
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Toivio, Tuomas; Kosonen, Iisakki; Roncoli, Claudio
A multilayer optimisation framework for policy-based traffic signal control

Published in:
2020 Forum on Integrated and Sustainable Transportation Systems, FISTS 2020

DOI:
10.1109/FISTS46898.2020.9264870

Published: 03/11/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Toivio, T., Kosonen, I., & Roncoli, C. (2020). A multilayer optimisation framework for policy-based traffic signal
control. In 2020 Forum on Integrated and Sustainable Transportation Systems, FISTS 2020 (pp. 347-352).
Article 9264870 IEEE. https://doi.org/10.1109/FISTS46898.2020.9264870

https://doi.org/10.1109/FISTS46898.2020.9264870
https://doi.org/10.1109/FISTS46898.2020.9264870


A multilayer optimisation framework for policy-based traffic signal
control

Tuomas Toivio, Iisakki Kosonen and Claudio Roncoli
Spatial Planning and Transportation Engineering,

Department of Built Environment, Aalto University, Finland

Abstract— Traffic performance has many positive and neg-
ative consequences to the environment and society. These
external effects are ever more often considered in the traffic
system planning and administration. Desired effects of traffic
can be thought as traffic performance policies. It is also possible
to support these policies through traffic management and
traffic signal controllers. In this study we introduce a general
framework for a process flow which allows signalised junction
controllers to adapt into desired policy. Also, we present an
example implementation of the processes of the framework,
and experiment with it by optimising a signal controller in a
microscopic traffic simulation environment.

I. INTRODUCTION

Traffic and transportation problems in cities are nowadays
complex. When cities in 20th century generally started to
grow rapidly together with increasing number of vehicles in
roads, the traffic congestions started to emerge causing prob-
lems of several types. Negative impacts do not only concern
solely mobility but also economical [1] and environmental
[2] problems are induced by congestion.

There are diverse measures for adverse effects of traffic.
Besides traditional travel time delay, it is quantitatively
possible to consider e.g. air pollutants and noise caused by
traffic. However, we still do not have any established way
to incorporate and formulate traffic management policies
out of diverse desires. As performance desires might also
vary depending on dynamic circumstances in the traffic
environment, we have a need for a procedure to formulate
suitable management policies and embed them in the traffic
management system.

There has been recent promising results that individual
junction control strategies can have a reasonable influence
in a network level [3]. As all the modern technology al-
lows individual signal controllers to be highly dynamic and
adaptive, in this paper we end up developing a framework for
policy-based optimisation of a traffic signal controller (TSC).

For any control system the transparency of the controller
logic is important for general acceptance [4]. When we
want to unite policies and traffic management, it is good
to notice that policy decisions come often from non-experts
of the traffic engineering field. This emphasises the need
to have understandable mapping between policies and their
respective controller inputs.

*The research leading to these results has received funding from Henry
Ford Foundation Finland (Henry Fordin Säätiö).

Schmöcker et al. [5] have experimented with policy-based
signal control optimisation by uniting three entities: Bellman-
Zadeh decision making [6] for policy setting, fuzzy logic
based signal controller and genetic algorithms. They use
the Bellman-Zadeh decision making (BmZ) as multi-criteria
evaluator of the traffic performance during the optimisation.
BmZ contains a user-defined mapping between a policy and
measurable variables representing it.

This paper is tackling the question of having a general
traffic signal control optimisation process that can adapt to
arbitrary traffic performance policies. For that, the paper
proposes an abstract framework, which could work as a
hardware independent methodology for policy-based traffic
signal control optimisation. To support the proposed method-
ology, we also construct an implementation of the abstract
framework and study its performance through simulations.
The implementation uses the ideas of policy optimisation
process in [5] to adjust control parameters of FUSICO
FUzzy SIgnal COntroller [7]. Our construction expands the
frame of [5] by considering policy adjustment procedure.
Thus, as a side product we introduce a policy-optimized
adaptive fuzzy logic signal controller for an isolated junction.
This controller will be optimised and evaluated by traffic
simulations using real traffic data collected from the Tasman-
Zanker intersection in San Jose, California, USA.

The content of the rest of this paper is as follows: Section
II is the walkthrough of the abstract framework. Section III is
about the implemented framework, which yields an example
of policy-based signal control optimisation system. Section
IV provides results of simulation experiments showing how
the implemented system performs, and finally we make
conclusions of this study in Section V.

II. ABSTRACT FRAMEWORK FOR TSC OPTIMISATION

Here we describe our proposal for methodological struc-
ture for policy-based traffic signal control optimisation. It
contains the principal structure behind many of the state-
of-art signal control optimisation processes discussed in
literature, but emphasises the existence of policies, which
is not present in many advanced systems. The abstract
framework does not exclude any particular paradigm of
how the signal controller behaves, nor imply any certain
optimisation method.

Fig. 1 presents our abstract framework: layers, acting
blocks within layers, and interactions between all of them.



Next we present the layers and explain their interactions. We
also discuss about the reasons to refer the presented parts
as abstract and useful for any signal control optimisation
system.

We identify three hierarchical loops of interaction in the
abstract framework. These loops have inner cyclic interac-
tions, and they interact also as a block of their surrounding
loop. The innermost one is Control loop, which handles the
experimenting of signal control parameters. Control loop acts
as a part of Optimisation loop, which seeks to optimise
the signal controller. The outermost is Policy loop, which
guides the operations of the Optimisation loop and defines
or re-defines policy mappings that are used in controller
optimisations.

This system sketch is designed more for offline optimi-
sation. The idea can still be utilised in online cases with
running parallel offline optimisation processes and update
the controller in action.

A. Control loop

The essence of the Control loop is the interaction between
the signal controller and the traffic. Traffic observations
summon requests for traffic control, and the signal controller
responses, which in order affects the traffic behaviour. Nowa-
days a suitable simulation software is a standard way to
experiment with the real case and practically every study
developing signal control optimisations present simulation
results in order to prove their concept to be plausible.

When the Control loop is simulated, the signal controller
can be part of the simulation system or external. A capability
for the simulator to work with external hardware enriches
the flexibility of the full system [8]. In order to truly see
the effects of the controller in variating traffic environments,
traffic should be microscopic [8]. With macroscopic traffic
rather simple scenarios can be evaluated and more advanced
signal controllers using detailed detections cannot even be
experimented with such traffic models. Also, in order to test
a TSC in a real environment, we have to model the junction,
its signal controller, and its traffic patterns in high precision,
so that we could make statements about functionality of some
proposed TSC. There are hardly any place one could test a
new control paradigm without a priori showing some positive
simulation results.

For the optimisation, the Control loop has to have an
ability to measure various key performance indicators that
might be used in evaluation of the controller or control policy
and give them as an output.

B. Optimisation loop

Structure of the Optimisation loop is based on the as-
sumption of learning the traffic behaviour and correcting
the parameters incrementally. This works very well with
controller paradigms that use artificial intelligence methods,
such as Q-learning, neural networks or fuzzy logic [9]. Even
though there are myriads of analytical models to obtain
optimal signal controller without traffic simulations, they
are not always so flexible with different policies, as their

formulation is designed for a certain measurement, many
of the time minimising the travel time or maximizing the
throughput. In addition they usually advance macroscopic
flow models, which makes them hard to adapt exceptional
situations. Their advantage is the predictive power of the
situation in the networks, but that still usually comes with
cost of non-practical online computability [10][11].

Loop contains the block which reforms the parameter
proposal. This is tested in Control loop after giving the
control parameters to the signal controller. Control loop
returns performance indicators that are used by a cost
evaluation block, which states the acceptance of the trial
parameters. This acceptance affects the further step taken
by the parameter optimisation block. Number of iterations
in the loop is dependent of a particular optimisation method.

C. Policy loop

The Policy loop of Fig. 1 is a top cycle, where policy
tuning block interacts with the full optimisation process.
The idea is that Optimisation loop system needs a certain
policy input to produce an outcome for any given policy.
Then these outcomes of different (simple) policies can be
used to reformulate more complicated policies and to find
balance between different policy criteria.

III. IMPLEMENTATION OF THE ABSTRACT FRAMEWORK

The abstract framework introduced in the previous section
allows much freedom in its implementation. In Fig. 2 the
blocks of Fig. 1 are substituted with suitable tools and
methods that are revised in this Section. The Control loop is
implemented with FUSICO software and the Optimisation
loop uses genetic algorithm (GA) with BmZ in the cost
function evaluation. Next we explain shortly these parts of
the implementation and a simple method for policy tuning.

A. FUSICO signal control and simulation software

FUSICO [7] is a signal group oriented signal controller
equipped with microscopic traffic simulation software. Signal
group oriented means that there is an order of which the
green phases should start, but the next green phase is always
allowed to start whenever there are no conflicting active
green phases. Extension of the green phase for individual
signal group can utilise conventional actuated logic or a
fuzzy logic extension module. When the latter is utilised, the
extension of the green phase after minimum green time uses
fuzzy inference. Length of the extension is given by fuzzy
rules that use the demand from the approaching direction
and the queue count from conflicting directions as inputs,
and gives the length of the next extension as an output. In
our case FUSICO fully covers the role of the Control Loop.

Parameters that will be optimised in the Optimisation Loop
are tested and evaluated in the FUSICO simulation system
in every round. In this implementation we only change the
membership functions of the fuzzy extension modules, and
take other signal controller parameters granted i.e. deter-
mined by other means. As fuzzy modules decide about
the extension of green phases, the change of membership
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Fig. 1. Abstract optimisation framework for generic traffic signal controller. A comprehensive process can be modelled by Control, Optimisation, and
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Fig. 2. Implementation of the blocks and interactions of the abstract optimisation framework for signal controller. This implementation is used in the
experiments of this paper.

functions has a major effect in phase changing dynamics.
Membership functions for all the fuzzy sets that are used in
FUSICO rulebase are found in [12].

FUSICO produces many applicable performance indicator
values for controller with a given set of parameters. These
are transformed into policy indicators and handed to the

Bellman-Zadeh decision making block to evaluate the pa-
rameter set (membership functions).

B. Genetic algorithm processing

The core part of a genetic algorithm is processed in this
block, which means the formulation of new solution gener-



ation based on the fitness values of the previous generation
of solutions. In our case a solution means a set of control
parameters, which in turn refers to the membership function
definitions used in the fuzzy inference of the green signal
phase extension of FUSICO.

It is well-known that there are multitude application
independent parameters in the genetic algorithm itself. In
the conceptual level it is not necessary to specify them:
they should be picked according to the complexity of the
target parameters of the manipulation and sensitivity of the
solutions and their performance. The parameters can even be
dynamic. There is a long tradition of techniques to identify
optimal parameters for GA itself e.g. [13]

Our implementation encodes the membership functions
into binary strings, where each binary string represents the
full set of membership functions representing 14 different
fuzzy sets used by FUSICO rulebase. Detailed description
of the encoding process can be found in [14]. The chosen
encoding assures that linguistical partial order relations be-
tween fuzzy sets of the system make sense even after genetic
manipulations are done inside this block. We conventionally
call each membership function encoding as a chromosome
during the GA loop process.

C. Bellman-Zadeh decision making

Bellman-Zadeh decision making (BmZ) evaluates the fit-
ness of control solutions during GA optimisation loop. This
means that it determines how supportive the FUSICO con-
troller with certain membership functions is with respect to
the pre-defined policy.

BmZ has two kinds of inputs, policy inputs and perfor-
mance inputs:

1) Policy input: A policy input is given directly by the
user or the policy tuning block. The policy input defines the
aim of the GA optimisation loop, i.e. it determines the fitness
function form for GA. The policy input is determined by two
threshold values for each performance criterion used in the
definition of a certain policy. The number of different criteria
is unlimited in theory.

2) Performance input: A performance input results from
the FUSICO simulation. It is a transformation of one or more
output metrics of FUSICO into values of same performance
criteria that are used to determine the optimisation policy.
For example, we will later use average delay of vehicles and
share of vehicles that has to stop as policy criteria.

Every chromosome of the GA loop process yields a
performance input from FUSICO. It is used together with
policy input thresholds to calculate the fitness value for the
corresponding set of membership functions. The interpreta-
tion of thresholds values is that they determine 1) desired,
and 2) tolerated value (denoted by yF and y0, respectively)
for performance criteria whose actualisations come in as per-
formance input. In Fig. 3 the connection between threshold
values and performance inputs is illustrated.

Next we present carefully the fitness evaluation of BmZ
block. BmZ first determines individual criterion values based
on results provided by FUSICO. For every x ∈ X , where

X is the set of chromosomes available, we define functions
yi : X → R, where yi(x) is the individual performance value
of criterion i. Then for every criterion i, we denote policy
input thresholds as y0i (tolerated) and yFi (desired).

We define a continuous function

Ci : R→ [0, 1]

to be such that Ci(y
0
i ) = 0 and Ci(y

F
i ) = 1 and that it

grows or decends linearly between the thershold values, and
is constant otherwise (see Fig. 3). We call Ci as the fitness
function of criterion i. We can now write a fitness formula
for a chromosome x and criterion i as

Ci(yi(x)) = max

{
0,min

{
1,

y0i − yi(x)

y0i − yFi

}}
. (1)

Finally, the total fitness function D : X → R defined as

D(x) = min{C1(y1(x)), . . . , Cn(yn(x))}, (2)

gives the fitness of chromosome x, where n is the number
of criteria used in definition of the optimisation policy.

These fitness values are assigned to the corresponding
chromosome and handed to the GA algorithm processing
block in order to formulate the next generation of chro-
mosomes. The point of BmZ is to balance between the
fitness function values of each criterion by maximising the
minimum of criterion fitness values. Hence, GA optimisation
tries to maximise D.

Anderson et al. [15] have investigated the suitability of
multi-objective GA to tweak multi-criteria fuzzy system
applied with signal control. They concluded the approach
to be appropriate. However, a normal multi-objective GA
optimisation produces a curve of solutions known as Pareto-
optimal front, and the final result has to be choosed by some
other means.

In our case BmZ allows the GA algorithm core to be
single-criterion as BmZ produces one single fitness value
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Fig. 3. Illustration of how fitness value function for individual performance
criterion is constructed by given threshold values. Blue line gives the fitness
function, and red dashed lines indicate threshold values given by policy.



based on given policy, which can still result from multiple
criteria. Therefore GA with fitness evaluation by BmZ aims
towards an unique point in the Pareto-front, which is gained
by finding a solution x that maximises the value of D(x).

D. Policy tuning

With one policy criterion it is fairly easy to set the
thresholds y0i and yFi based on desired outcome. Finding
a magnitude of feasible values can be obtained by running
some example simulations with arbitrary controller.

When creating multi-criteria policy in this system, one
needs thresholds for every criterion. First step in tuning is to
discover optimal values for single-criterion policies and at the
same time observing how they hinder the performance values
used by other criteria. The initial mixed experiment can be
formed by using optimal values as the desired thresholds,
and the most hindered values as tolerated.

Detailed tuning process demands several optimisation
rounds. After the initial round the process can be continued
e.g. by incremental changes to the thresholds in order to
change the balance point between the criteria.

IV. EXPERIMENTS AND RESULTS

A. Experimental scenario

Performance of the implemented optimisation framework
described earlier is evaluated in the real world simulation
scenario. We have the junction model of Tasman Drive and
Zanker Road from San Jose, California, USA. Detections of
approaching traffic were collected lane-by-lane from every
junction leg by microwave radars. Installation was part of
the project to investigate how to make traffic in the area
more efficient with the FUSICO controller.

For the experiments we defined three different policies
for BmZ block of the optimisation loop (GA process). Goal
of the optimisation for every policy was to find optimal
membership functions for fuzzy logic based green extension
of the TSC. Training rounds of the optimisation used all
the traffic between 6 – 22 of a representative weekday.
Results presented here are average performance metrics of
the traffic of four separate representative weekdays. More
detailed description of the scenario can be found in [14].

First, we have made simulation experiments with two sim-
ple policies. Level of Service (LoS) policy seeks to minimise
average delays caused by the intersection controller, where
as Environmental (Env) policy tries to minimise amount of
vehicles that has to stop during their journey through the
junction. Second, we introduce a simple way to implement
Mixed policy out of the two simple ones and compare its
results against the simple policy outcomes. This gives an
example of the Policy tuning block process.

Experiments aim to show that this implementation of
the abstract framework can improve a TSC performance
corresponding to the given policy. This in turn supports
our goal to see that the abstract framework introduced in
section II provides a prominent skeleton for a methodology to
optimise signal control performance under arbitrary policies.

Fig. 4. Average delay comparison with Tasman-Zanker field controller
(Vehicle actuated), default FUSICO controller and FUSICO optimised with
LoS policy. Result shows that controller can well adapt to LoS policy.

TABLE I
MIXED POLICY THRESHOLDS DERIVED FROM LOS AND ENV POLICY

RESULTS.

Threshold Value
Stops not acceptable 70.0 %

Stops fully acceptable 67.6 %
Delays not acceptable 25.4 s

Delays fully acceptable 20.7 s

B. Simulation results: single criterion policies

In order to show the performance of different optimisa-
tions, every resulting figure compares the optimised FUSICO
controller against the control program using ”default” mem-
bership functions, and against the vehicle actuated controller
logic of the Tasman-Zanker junction. Here default refers to
membership functions that were constructed for FUSICO in
earlier research projects [7].

In Fig. 4 LoS policy has been used in optimisation.
There is a clear improvement in average delays achieved
by optimisation compared to the other control options. Fig.
5 shows similarly how the FUSICO optimised with Env
policy lowers the share of vehicles stopping in the junction.
We can notice that the controller with default fuzzy logic
membership functions works better than the controller in
the field, and the optimisation process outputs have clearly
adapted both of the two policies.

C. Simulation results: Mixed policy

Following the process described in section III-D, we find
the initial BmZ criterion thresholds for a Mixed policy. With
these thresholds optimisation should result a compromise
between LoS and Env policies. The thresholds applied here
are given in Table I.

Fig. 6 shows how all the considered policies, LoS, Env and
Mixed perform in the same circumstances after the fuzzy
extension modules of the TSC are optimised according to



Fig. 5. Stopping share comparison with Tasman-Zanker field controller
(Vehicle actuated), default FUSICO controller and FUSICO optimised with
LoS policy. Result shows that the Env policy optimisation has an effect to
the controller performance.

Fig. 6. Mixed policy performance is compared with LoS and Env policies.
Bars on the left show average delays and bars on the right stopping share.

the respective policy. We see that our simply defined Mixed
policy manages to balance between the achievement gained
by single-criterion optimisations that clearly are competitive
between each other. Obviously, we could have some other
tailored way to define multi-criteria policies, which would
yield a different kind of balance.

V. CONCLUSIONS

This paper aimed to formulate general traffic signal con-
trol optimisation framework that would allow policy-based
thinking in determining any desired junction performance.
We introduced a proposal for an abstract framework to act
as a hardware-independent TSC optimisation methodology.
We also made an implementation of it, which was tested in
the real world based simulation scenario.

Results show that our example implementation of the
abstract framework can optimise a TSC accordingly to the
given policy definition. This gives evidence that the proposed
abstract framework could be generally valid methodology for
policy-based traffic signal control optimisation.

The abstract framework is a conceptual tool, and there
are myriads of ways to construct an implementation of it.
Those methods can be studied and developed independently.
Particularly a more systematic and reasonable way to make
policy tuning needs much further research. Also, the question
of translating possibly non-numerically introduced policies
into optimisation system is important from transparency
perspective (in the implementation of this paper that is, how
threshold values for BmZ are formulated and what metrics
are used).

We conclude that our proposal for abstract TSC opti-
misation framework is a promising opening to incorporate
policies more tightly into traffic management in the future.
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