped the questionnaire items so that
E1–E3 again formed one factor and the other seven items (I1–I3 and
G1–G4) together formed another.

To investigatewhether the three-factor or two-factormodelwould
best fit our data, we conducted two confirmatory factor analyses
(CFA) using the two hypothetical models above. Given that our

data are ordinal and violate normality assumptions, the DWLS (di-
agonally weighted least squares) estimator would usually be ap-
propriate. However, Li [35] suggests that with a small sample size
(𝑁 < 200), the ML (maximum likelihood) estimator is more trust-
worthy.

Following Jiang and Kalyuga [24], we reversed the GL-targeting
items’ scores for the CFA and item correlations. That is, a score of
10 is treated as a 1 and other scores are similarly converted.

We used the package lavaan in R (version 4.0).

5 RESULTS
5.1 Reliability
Cronbach’s alpha for all the items was 0.87, compared to an ac-
ceptance threshold of 0.70. The alpha for the IL-targeting items
alone was 0.96; for the EL-targeting items it was 0.89; and for the
GL-targeting items it was 0.97. The IL-targeting and GL-targeting
questions together had an alpha of 0.83. The squared multiple cor-
relations (𝑅2) of each item varied between 0.61 and 0.95, thus being
above the 0.25 threshold of item reliability.

These results suggest that the instrument and each of the pro-
posed factors is internally reliable.

5.2 Factor Analyses
Table 1 shows the fit statistics for the three- and two-factor models.

Table 1: Fit indicators for the hypothesized factor models.

Three Factors Two Factors
(“IL” / “EL” / “GL”) (“IL+GL” / “EL”)

CFI 0.990 0.458
TLI 0.986 0.283
AIC 5254.0 6425.3
BIC 5358.4 6523.4
RMSEA 0.062 0.448
SRMR 0.033 0.320

The Comparative Fit Index (CFI) measures whether the model fits
the data better than a more restricted baseline model; the Tucker-
Lewis Index (TLI) is a more conservative estimate of fit. CFI and TLI
values above 0.95 are considered a good fit [22]. As Table 1 shows,
both CFI and TFI can be considered good for the three-factor model,
whereas the two-factor model fits poorly.

The Akaike Information Criterion (AIC) and the related Bayesian
Information Criterion (BIC) estimate information loss in the model.
In general, lower values of AIC and BIC are better fit estimates.
Table 1 shows a lower AIC and BIC for the three-factor model.

RMSEA (The RootMean Square Error of Approximation) summa-
rizes how closely the model reproduces data patterns. Models with
RMSEA values of around 0.07 can be considered a good fit, with
lower values preferred. RMSEA confirms the fit of the three-factor
model but not the two-factor one.

The Standardized Root Mean Square Residual (SRMR) is defined
as the standardized difference between observed and predicted cor-
relations. SRMR values under 0.08 are considered a good fit [22];
again, only the three-factor model meets this criterion.
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Table 2: Factor loadings and descriptive statistics for each
questionnaire item.

Latent Factor Item Mean Std.Err. Loading p-value.
“Intrinsic” I1 4.03 0.122 0.887 < 0.001
“Intrinsic” I2 4.07 0.124 0.973 < 0.001
“Intrinsic” I3 4.09 0.124 0.982 < 0.001
“Extraneous” E1 1.76 0.090 0.804 < 0.001
“Extraneous” E2 1.71 0.082 0.896 < 0.001
“Extraneous” E3 1.71 0.086 0.866 < 0.001
“Germane” G1 6.65* 0.144 0.907 < 0.001
“Germane” G2 6.59* 0.135 0.967 < 0.001
“Germane” G3 6.82* 0.137 0.986 < 0.001
“Germane” G4 6.75* 0.134 0.966 < 0.001
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Figure 2: Correlations between items, with corresponding
scatter-plots. Three asterisks mark significance at 𝑝 < 0.001.

Overall, the three-factor model fits our data considerably better
than the two-factor model. An ANOVA test confirmed that the
three-factor model is a better fit: 𝜒2 (2) = 1175.3, 𝑝 < 0.001. Table 2
presents the latent factors and factor loadings of the three-factor
model. The table also shows the items’ means and standard errors.

There are significant, positive correlations between the factors
targeting IL and EL (0.405, 𝑝 < 0.001), and between the factors
targeting EL and (reversed) GL (0.447, 𝑝 < 0.001), respectively. We
found no significant correlation between the IL- and GL-targeting
factors (0.053, 𝑝 = 0.49). Figure 2 illustrates the relationships be-
tween all the questionnaire items.

Both Figure 2 and Table 2 suggest a floor effect for E1–E3. Note
that GL-targeting scores are not reversed.

6 DISCUSSION AND LIMITATIONS
6.1 RQ1: Measuring CL in Programming
In RQ1, we asked whether Morrison and colleagues’ [49] results
concerning their CL questionnaire for programming replicate with

a different programming tutorial and a different cohort. We found
that the questions targeting each CL type aligned with the other
questions targeting that type, which supports the claim that the
questionnaire has internal reliability. Moreover, we confirm strong
support for the questionnaire’s discriminant validity—that is, the
IL-targeting, EL-targeting, and GL-targeting items appear to be mea-
suring three distinct constructs.

By extension, our findings also strengthen the support for the
internal reliability and discriminant validity of Leppink’s [33] in-
strument from which Morrison et al. [49] derived theirs.

6.2 RQ2: The Two-Factor Model for New CLT
In RQ2,we askedwhether the two-factormodel that fit Jiang and Ka-
lyuga’s [24] language-learning data well replicates in our program-
ming data. We found a poor fit for the two-factor model that com-
bined IL- and GL-targeting items into a single factor, the other factor
consisting of the EL-targeting items. This contrasts with the excel-
lent fit of the three-factor model to our data, with the GL-targeting
items in a separate factor. Although the IL- and GL-targeting items
aligned in Jiang and Kalyuga’s context, they did not in ours.

We feel that the theoretical arguments for New CLT are com-
pelling and that the theory is consistent and parsimonious. However,
GL-targeting self-assessment questions do not appear to be redun-
dant with IL across contexts, so their value as empirical evidence
for New CLT may be limited. It seems likely that context-dependent
and instrument-dependent factors confound the relationship of the
IL- and GL-targeting items.

6.3 Construct Validity in CL Measurement
Despite the popularity of self-assessments as a way to measure CL
types, their construct validity remains largely unproven [32]. There
are question marks over whether learners are able to differentiate
IL and EL [44]2, and the self-assessment of GL is more problematic
still. The thread of research to which we add ours has not produced
a convincing case for the construct validity of GL-targeting self-
assessments. Our study does not resolve this issue either.

What researchhas shown is that several instruments’ GL-targeting
items do measure a third construct that is distinct from EL and IL
and that this construct replicates in the programming domain. At
face value, the third construct (or third constructs; there are differ-
ences between instruments [1]) appears to be related to phenomena
such as effective learning, motivation, engagement, reflection, ef-
ficiency, intensity of cognition, and/or satisfaction with teaching
methods.

Many authors (e.g. [29, 33, 34]) have noted that learners can in-
terpret CL assessments differently from what was intended; subtle
changes to wording may be significant. This is a concern in our
study as well, and a possible partial explanation for the discrepancy
between our findings and those of Jiang and Kalyuga [24], whose
questionnaire was similar but not identical to ours [1]. There may
also be differences between second-language learning and program-
ming learning—or learners’ perceptions of those domains—that con-
tribute to that discrepancy.
2In the general case, since IL and EL are analytically separated by which aspects of
instruction are suboptimal, learners would be required to know instructional design.
(And in fact one study did teach learners CLT [29].) Intuition suggests that some forms
of EL are much easier for learners to discern from IL than others.
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6.4 Motivation and Cognitive Load
Motivation and other learner-dependent factors are another caveat
of the present study. We did not assess the participants’ motivation,
and our varied cohort of crowd-sourced learners means that moti-
vations, approaches to learning [41], and self-assessment skills may
have varied considerably among the participants.

In 2010, Moreno [47] wrote: “CLT is remarkably silent about the
relation among load, affect, andmotivation.” New CLT sidesteps this
critique: it is interested in how instructional design affects “ideal”
learners that are highly engaged; it assumes motivation [25, 62].
This is a strength and a weakness. Cordoning off motivation makes
New CLT sharper and more robust but also means that the theory
must be complemented by other theories and instruments in order
to account for real-world situations where students lack motivation.
The further research that is needed on the relationship between CLT
and motivation has already started outside of CER (e.g., [10, 17, 36]).

6.5 Rapid Changes in Cognitive Load
An inherent limitation of our study is that we measured CL only af-
ter the participants completed a sizeable learning activity. Working
memory operates on a timescale of seconds, so many moment-to-
moment changes in load are to be expected during a 24-minute
video such as ours or the even longer lectures studied by others.
Even though subjective post-instruction ratings might provide a
general indication of CL levels during instruction, their validity is
nonetheless compromised by the extended time frame [25, 26].

Research in CLT has begun to look into “real-time” measurement
of CL types [26, 31]; CER should follow suit. In addition to the
rapid changes in cognitive load, future research should consider the
(comparatively slow but nevertheless fairly frequent) fluctuations
in motivation during episodes of learning [13].

6.6 Summary of Recommendations
Given our results, researchers in CER and practitioners in program-
ming education may use Morrison’s [49] questionnaire with in-
creased confidence in its reliability. That being said, we advise cau-
tion in interpreting its GL-targeting scores especially, as their con-
struct validity and theoretical foundation are debatable.

We recommend that researchers in CLT and CER continue to
seek empirical evidence for New CLT and instruments to measure
CL types. Our study suggests that Jiang and Kalyuga’s [24] findings
do not necessarily replicate in other contexts. However, even if
IL-targeting and GL-targeting subjective assessment items do not
combine into a single factor, that does not imply an additive GL
as per Old CLT; it merely implies that a third construct is being
measured by the instrument.

We agree with authors such as Klepsch et al. [29, 30] that mea-
suring a third, engagement-related construct is meaningful. That
construct may not be a discrete source of cognitive load, however.
Even if motivation and engagement are external to CLT—as New
CLT suggests—research is needed that combines assessments of
motivation (e.g. [55]) with measures of cognitive load.

To improve programming education, instructional designs must
be evaluated to see how they motivate students and which com-
binations of CL-driven designs and other activities best facilitate
complex learning. CER, as a field, might learn from current research
in educational psychology [10, 17, 18, 27, 36], which explores the

interplay of CLT-based tasks—whose goal is schema construction—
with other learning tasks whose goals are different, such as activat-
ing learners’ intuitive knowledge, promoting deep approaches to
learning, or motivating learning by raising learners’ awareness of
their knowledge gaps. Productive failure [28] is one example of a
framework that might be so used as a complement to CLT (even
though there are challenges in reconciling these perspectives [64]).

We join the call [29, 33, 34] for using a combination of qualitative
and quantitative methods to study wording effects in CL question-
naires. We also recommend that CER explore the temporal variation
in cognitive load and motivation during learning.

Some of the current CLT-based research in CER cites OldCLT and
its constructs seemingly unaware of advances in CLT during the last
decade. We hope to raise awareness of some of those advances and
encourage the development of ever better cognitive-load measures
for programming.
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