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Abstract
The importance of green water (moisture from rain stored in soils) for global food and water
security is widely recognized, with process-based simulation models and field-level studies
demonstrating its role in supporting rainfed agriculture. Despite this evidence, the relationship
between green water anomalies and rainfed agriculture has not yet been investigated using
statistical models that identify a causal relationship between the variables. Here, we address this gap
and use disaggregated statistical regression (panel data analysis) at the 30 arc-min grid level to
study the response of observed yields (1982–2010) of four main crops (maize, rice, soybean and
wheat) to green water anomalies globally over rainfed areas. Dry green water anomalies (1 or 2
standard deviations below long-term average) decrease rainfed crop yields worldwide. This effect is
more pronounced for wheat and maize, whose yields decline by 12%–18% and 7%–12%
respectively. Globally, agricultural production benefits from wet green water anomalies. This effect
is intensified in arid climates and weakened in humid climates where, for wheat, soybean and rice,
periods of green water availability 2 standard deviations above long-term averages lead to declines
in crop yield. This confirms existing evidence that excess soil moisture is detrimental to crop yield.
These findings (1) advance our understanding of the impact of green water on rainfed food
production and (2) provide empirical evidence supporting arguments for better management of
local green water resources to reduce the impact of agricultural drought and waterlogging on
rainfed crop production and capture the yield increasing effects of positive green water anomalies.

1. Introduction

Agriculture is under significant pressure. At least 800
million people are chronically undernourished, pop-
ulation growth and changes in consumption patterns
are projected to increase global food demands, and
climate change is already affecting agricultural pro-
duction (FAO 2017). Against this backdrop, erad-
icating chronic food insecurity and malnutrition as
part of the Sustainable Development Goals andmeet-
ing global food demands requires various meas-
ures to sustainably secure food supplies, including

reduced food losses, diet change and yield gap clos-
ure (Kummu et al 2017).

Water resources are at the center of this food
security challenge and improved farm water man-
agement is an important part of closing yields gaps
(Jägermeyr et al 2016). Increased competition for
scarce surface and groundwater resources (known as
‘blue’ water) limits the potential to expand irrigation
(Strzepek and Boehlert 2010) and blue water deple-
tion could cause the conversion of agricultural pro-
duction from irrigated to rainfed (Elliott et al 2014).
Climate change, through increases in hydro-climatic
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variability and extremes, will also pose challenges to
agricultural production (Schmidhuber and Tubiello
2007, Porter et al 2014).

In this context, supporting rainfed agriculture
and understanding its vulnerabilities to hydro-
climatic variability are essential to ensure stability
of food supplies under climate change (Cooper et al
2008, Rockström and Falkenmark 2015). Given the
share of the world’s smallholder farmers who rely
on rainfed agriculture for their livelihoods, advan-
cing our understanding of its vulnerabilities is also
important to improve nutritional outcomes and live-
lihood opportunities for the rural poor (Rockström
et al 2010). In addition, more stable rainfed agricul-
tural production can reduce demand for irrigated
production and allow for a reduction of irrigation
water withdrawals, thus relieving pressures on scarce
‘blue’ water resources (Unver et al 2017).

Rainfed crop production depends on green
water, which is here defined as moisture from rain
stored in soils, following Rockström and Falkenmark
(2015). Since the landmark work of Falkenmark and
Rockström (Falkenmark and Rockstrom 2006), sev-
eral studies have called for improved green water
management—for instance through water harvesting
and conservation tillage practices—to increase food
security and improve rural livelihoods (Rockström
et al 2007, Rost et al 2009, Sposito 2013, Rockström
and Falkenmark 2015, Schyns et al 2019). So far, the
importance of greenwater for crop yield has primarily
been assessed using process-based simulation mod-
els, which dynamically reproduce processes affecting
crop yields, and agronomic field studies.

Process-based crop simulation models have been
applied to demonstrate that green water is the dom-
inant source of water used in food production (Rost
et al 2008, Rockström et al 2009a) and show that
green water contributes about 90% of all water con-
sumed by agriculture (Rost et al 2008, Liu et al 2009).
Crop simulation models have also been used to
assess the impacts of climate change and agricul-
tural technologies on rainfed agriculture (Kang et al
2009, Calzadilla et al 2013, Rosegrant et al 2014).
Siebert andDöll (2010) use a global crop watermodel
to assess the amount of green water embedded in
crop production, confirming the dominance of green
water in agricultural water use worldwide. The rela-
tionship between crop yield and green water has also
been studied in agronomic and field studies carried
out in different parts of the world; for instance, in
east and southern Africa (Rockström et al 2009b),
China (Zhang et al 2004) and Spain (Lampurlanes
et al 2016).

Despite this extensive body of work using process-
based cropmodels, there is a limited understanding of
the relationship between green water and crop yield
using statistical models that are equipped to identify
a causal relationship between the variables. While
process-based crop models allow for attributing yield

change to specific environmental factors, they are not
directly based on observational data so theymight not
fully reflect yield responses under real-world condi-
tions farmers face (Ortiz-Bobea et al 2019). Hence,
integrating findings from crop models with evid-
ence from statistical models can provide additional
insights on the impacts of hydroclimatic variables on
agriculture (i.e. they are complementary methods,
see Lobell and Asseng 2017, Leng and Hall 2020).
A number of studies have used statistical models
to show the effects of rainfall variability and other
hydroclimatic variables on agricultural production
(Lobell and Asseng 2017, Damania et al 2017, Zaveri
et al 2020). Ortiz-Bobea et al (2019) and Rigden et al
(2020) improve upon previous statistical characteriz-
ations of the yield-water relationship by highlighting
the critical role of soil moisture in explaining vari-
ation in US crop yields. In this paper, we provide,
to our knowledge, the first global-level estimate of
the sensitivity of rainfed crop yields to green water
anomalies (deviations from long-term average green
water availability) using statistical models. Compared
to rainfall, green water is a more precise indicator of
root-zone soil moisture available for uptake by plants
and is thus a better indicator of water directly avail-
able for plant growth and its impact on crop produc-
tion (Falkenmark 2013).

We use disaggregated statistical regression (panel
data analysis) analysis to assess how much of the
observed historical interannual variation in rainfed
crop yield is associated with green water anomalies.
This allows us to quantify where, and how strongly,
maize, rice, soybean and wheat yields respond to
green water anomalies. The findings shed light on
the relative importance of green water anomalies, and
thus green water management, on rainfed agricul-
tural production.

2. Data

2.1. Green water data
Following previous studies (Rockström et al 2009a,
Kummu et al 2014), we use model-based estimates
from the Lund-Potsdam-Jena managed Land model
(LPJmL) to quantify green water. The LPJmL model
was forced with the PGMFD (Princeton’s GlobalMet-
eorological Forcing Dataset) global reanalysis and
observation dataset (Sheffield et al 2006), and the
simulated green water data were accessed through the
Inter-Sectoral ImpactModel IntercomparisonProject
(ISI-MIP) portal. The process-based, dynamic global
vegetation and water balance model LPJmL simulates
green water consumption at a daily time step on a
global 0.5

◦ × 0.5
◦
grid (Bondeau et al 2007, Rost

et al 2008). LPJmL simulates green water consump-
tion over both rainfed and irrigated lands. On rain-
fed areas, all consumed water is green water by defin-
ition so that green water consumption equals green
water availability (Kummu et al 2014). On irrigated
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Figure 1. Global distribution of rainfed and non-rainfed maize, rice, soybean and wheat for the year 2000 based on data from
Portmann et al (2010) and Iizumi et al (2014b).

areas, the available green water is defined as total
evapotranspiration minus the evapotranspiration of
irrigation water (i.e. blue water). Thus, to isolate the
effects of greenwater availability on rainfed crop yield
and avoid taking into account the effects of irrigation
(blue water), irrigated areas are not considered in this
study (see section 2.2).

To study the effects of changes in green water on
rainfed crop yield, we define a green water anom-
aly using annual green water z-scores for each grid-
cell, calculated over the time period (1982–2010). A
dry (wet) green water anomaly in a given year occurs
if green water availability in that year is at least one
standard deviation lower (higher) than the long-term
mean for that cell. Agricultural greenwater consump-
tion refers to the water that is transpired or incorpor-
ated by the plant as well as the water that evaporates
directly from the soil or leaves. Hence, a waterlogging
situation can result in a positive green water anom-
aly due to increased availability of evaporative water.
Values of −1 and 1 standard deviations are used as
thresholds to define dry and wet anomalies respect-
ively. We also examine the impact of more extreme
dry and wet green water anomalies, defined using
thresholds of −2 and 2 standard deviations respect-
ively (i.e. an anomaly that is at least two standard
deviations lower or higher than the long-term mean
for that cell). Finally, we employ data on temperat-
ure at the grid level from Willmott and Matsuura
(2001). While we do not focus on the impacts of
temperature, we include it in the analysis in order to
obtain unbiased estimates of the effects of green water
anomalies as explained in section 3.

2.2. Rainfed crop yields
We use annual rasterized (0.5◦ × 0.5◦ grid) maize,
rice, soybean and wheat yield (ton per hectare)
data, GDHYv1.2, obtained from the Japanese Data
Integration & Analysis System for years 1982–2010
(Iizumi et al 2014b). The crop yield data used
here are based on country level agricultural stat-
istics, which are downscaled to grid cells utiliz-
ing satellite-based net primary productivity estim-
ates. This data set has already been used in sev-
eral studies about crop yield variability (Iizumi et al
2014a, Iizumi and Ramankutty 2016, Iizumi et al
2018). Since the green water data from LPJmL (sec-
tion 2.1) is mainly for a single growing season,
we use crop yield data for the major growing sea-
son for maize and rice. For wheat, we use data for
both spring and winter growing season, as they are
mostly grown in different places, while for soybean,
crop yield data is provided for a single growing
season only.

To isolate crop yield data in rainfed areas, we
mask the global crop yield data using information
about rainfed and irrigated harvested areas from
MIRCA2000 (Portmann et al 2010). To account for
temporal changes in irrigated areas, we scale the pro-
portion of irrigated harvested areas with inform-
ation about changes (relative to year 2000) in all
irrigated areas using Historical Irrigation Dataset
(HID) (Siebert et al 2015), assuming no significant
changes after year 2005, which is the last year of
the data set. If the extent of annual irrigated crop
specific harvested area was less than 10% of total
harvested area, we consider the raster cell to be

3
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Figure 2. Aridity classification based on data from Trabucco and Zomer (2019).

rainfed during that year. Figure 1 shows the resulting
rainfed cropland on a global 0.5◦ × 0.5◦ grid for
year 2000.

2.3. Aridity classification
We complement the crop yield and green water data
with information on aridity data of each gridcell.
This allows us to classify grid cells depending on
their aridity index and explore the sensitivity of crop
yield to green water anomalies under different aridity
conditions. To differentiate grid cells based on their
aridity, we use the Global Aridity Index and Poten-
tial Evapotranspiration Climate Database (Trabucco
and Zomer 2019). The aridity index represents the
ratio of mean annual precipitation over mean annual
potential evapotranspiration for the 1970–2000
period. We define three aridity classes, as shown in
figure 2.

3. Methods

We use panel data analysis (i.e. disaggregated statist-
ical regression) to understand howgreenwater anom-
alies impact rainfed crop yield of maize, rice, soybean
and wheat under arid, semi-arid and humidmoisture
regimes. Panel data analysis is a statistical method to
analyze the relationship between 2D data sets consist-
ing ofmultiple observations (time series data on rain-
fed crop yield and green water in this case) recorded
over the same sampling unit (grid cells in this case).
Panel data analysis has been widely used to study the
links between hydroclimatic variables and crop yields
(Schlenker et al 2006, Dell et al 2014, Fishman 2016,
Damania et al 2017, Blanc and Schlenker 2017, Zaveri
and Lobell 2019, Ortiz-Bobea et al 2019) and also

the impact of hydroclimatic variability on economic
growth (Barrios et al 2010, Brown et al 2011,Hall et al
2014, Sadoff et al 2015, Khan et al 2017, Gilmont et al
2018, Russ 2020, Damania et al 2020).

Our method relies on the fact that green water
anomalies (the independent variable) can be con-
sidered as exogenous with respect to crop yield (the
dependent variable). This holds because following
standard practice in the literature, the model includes
cell-fixed effects that account for unobserved, time-
invariant factors that are specific to each grid cell
such as soil type or other time- invariant geographic
and socio-economic characteristics. It also includes
time fixed effects to account for any common trends
such as economic or population growth. In cer-
tain specifications (see table S2 (available online at
https://stacks.iop.org/ERL/15/124030/mmedia)), it
also includes country-specific time trends to reflect
the substantial variation in technological progress
across countries as well as other country-level trends.
In this way, the estimation is based on random devi-
ations of green water from its long-termmean within
each grid cell, which facilitates causal inference. In
order to understand the impact of green water anom-
alies on crop yield, the analysis estimates a log-linear
model in which the outcome variable is the logarithm
of yield. We estimate the following equation:

log(Y)it = α1 + α2GW
−
it + α3GW

+
it +X ′

itλ + fc (t)

+ θi + γi + εit .
(1)

where log(Y)it is the log of rainfed crop yield in grid
cell i in year t,GW−

it (GW
+
it ) is a binary variable indic-

ating if green water was at least 1 standard deviation
below (above) the long-run mean in grid cell i and

4
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year t, fc (t) are country-specific time trends, θt are
the year fixed effects and γi are the grid cell fixed
effects and X ′

it is a vector of control variables which
includes log of population, and a quadratic term
for mean annual temperature (oC). εit represents the
stochastic error term that captures variation in crop
yield unexplained by the other factors in the equation.
In order to obtain unbiased estimates of the effects of
green water anomalies, we control for temperature.
This is important since temperature has been shown
to impact crop yield and the agricultural sector in
general (Schlenker et al 2006, Schlenker and Lobell
2010, Zaveri and Lobell 2019). For each coefficient we
estimate standard errors through the robust covari-
ancematrix estimation to account for heteroskedasti-
city, serial correlation and cross-sectional depend-
ence. To estimate the impact of extreme dry and wet
green water anomalies, we modify this setup slightly
so thatGW−

it (GW
+
it ) becomes a binary variable indic-

ating if green water was at least 2 standard deviation
below (above) the long-run mean in grid cell i and
year t. Summary statistics for these variables are given
in table S1.

4. Results and interpretation

We examine where and by how much green water
anomalies impact rainfed crop yields. At the global
level, we find that rainfed crop yields increase in
response to wet green water anomalies and decrease
with dry green water anomalies across the four crops
considered, as shown in figure 3. These effects are
statistically significant for both wet and dry anom-
alies and are robust to alternate specifications, mean-
ing that the significance of the impact andmagnitude
of the coefficient remains largely unchanged in the
specifications (see table S2). Wheat and maize show
the stronger sensitivity to both wet and dry anomalies
compared to rice and soybean. This provides empir-
ical evidence to support the arguments that green
water deficit (i.e. agricultural drought) damages rain-
fed agricultural production and food security glob-
ally, and that additional soil moisture enhances crop
yields (Rockström and Falkenmark 2015).

The effects of green water anomalies vary under
aridity conditions. For all four crops, the negative
effect of dry anomalies is weakened for the humid
areas and intensified for the semi-arid and arid areas,
as shown in figure 4 and table S3. Similarly, the effect
of wet anomalies is greater for the arid and semi-
arid areas. This suggests that additional green water
is beneficial to crop yields especially in arid regions,
which also explains the widespread use of supple-
mentary irrigation in these areas. For the humid
sample, we find a null or slightly positive effect of
1 standard deviation wet anomalies on crop yields
except for wheat that shows negative effect (figure 4).
When we examine extreme wet anomalies in humid
regions (2 standard deviations above long-runmean),

we find a negative effect on crop yields for wheat,
soybean and rice. At first, this result may seem
counterintuitive as increased soil moisture availabil-
ity, and thus water uptake by plants, is anticipated
to increase crop yield. However, excess soil moisture
can have negative direct and indirect effects on crop
growth in humid climates. Excess soil moisture (so a
wet greenwater anomaly) can be directly damaging to
crops because it creates anoxic conditions in soils, and
it can also have indirect effects, increasing the risk of
plant diseases and pests and delaying farmers’ plant-
ing and harvesting activities (Rosenzweig et al 2002).
These results are aligned with crop-specific findings
in the literature which we discuss next.

4.1. Maize
We find that dry green water anomalies have a statist-
ically significant negative (decreasing) effect on rain-
fed maize yields globally (figure 3). When we dis-
aggregate the results by aridity class (figure 4), we
find that the negative (decreasing) effects of dry
green water anomalies on maize yield are particularly
pronounced in arid and semi-arid regions (23%–
39% reduction in yields). Field studies from sev-
eral arid countries confirm our finding that rain-
fed maize yield in arid areas is highly sensitive to
below-average soil moisture levels (e.g. Rockström
et al 2009b). In semi-arid parts of China, simulation
studies demonstrate the impact of water shortage on
rainfed maize, highlight the increasing importance of
water as a limiting factor partly because of the shift
to longer-maturing maize varieties and agronomic
practices (e.g. plant density which increase water
demand) (Meng et al 2016). Finally, our finding that
dry green water anomalies negatively impact maize
yields in humid climates is in agreement with stat-
istical (Rigden et al 2020) and modelling (Andresen
et al 2001) analyses from Midwest USA and also,
Germany (statistical analysis from Peichl et al 2018),
which both fall within our humid climate category
(see figure 2).

4.2. Wheat
When green water is 1 standard deviation below the
long-runmean, rainfedwheat yield decreases globally
by 12%–15% (figure 3). This effect is larger in arid
and semi-arid areas (figure 4), in agreement with
Daryanto et al (2016)’s global synthesis, where wheat
sensitivity to drought in arid areas is found to be
greater than in humid areas. Given the low relative
humidity and high potential evapotranspiration in
arid areas, this finding is not surprising. As shown in
figure 4, wheat also shows the lowest sensitivity to dry
green water anomalies in humid areas across the four
crops considered. This could be in part attributed to
the differences in origin and traits between wheat and
the other crops, such asmaize.Whilemaize is thought
to originate fromhumid areas (VanHeerwaarden et al
2011), wheat originates from dry regions (Charmet
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Figure 3. Impact of green water anomalies on crop yield, regression coefficients for wet (top) and dry (bottom) green water
anomalies defined as 1 and 2 standard deviations (SD) above or below the long-run mean. Error bars represent 95% confidence
intervals.

2011), and could thus show lower sensitivity to
drought in humid regions (Daryanto et al 2016).

Globally, additional green water has a positive
effect on rainfed wheat yields, with a 1 standard devi-
ation wet anomaly increasing yield by 5% (figure 3).
This is line with evidence suggesting that higher yields
are obtained when wheat is irrigated (e.g. more than
double under certain conditions, Cao et al 2014) or
grown under soil moisture conservation practices
(e.g. mulching in no-till fields, Rahman et al 2005,
Guo et al 2019). However, the positive effect of excess
green water is reversed in humid countries especially

for extreme wet anomalies (2 standard deviations
above the long-term mean) which reduce yield by
7% (figure 4). In humid regions, this effect is larger
than the effect of droughts, suggesting that excess soil
moisture is a key factor explaining rainfed wheat yield
changes in areas such as the eastern USA and parts
of South America. This latter effect is in agreement
with other assessments of wheat sensitivity to hydro-
climatic shocks; for instance, Zampieri et al (2017)
using a statistical approach based on historical data
found that excess water availability negatively affects
wheat production in humid areas of the world.

6
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Figure 4. Impact of green water anomalies on yields by crop and aridity class, regression coefficients for wet (top) and dry
(bottom) green water anomalies defined as 1 and 2 standard deviations (SD) above or below the long-run mean. Error bars
represent 95% confidence intervals.

4.3. Soybean
At the global level, soybean is sensitive to green water
anomalies (figure 3). This confirms evidence from
agronomic studies (Foroud et al 1993, Wijewardana
et al 2018) and also crop models (e.g. Bhatia et al
2008) showing that soil moisture is a major factor
limiting yield of rainfed soybean. Globally, a dry
green water anomaly leads to soybean yield reduc-
tions between 6% to 12%, depending on the size of
the anomaly. This confirms other statistical assess-
ments of the effects of drought on observed soybean
yields (e.g. Troy et al 2015, Leng et al 2016, Zipper
et al 2016).

Additional soil moisture boosts rainfed soy-
bean yields, as also suggested by field stud-
ies (Dass and Bhattacharyya 2017). However, in
humid areas, when excess soil moisture is 2 stand-
ard deviations higher than the long-term aver-
age, yields show a modest (−1%) decrease. This
confirms soybean sensitivity to water-logging,
and can be explained by considering the dir-
ect and indirect effects of excess soil mois-
ture on crop growth and farmers’ decisions
(e.g. delaying farmers’ planting and harvesting
activities) (Rosenzweig et al 2002, Rhine et al
2010).

7
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4.4. Rice
Globally, rice shows the lowest sensitivity to green
water anomalies among the four crops considered
(figure 3). For both dry and wet anomalies in soil
moisture, the magnitude of the effect on rainfed rice
yield is similar, at about 2%. However, the magnitude
of this effect increases sizably when we disaggregate
the results by aridity (figure 4). In arid and semi-
arid areas, agricultural drought reduces rice yields by
5%–23%, under a 1 and 2 standard deviation anom-
aly, respectively. This is not surprising because under
rainfed conditions in arid and semi-arid climates (e.g.
some parts of Nigeria and China for example) rice
fields are intermittently flooded depending on water
availability (Steduto et al 2012), making rainfed rice
yield particularly sensitive to water deficit (Lilley and
Fukai 1994, Pandey et al 2000). We also find that low
soil moisture leads to declines in rainfed rice yields
in humid areas, in agreement with findings from
humid countries (e.g. observed data from Philippines
in Stuecker et al 2018).

Unlike the other cereals considered in this study,
rice grows well in paddy fields and is known to be tol-
erant to excess water. We find that moderate excess
water (positive 1 standard deviation anomaly) has a
positive effect on rainfed rice yields under all arid-
ity conditions (figure 4). This positive effect is also
observed for the 2 standard deviation positive anom-
aly, apart for humid areas, where it becomes negative.
This suggests that, despite having tolerance for excess
water, rainfed rice is still sensitive to excess green
water in humid areas (i.e. severe waterlogging asso-
ciated with floods). Potential mechanisms to explain
this result include elongation growth during flash
floodingwhich competes withmaintenance processes
requiring carbohydrates and energy, thus negatively
affecting plant growth and survival (Ram et al 2002).

5. Discussion and conclusions

This study presents the first global statistical analysis
of the effects of green water anomalies on observed
crop yields for fourmajor crops. The results show that
dry green water anomalies (soil moisture deficit) have
a statistically significant negative (decreasing) effect
on rainfed crop yields globally. This effect is larger
than that of wet green water anomalies, which glob-
ally have a positive (increasing) effect on yields. The
analysis demonstrates the greater sensitivity of certain
crops to green water variability, with wheat andmaize
showing the greatest sensitivity to dry green water
anomalies and wet green water anomalies compared
to soybean and rice. Excess soil moisture has a negat-
ive impact on rainfed wheat and soybean crop yields,
highlighting the importance for research to focus not
just on green water impacts under droughts but also
under extreme wet conditions.

As all statistical assessments of the effects of
hydroclimatic variables on crop production (e.g.
Vogel et al 2019), our results hinge upon our data
and methodological choices. The temporal resol-
ution for the crop yield and green water data is
growing season, which may be too low to model
specific green water and crop growth relationships.
This means that we are unable to understand if green
water anomalies are only important during particu-
lar phases of the plant’s growing season. We did not
explore the sensitivity of crop yields to green water
anomalies for specific stages of crop growth and for
different crop growth processes, which are known
to be important factors in determining crop yield
responses (Siebert et al 2017a). To address these limit-
ations, future research should seek to complement the
empirical results presented in this study with process-
based crop model simulations to differentiate among
drivers (e.g. Heino et al 2018) and also test the effects
of improved green water management practices and
adoption of technologies on reducing crop yield fluc-
tuations (e.g. Frieler et al 2017, Siebert et al 2017b).
Advancing this understanding is a key to support
efforts aimed at improving food security and incomes
of the millions of people living in rainfed areas.

Our findings provide empirical evidence to
support arguments that green water manage-
ment is important for global food production and
can enhance agricultural resilience to dry spells
(Rockström and Falkenmark 2015). Measures to
retain more water in soils (e.g. use of cover crops,
no-till systems, soil water management practices such
as terraces), thus artificially augmenting green water,
would contribute to making rainfed crop produc-
tion more stable in the face of green water deficit and
agricultural drought (Basche et al 2016, Lampurlanes
et al 2016, Kosmowski 2018). Despite the positive
effects of these measures on yields (Rockström and
Falkenmark 2015), their benefits often depend on a
host of other factors and other measures such as crop
rotation, residue retention, and aridity (Pittelkow
et al 2015), which have to be considered when pro-
moting green water management practices.
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