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ABSTRACT

Acetylation is a chemical treatment method commonly used to improve the

hygroscopic properties of wood. Although acetylation has been industrially

used for decades, its effects on the different hierarchical structures of wood are

still poorly understood. In the laboratory, acetylation is generally measured

gravimetrically. Weighing a sample before and after the modification procedure

provides an indirect measure of the degree of acetylation within the entire

sample but does not provide detailed information on the different structural

regions of wood. Here, we determined acetylation of wood surfaces using

hyperspectral near-infrared image regression. Our results show significant dif-

ferences in the acetylation of earlywood and latewood, which suggests different

durations for complete acetylation of earlywood and latewood cells. We have

also illustrated our findings on the wood cell level based on the chemical dif-

ferences in earlywood and latewood cell walls using cluster analysis of Raman

images. These findings are an important step in understanding how chemical

treatment affects the different hierarchical structures of wood on different

spatial scales.
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GRAPHICAL ABSTRACT

Introduction

Wood structure, which is made up of cellulose fibrils

embedded in a matrix of hemicelluloses and lignin,

provides a high strength to weight ratio but makes

wood vulnerable to hygroscopic changes and

dimensional instability. These weaknesses can be

compensated by various chemical and thermal

treatments routinely used to improve wood proper-

ties for different applications. One alternative is

wood acetylation, where acetic anhydride is used for

replacing accessible hydroxyl groups (–OH) on wood

polymers with acetyl groups (–CH3CO) generating

acetic acid as a by-product [1]. Acetylation decreases

the number of primary sorption sites for water

molecules and limits the accessibility of unmodified

hydroxyls due to the larger size of the acetyl groups

[2, 3]. The degree of wood acetylation is generally

measured gravimetrically by weighing a sample

before and after the modification procedure. The

obtained weight percent gain (WPG) provides an

indirect measure of acetylation of the entire sample

and is highly correlated with the improvement in

wood properties [4, 5]. However, the WPG alone does

not provide information on the potential variations in

acetylation degree within the bulk sample. Although

acetylation has been industrially used for decades,

the distributions of acetyl groups within wood still

remain poorly understood.

Chemical imaging provides tools to combine the

spatial information of an image with the chemical

information of a spectrum. Different spectroscopic

techniques can be used for acquiring spectral infor-

mation from a range of spectral variables either from

a single pixel, a line of pixels or an entire image scene

at a time. Hyperspectral near-infrared (NIR) imaging

records diffuse reflectance or transmittance on a

continuous range of several hundred different

wavelengths in the NIR region of the electromagnetic

spectrum [6]. The NIR region provides information

on the overtones and combinations of the vibrational

modes of polar molecular bonds making it extremely

well-suited for analyzing lignocellulosic materials
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and their derivates. Modern push broom instruments

are fast and can be used with minimal sample

preparation due to the lower absorptivity of the

overtones and combinations of fundamental vibra-

tional modes from the mid-infrared [7]. However,

many of these peaks in NIR spectra overlap and

multivariate image analysis based on chemometric

techniques is generally required to identify the spa-

tial variation in the chemical properties of a sample.

Raman microspectroscopy, on the other hand, oper-

ates by mapping Raman spectra generated by the

inelastic scattering of monochromatic light from a

preselected region on the sample surface one pixel at

a time. The theoretical maximum resolution is

determined by wavelength of the excitation laser and

the numerical aperture of the microscopy objective

[8]. Although the spatial resolution achieved in

practical applications is often below the theoretical

maximum, resolutions in the range of micrometers

can easily be achieved [9]. The majority of chemo-

metric techniques for spectral image interpretation

are based on dimensionality reduction using latent

variables and enable visualizing the important vari-

ations in an image dataset in just a few inter-

pretable dimensions. The use of latent variables can

also enhance selectivity by taking into account

information of a specific analyte from multiple dif-

ferent wavelengths and avoids problems of multi-

collinearity in calibration and regression if the

number of spectral variables exceeds the number of

available samples or objects.

Chemical imaging is a promising tool for deter-

mining the chemical properties of wood. Hyper-

spectral NIR images have previously been used for

evaluating the chemical composition of wood [10, 11],

identifying different wood species [12], predicting

wood moisture content and physical properties

[13, 14], and visualizing the level of wood extractives

[15]. The use of NIR images has also been reported in

predicting vapor-phase acetylation of wood [16]. The

authors recorded NIR images within 1050–2550 nm

and obtained coefficients of determination in the

range 0.89–0.90 for predicting the concentration of

acetyl groups on wood surfaces. However, although

the authors were able to visualize the spatial varia-

tion in the concentration of acetyl groups indepen-

dent of wood moisture content, the results were

based on a multiple linear regression model on sec-

ond derivative absorbance values at 1727 nm [16].

Raman microspectroscopy has also been extensively

utilized in studying wood chemistry, with typical

applications involving the visualization of cellulose

and lignin distributions on a cellular and subcellular

level in different types of natural and treated samples

[9, 17]. Raman images have also been used to study

the distributions of wood extractives [18] and various

wood modification agents [19–21].

We have recently shown that hyperspectral NIR

imaging and image regression can successfully

determine the penetration of acetic anhydride into

the wood structure after wood acetylation [22]. Our

method was based on calibrating NIR images with

external WPG values measured from dried samples

after confined one-sided acetylation of solid wood.

Now we extend this work by evaluating the spatial

differences on wood surfaces after unconfined

acetylation followed by wood conditioning under

different relative humidities. This approach enables

visualizing the acetylation-induced changes on wood

surfaces practically independent of equilibrium

moisture content. We also show how the most

important wavelengths that correspond with wood

Figure 1 a An illustration of the experimental design, b an image

of similar wood samples under illumination of the NIR camera,

c and grayscale images of a sample (darker gray) and the selected

region of interest, ROI (lighter gray). The values in c denote image

pixel dimensions.
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acetylation can be systematically determined by

selecting subsets of spectral variables based on

interval regression. The results show that consider-

ably higher WPG values were found in the early-

wood parts of wood surfaces. As the spatial

resolution of most hyperspectral NIR cameras is

limited to the macrostructural level, we have also

illustrated the differences in earlywood and latewood

acetylation on the cellular level using unsupervised

classification of microscopic Raman images.

Experimental section

Sample preparation

Defect-free samples of dimensions 15 9 15 9 15 mm3

were cut from kiln-dried Scots pine (Pinus sylvestris

L.) sapwood and prepared according to an experi-

mental design, where acetylation and sample condi-

tioning were varied on different levels. The initial

central composite design included three levels for

both variables, which resulted in WPG values in the

range 0–18% and sample moisture contents of 0–29%,

Fig. 1a. Additional calibration and validation sam-

ples were also prepared inside the design range.

These samples were not evenly distributed within the

design but provided additional variable levels for

image calibration. All samples were prepared in

duplicate or triplicate, which provided a total of 36

imaging samples distributed across 13 experimental

locations.

The samples were first extracted in a Soxhlet

apparatus with acetone for 6 h and then oven dried at

103 �C to determine their initial mass. The acetylation

was performed using neat acetic anhydride. The

samples were first impregnated with the anhydride

under vacuum at room temperature and then trans-

ferred to a reaction flask, where they were treated

with the acetic anhydride for 0, 20, 100, 180 or

360 min at 120 �C under reflux for adjusting acety-

lation degree. At the end of the treatment, the reac-

tion flask was transferred onto ice to stop the reaction

and the anhydride was replaced with acetone. The

acetylated samples were again Soxhlet extracted with

acetone for 6 h to remove leftover anhydride and

reaction by-products and then oven dried at 103 �C to

determine their modified mass and the WPG.

The acetylated samples were then conditioned in

different relative humidities for determining the

effects of acetylation on sample moisture content.

Silica gel, salt solutions of calcium chloride, potas-

sium iodide, potassium chloride or pure water were

used as reagents for generating relative humidities 0,

33, 70, 85 and[ 97%, respectively [23–25]. The

acetylated samples were placed on sample holders

above the reagents in plastic containers, which were

sealed and stored in room temperature 20 �C for

approximately 4 weeks.

Hyperspectral NIR imaging

The hyperspectral NIR images were taken from the

sawn, transverse surfaces directly after the wood

samples had been acetylated and conditioned in dif-

ferent RHs. The imaging setup has been previously

been described in ref. [26] and consisted of a Specim

SWIR 3 camera (Specim, Spectral Imaging Ltd.)

equipped with a 105 mm OLES macro lens provided

by Specim. As illustrated in Fig. 1b, two opposite

rows of quartz halogen lamps generated polychro-

matic light and the reflected wavelengths were sep-

arated by a grating-prism monochromator followed

by a HgCdTe detector array. The images were taken

in line-scanning mode where a line of 384 pixels was

continuously recorded on different wavelengths. A

spectral range of 1000–2500 nm was used with a

sampling interval of 5.6 nm, which provided 267

spectral variables. The lens field of view was 10 mm

which resulted in a nominal pixel size of 26 9 26 lm2

[26]. The images were taken in reflectance mode and

converted to absorbance units after correction with

Spectralon white reference and dark current intensi-

ties. After imaging, the samples were placed back

into the sample containers and weighed after all the

samples had been imaged.

Raman microspectroscopy

Raman images were obtained from earlywood and

latewood sections in a sample with 8.9% WPG and

9.2% moisture content located in the center of the

experimental design (Fig. 1a). A cross section with a

thickness of approx. 20 lm was cut from a water-

saturated block on a sledge microtome (Lab-Micro-

tome, Swiss Federal Research Institute WSL). The

cross section was then placed on a microscope slide

with a drop of deionized water, covered with a glass

coverslip and edge-sealed with nail polish. The

Raman images were acquired using a WITec alpha
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300 RA Raman microscope equipped with a 532 nm

frequency-doubled Nd:YAG laser operated at 30

mW, a 100 9 immersion oil objective with a numer-

ical aperture 1.25, and a DU970-BV EMCCD camera

behind a 600 lines mm-1 grating. The image size was

50 9 50 lm2 with 180 lines per image and 180 points

per line. The integration time was set to 0.3 s for

collecting a Raman spectrum in each image pixel.

Separate images were acquired from earlywood and

latewood cells within the same cross section.

Image and data analysis

The obtained NIR images were interpreted using

exploratory image analysis and hyperspectral image

regression. As illustrated in Fig. 1c, square regions of

interest (ROIs) of 384 9 384 pixels were selected from

the middle of each sample image and median filtered

to remove the effects of dead pixels in the camera

detector. One sample ROI from each experimental

design location was selected and combined into a

mosaic of 9 sample ROIs. The mosaic was decom-

posed using a principal component analysis (PCA)

[27, 28] model after the pixel spectra had been pre-

processed with standard normal variate (SNV) [29]

correction and mean centering and unfolded into a

two-way array, Eq. (1):

X ¼ t1p
T
1 þ . . .þ tnp

T
n þ En ð1Þ

where X denoted an unfolded matrix of prepro-

cessed and mean-centered pixel spectra, t and p the

orthogonal score and orthonormal loading vectors,

respectively, and En a residual matrix after n princi-

pal components. The principal component score

vectors t were then refolded back to the mosaic

dimension to illustrate the results through score

images.

Image calibration was performed using partial

least squares (PLS) regression [30, 31] on measured

WPG values. The model vector b in the general

regression equation, Eq. (2):

y ¼ Zbþ e ð2Þ

where y denoted a vector of measured and mean-

centered WPG values, Z a matrix of SNV transformed

and mean-centered calibration spectra, and e a vector

of model residuals, was determined using the

SIMPLS algorithm [32]. The image ROIs were divided

into separate calibration and test sets that represented

the entire experimental design range and six average

spectra were obtained from each sample ROI for

calibration and validation. Root-mean-squared errors

(RMSE) of calibration (RMSEC) and prediction of the

test set (RMSEP) were calculated based on Eq. (3):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j yj � ŷj

� �2

n

v

u

u

t

ð3Þ

where yj and ŷj denoted the measured and pre-

dicted values, respectively, and n the number of

calibration or test objects. In addition, a separate

RMSEP parameter was determined based on the

pixel populations of the test set ROIs to evaluate

image over-fitting [33], Eq. (4):

RMSEPim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk
i

Pm
p ypi � ŷpi

� �2

km

v

u

u

t

ð4Þ

where ypi and ŷpi denoted the measured sample and

predicted pixel values, respectively, and m the

number of image pixels in k test set images.

The measured Raman images were interpreted

using PCA and PCA-based pixel cluster analysis after

the earlywood and latewood images were combined

into an image mosaic. Wavelengths outside 500–

3500 cm-1 were excluded to remove unnecessary

noise, and the pixel spectra were preprocessed by

baseline removal using a second-order polynomial

followed by normalization to unit length to correct

for intensity differences between the two images.

Random spikes were removed with a median filter

applied in the image dimension. Principal component

scores and loadings were determined as in Eq. (1)

after preprocessing, mean-centering and mosaic

unfolding. The obtained PCA scores were used for

pixel clustering based on a k-means algorithm that

determined similarities between individual pixels

and the cluster centroids based on correlation (cij) in

the principal component score space, Eq. (5):

cij ¼ ti � tj ¼ tij j tj
�

�

�

�cosh ð5Þ

where ti and tj denote the score vectors of pixels i and

j normalized to unit length after n retained principal

components (Eq. 1). As illustrated in Eq. (5), for

vectors which are unit length, correlation described

the angle and not the distance between the deter-

mined pixel scores in principal component space. A

given number of cluster centroids was initially cho-

sen based on largest distances from the center of the

score space and updated upon the assignment of each
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pixel. All data analyses were performed with in-

house Matlab� (Version 2018b, The MathWorks, Inc.)

routines that utilized commercial functions from the

PLS (Version 8.7) and MIA toolboxes (Version 3.0.7)

from Eigenvector Research, Inc. The initial NIR image

segmentation was done in Breeze (Version 2019.02,

Prediktera AB), and the final results were plotted in

OriginPro (Version 9.6.0.172, OriginLab Corp.).

Results

We acetylated and then conditioned wood samples in

different relative humidities based on an experi-

mental to also determine the effects of acetylation and

WPG on moisture uptake based on hyperspectral

NIR images. The determined PCA model showed

that the effects of acetylation and sample condition-

ing were clearly visible in the NIR image mosaic. The

first three principal components explained 96% of the

variation in the preprocessed and mean-centered

spectra and provided a meaningful chemical inter-

pretation for the differences within the mosaic. The

first principal component explained 79% of data

variation and mainly separated the samples based on

relative humidity during conditioning. As illustrated

in Fig. 2, samples conditioned under higher relative

humidity showed an increase in the pixel score

values. In general, positive scores in PCA are asso-

ciated with increased absorbance on positive load-

ings, which indicated that sample conditioning

increased absorbance at approximately 1410 and

1930 nm based on the loading vector. These are the

main NIR peaks for water-related vibrational modes

and are generated by the first overtone of the O–H

stretching vibration generally detected at 1414 nm

and the O–H stretching vibration and O–H defor-

mation vibration from H2O itself within

1916–1942 nm [34]. The first score image also sug-

gested that the acetylated samples had lower final

moisture contents as the score values within a specific

relative humidity decreased towards increasing

acetylation degree. It should be noted that small

deviations from NIR peaks reported in the literature

are normal in hyperspectral image analysis due to the

comparatively lower spectral resolution of imaging

spectrographs.

The second and third principal components each

explained 8–9% of the remaining data variation and

illustrated the effects of wood acetylation within the

mosaic. Especially, the earlywood parts of the sample

surfaces showed significant changes with acetylation

(Fig. 2). The second principal component represented

a combination of acetylation and sample conditioning

based on the score image. The negative loading peak

identified at approximately 1150 nm most likely

Figure 2 Score images and the respective loading vectors of the first three principal components based on the NIR image mosaic. The

color scales denote pixel score values.
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corresponded with the second overtone of the C-H

stretching vibration of methyl groups and aromatic

moieties in lignin or methyl groups of acetyl esters in

hemicelluloses generally seen at 1143 and 1157 nm,

respectively [34]. The second overtone of the C=O

stretching vibration in hemicellulose is generally seen

at 1910 nm [34], which suggested an increase in

acetyl groups with negative pixel scores. The differ-

ences across the sample scores also highly resembled

the first score image, which further illustrated the

correlation between acetylation and sample moisture

content. The second acetylation peak at circa 2260 nm

was likely caused by O–H and C-O stretching

vibrations of acetyl groups generally seen in acety-

lated wood at 2255 nm [34].

The third principal component provided the

clearest distinction in acetylation based on the

mosaic. A clear trend in the pixel scores was seen

towards the direction of increasing sample acetyla-

tion. The positive loading peaks at approximately

1160, 1680, 1720, 1900 and 2255 nm were consistent

with an increase in the methyl groups of acetyl esters

in hemicelluloses (reported at 1157 and 1175 nm),

acetyl groups in acetylated wood based on the first

overtone of C-H stretching vibration (1681 and

1721 nm), carbonyl groups in hemicelluloses based

on the second overtone of the C=O stretching vibra-

tion (1907 and 1910 nm), and acetyl groups in

acetylated wood based on O–H and C–H stretching

vibrations (2255 nm) [34]. The remaining broader

loading peak at circa 1410 nm was likely a

combination of two separate peaks. The first overtone

of O–H stretching vibrations from phenolic hydroxyl

groups or wood lignin is generally seen at 1410 nm

[34], of which the latter was in line with the general

increase in lignin in earlywood compared with late-

wood [35]. The peak also showed a clear shoulder on

the left at approximately 1350 nm, which suggested

an increase in the first overtone of C–H stretching

vibrations and C–H deformation vibrations from

acetylated wood components (1350 nm) [34].

After PCA, we divided the 36 sample images into

separate calibration and prediction sets with 23 and

13 objects, respectively. Six average spectra were then

extracted from each sample image, and calibration

models were determined for gravimetrically mea-

sured WPG values based on SNV transformed and

mean-centered calibration spectra. The effects of

spectral preprocessing on the extracted calibration

spectra are illustrated in Fig. S.1 (Supplementary

material). Average prediction errors based on model

calibration (RMSEC), prediction of the test set

(RMSEP), and prediction of the test set image pixels

(RMSEPim) were then used for determining the cor-

rect number of latent variables for the PLS calibration

model. As illustrated in Fig. 3a, no clear shoulders

were observed in the determined diagnostics as

RMSEC and RMSEP monotonically decreased as

more model components were used. Even RMSEPim

did not clearly suggest a correct number of latent

variables through increasing prediction errors based

Figure 3 a Calibration and

prediction errors as a function

of PLS latent variables,

b minimum average test set

prediction errors on five latent

variables based on iPLS,

c calibration and prediction

errors with 9 intervals based

on iPLS, d measured and

predicted WPG values of the

calibration and test sets with

three latent variables and 9

intervals based on iPLS, and

e the PLS model vector with

three latent variables and 9

intervals based on iPLS.
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on the test set image pixels that would have indicated

potential model overfitting [33].

However, we initially used the entire wavelength

range within 1000–2500 nm and not all wavelengths

are necessarily equally important for a spectral cali-

bration model. Thus, the best combination of spectral

variables for predicting WPG and minimizing

RMSEP was determined based on interval PLS (iPLS)

[36]. One variable (1005 nm) was first omitted and

the wavelength range was divided into 14 equal

intervals, which each consisted of 19 spectral vari-

ables. All possible combinations of using 1–14

wavelength intervals were then applied for model

calibration and determining RMSEP based on five

latent variables. Five latent variables were initially

chosen based on RMSEPim, which indicated that

adding more model components did not provide

significant improvement in model performance

(Fig. 3a). A total of 16,383 calibration models were

determined, and the combinations with the lowest

average test set prediction errors values are illus-

trated in Fig. 3b.

Based on the iPLS results, using 9 out of the orig-

inal 14 intervals provided the lowest average pre-

diction errors on five latent variables and decreased

RMSEP from 0.87 to 0.49% WPG (Fig. 3b). As shown

in Figs. 3c, using these 9 intervals also provided a

clearer indication of the correct number of latent

variables based on RMSEPim which suggested that

using four or more model components increased

prediction errors based on the pixel populations of

the test images. Three latent variables provided the

lowest RMSEPim and led to satisfactory prediction of

the calibration and test sets with average prediction

errors of 0.75% and 0.91% WPG based on extracted

mean spectra, respectively (Fig. 3d). The final model

vector illustrated in Fig. 3e also included the main

peaks affected by sample acetylation as was earlier

indicated by the third principal component during

the interpretation of the NIR sample mosaic.

The calibration model on three latent variables was

then used for predicting the WPG values of the test

images and examples are illustrated in Fig. 4. Clear

differences were visible in the predicted WPG values

of the earlywood and latewood regions of the wood

surfaces especially with the samples that were situ-

ated in the center of the experimental design

(Fig. 4b). The results indicated that the earlywood

regions had significantly higher WPG values and had

thus been more severely acetylated than the latewood

regions of the wood surface. These earlywood and

latewood differences were also clearly visible in the

pixel histogram, which suggested that the WPG val-

ues of the individual pixels could be described with

two different distributions (Fig. 4b). The differences

were less pronounced but still visible in the heavily

acetylated samples (Fig. 4c).

The spatial resolution in hyperspectral NIR imag-

ing is commonly limited to the macrostructure level,

which enables separating the earlywood and late-

wood parts of the wood surface but does not allow

determining chemical differences on the cell level.

Figure 4 Predicted weight

percent gains (WPG, %) of the

test images (above) and the

respective pixel histograms

(below) for a a non-acetylated

sample, b an acetylated

sample from the center of the

design, and c a heavily

acetylated sample. The red

vertical lines in the histograms

denote gravimetrically

measured WPG values and the

blue lines the respective model

predictions expressed as an

average of the pixel

populations.
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For determining cell level differences between ear-

lywood and latewood acetylation, we recorded

Raman images of wood cells separated from different

wood sections from the sample illustrated in Fig. 4b.

The Raman images were combined into a mosaic and

preprocessed using baseline removal, normalization

and median filtering. Pixels corresponding to cell

lumens were then removed, and the remaining

mosaic was then decomposed using PCA. The first

four principal components shown in Fig. 5 explained

91% of data variation and the first, third and fourth

components provided a meaningful interpretation of

the chemical differences within the earlywood and

latewood cell walls. The second principal component

mainly represented measurement uncertainties and a

loss of focus due to differences in sample height on

the focal plane. After four principal components, the

noise in the loadings also increased significantly.

The first component explained 61% of data varia-

tion within the Raman mosaic and separated the

image pixels into areas of high lignin and high car-

bohydrate contents. As illustrated in Fig. 5, these

areas showed increasing intensities from the aromatic

ring stretch band at 1600 cm-1 and the carbohydrate

C–H stretch at 2880 cm-1 [37], respectively. The

Figure 5 Score images and

respective loading vectors of

the first four principal

components based on the

Raman mosaic showing

earlywood (left) and latewood

(right) cells. The color scales

denote pixel score values.

Figure 6 Class image of earlywood and latewood cells based on

k-means clustering of principal component scores determined

based on the Raman image mosaic.
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effects of wood acetylation appeared primarily in the

third principal component, which explained 9% of

data variation. The score images showed positive

score values in the cell walls and the middle lamellae

in earlywood, whereas in latewood positive scores

were only seen in the inner cell wall layers. The

loading vector showed corresponding positive bands

at 2940 cm-1 and 1660 cm-1 due to the C–H stretch of

O–CH3 groups and the C=O of acetyl groups previ-

ously observed in the Raman spectra of acetylated

lignin [37]. The loading also includes a positive band

at 1725 cm-1, which was likely due to the carbonyl

stretching of acetyl groups previously reported for

acetylated lignin and wood [37, 38]. The fourth

component explained 5% of the remaining data

variation and mainly illustrated the outer layers of

the cell walls based on a strong contribution from the

orientation sensitive cellulose band at 1090 cm-1 [39].

The score values of the first, third and fourth

principal components were then used for unsuper-

vised classification of the mosaic pixels. The classifi-

cation was based on a k-means clustering algorithm

which evaluated similarity based on correlation in

principal component space. A given number of

cluster centroids was initially chosen, and the final

number of clusters were determined based on aver-

age correlation between the pixels and the cluster

centroids. We finally used five clusters with an

average correlation of 0.91 as using six or more pro-

vided only minute improvements in average corre-

lation (Fig. S.2) and did not enhance interpretation of

the results. The obtained class image is illustrated in

Fig. 6. Average mean-centered spectra of the corre-

sponding classes are given in Fig. S.3 for brevity.

As illustrated by the results, the effects of acetyla-

tion were associated with classes 2 and 4 which

represented earlywood cell walls and middle lamel-

lae (Fig. 6). The average spectrum of class 2 showed a

negative band of the carbohydrate C-H stretch region

at 2890 cm-1 (Fig. S.3). The class 4 spectrum featured

a positive band at 2890 cm-1 and negative bands at

the aromatic ring stretch region at approximately

1600 cm-1. The average spectra of both classes also

showed positive acetylation marker bands at

approximately 2940 and 1720 cm-1 which indicated

that classes 2 and 4 represented acetylated low and

high carbohydrate regions, respectively. In early-

wood, these regions encompassed the entire cell wall

and most of the middle lamellae, while the cell corner

region was represented by class 1. The average

spectrum of class 1, however, contained no acetyla-

tion marker bands, which suggested that their

intensities were close the mean intensity of the entire

data set.

In latewood, the cell corner regions were also

represented by class 1, but the acetylated regions

represented by classes 2 and 4 extended only halfway

through the cell wall (Fig. 6). The remaining central

cell wall layer was represented by class 5, while the

outer cell wall layers and parts of the middle lamellae

were represented by class 3. The mean-centered

average spectra of these classes showed either no or

featured negative acetylation marker bands, which

indicated that the outer cell wall regions were less

acetylated in latewood cells.

Discussion

Our objective was to determine the spatial differences

in wood acetylation based on hyperspectral NIR

image regression. Already the exploration of the NIR

image mosaic based on PCA suggested that there

were significant differences in the acetylation and

resulting moisture content of earlywood and late-

wood and proved useful for visualizing the chemical

differences within the experimental domain. NIR

image calibration based on extracted mean spectra

provided a reliable calibration model for predicting

acetylation through sample WPG. The variable

selection procedure enabled choosing the most

important wavelength combinations and improved

estimating the pseudorank of the final model, which

resulted in average prediction errors of 0.91% WPG

based on the test set mean spectra and three latent

variables. Such a prediction error within a range of

17.6% WPG makes our spectral calibration model

suitable for quality control applications based on the

general rules of thumb in the NIR field [7]. Our

capability to predict WPG within a broad humidity

range further demonstrated the suitability of the

calibration model.

Once the reliability of the calibration model had

been established, we predicted the WPG values of the

individual test set image pixels which showed clear

differences in the acetylation of earlywood and late-

wood. These differences earlywood and latewood

acetylation, however, decreased in the heavily

acetylated samples, which suggests that they were

caused by the different rates of acetylation in

5062 J Mater Sci (2021) 56:5053–5066



earlywood and latewood. Since the rate of acetylation

is generally controlled by anhydride diffusion in the

wood cell walls [41], the thin-walled earlywood can

be expected to acetylate faster than the thick-walled

latewood. A significantly higher reactivity of acetic

anhydride has previously been found for lignin

compared with hemicelluloses and cellulose based on

isolated cell wall compounds [40, 42]. As earlywood

generally has higher lignin contents than latewood

[35, 43], this difference in chemical composition may

also have contributed to a higher acetylation rate in

earlywood.

We have recently observed similar differences in

the acetylation rate of earlywood and latewood when

the acetylation was initiated after a confined, one-

sided flow of acetic anhydride into the wood [22].

However, earlier studies in the wood field, in which

wood samples were completely soaked in acetic

anhydride prior to acetylation, have found little to no

difference in the WPGs of earlywood and latewood.

The results from these earlier studies stand in con-

trast to our present study, which can likely be

explained by differences in experimental method-

ologies. As an example, Moon et al. [44] and

Sadeghifar et al. [45] both performed bulk measure-

ments on mechanically separated and heavily acety-

lated earlywood and latewood with WPGs in the

range 15–22%. It is possible that the authors have

been unable to detect the narrow low-WPG regions

that persisted in heavily acetylated latewood based

on our results. With increasing acetylation time and

the resulting high WPG values, the differences

between earlywood and latewood acetylation are,

however, likely to disappear completely.

We also determined the effects of acetylation on the

wood cell level using additional Raman measure-

ments. Unsupervised classification of the Raman

images enabled choosing the chemically meaningful

principal components for pixel classification after

PCA decomposition of the Raman mosaic. The clas-

sification results supported the NIR results and

revealed that the degree of acetylation decreased

from the cell lumens towards the cell corner regions

in the thick-walled latewood cells. This explains the

observed difference in acetylation degree between

earlywood and latewood and supports our hypoth-

esis that the acetylation of the latewood cell walls was

limited by the diffusion of acetic anhydride within

the wood cells.

Conclusions

We have illustrated how hyperspectral imaging

coupled with chemometrics revealed wood acetyla-

tion on the wood surface and cellular levels. These

results extend our recent findings where we pre-

dicted the WPG values of image pixels based on

cross-sectional hyperspectral NIR images after con-

fined one-sided acetylation of wood samples. Our

current results showed that this approach is not

limited to evaluating the penetration depth of acetic

anhydride and can be successfully extended to take

into account changes in wood equilibrium moisture

contents. Unsupervised classification of Raman ima-

ges obtained from acetylated earlywood and late-

wood cells supported our hypothesis that the

observed differences in earlywood and latewood

acetylation on the wood surfaces were caused by

differences in the diffusion of acetic anhydride within

the earlywood and latewood cells. Overall, our find-

ings pave way for developing novel machine vision

methods for the wood field and are an important step

for understanding how chemical treatment affects the

different hierarchical structures of wood and their

hygroscopic properties on different spatial scales.
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[26] Mäkelä M, Volpe M, Volpe R, Fiori L, Dahl O (2018)

Spatially resolved spectral determination of polysaccharides

in hydrothermally carbonized biomass. Green Chem

20:1114–1120. https://doi.org/10.1039/c7gc03676k

[27] Bro R, Smilde AK (2014) Principal component analysis.

Anal. Methods 6:2812–2831. https://doi.org/10.1039/c3a

y41907j

[28] Amigo JM, Babamoradi H, Elcoroaristizabal S (2015)

Hyperspectral image analysis. A tutorial Anal Chim Acta

896:34–51. https://doi.org/10.1016/j.aca.2015.09.030

[29] Fearn T, Riccioli C, Garrido-Varo A, Guerrero-Ginel JE

(2009) On the geometry of SNV and MSC. Chemometrics

Intell Lab Syst 96:22–26. https://doi.org/10.1016/j.chemola

b.2008.11.006

[30] Geladi P, Kowalski B (1986) Partial least-squares regression:

a tutorial. Anal Chim Acta 185:1–17. https://doi.org/10.101

6/0003-2670(86)80028-9
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