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Adaptive Iterative Learning Control forDiscrete-Time Nonlinear Systems without Knowingthe Control Gain Signs
Miao Yu ∗ Sirkka-Liisa Jämsä-Jounela ∗

∗ Aalto University, School of Chemical Technology, Department ofBiotechnology and Chemical Technology, 00076 Aalto, Finland (e-mail:miao.yu@aaltol.fi, sirkka-llisa.jamsa-jounela@aalto.fi).
Abstract: An adaptive iterative learning control method is proposed for a class of nonlinear strict-feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories.An n-step ahead predictor approach is employed to estimate the future states in the control design.Discrete Nussbaum gain method is utilized to deal with the lack of a priori knowledge of controldirections. The proposed control algorithm guarantees the boundedness of all the signals in the controlledsystem. The tracking error converges to zero asymptotically along the iterative learning axis except forbeginning states affected by random initial conditions. The effectiveness of the proposed control schemeis verified through numerical simulation.
Keywords: iterative learning control; unknown control directions; discrete Nussbaum gain; n-step aheadstate predictor.

1. INTRODUCTION
During the past decades, iterative learning control (ILC) hasbeen studied extensively and attracts a lot of research interests.It was first proposed by Arimoto et al. (1984) in the applica-tion of robot manipulators. Then numerous results have beendedicated to ILC design based on contraction mapping (seee.g. Moore (1993); Chen and Wen (1999); Ahn et al. (2007)).However, there are several critical requirements that limit theapplications of ILC, especially to complex nonlinear systems.For instance, the nonparametric uncertainties in nonlinear sys-tems are requested to satisfy the global Lipschitz condition.Meanwhile, the initial value of each trial is required to be thesame, which is difficult to realize in practice. In order to re-lax these prerequisites of traditional ILC, several adaptive ILCmethods are developed to deal with parametric uncertainties innonlinear systems (see e.g. French and Rogers (2000); Xu andTan (2003); Marino and Tomei (2009); Xu (2011); Yu et al.(2011)). An iterative parameter adaptation law is incorporatedinto the control design to achieve the pointwise tracking alongiterative learning axis.
While most of the existing results focused on ILC of continuous-time systems, ILC of discrete-time systems deserves more ef-forts since it is more suitable for real implementation. As adiscretized version of D-type continuous learning control al-gorithm, the D-type discrete learning control was proposed inSaab (1995) and applied to robot manipulators. The 2-D systemtheory was successfully adopted in the analysis of discrete-timeILC utilizing the property that the system progresses in boththe time domain and the iteration domain (Kurek and Zaremba(1993); Fang and Chow (2003)). Recently, an adaptive ILCscheme was presented for a class of discrete-time systems inChi et al. (2008), in which the requirements of identical ini-
⋆ This work is supported by Academy of Finland Project: Optimization ofLarge Scale Production Processes

tial condition and iteration-invariant reference trajectory wereremoved.
The control direction is of great significance in all ILC controldesigns since it presents the motion direction of the system un-der any control. Nonetheless, in some cases, the control direc-tion is difficult to detect or be decided from the physical mean-ing, which makes the control design much more difficult. Thecontinuous Nussbaum gain method, which was first proposedby Nussbaum (1983), is a popular method to deal with the prob-lem of unknown control direction since it is easy to implementin the control design. It was then adopted in adaptive controldesign of high-order nonlinear systems (Ye and Jiang (1998);Ge and Wang (2003)) and ILC schemes with unknown controldirection (Chen and Jiang (2004); Xu and Yan (2004); Dangand Owens (2006)). Analogous to the continuous Nussbaumgain, the discrete Nussbaum gain method was developed in Leeand Narendra (1986), which met several essential propertiesof the continuous one. It was then applied in the discrete-timeadaptive control design in Ge et al. (2008); Yang et al. (2009) toovercome the difficulties caused by unknown control directions.
In this paper, the discrete Nussbaum gain method is utilizedin learning control design to remove the key assumption in allthe existing studies on discrete-time ILC that the control di-rection is known and invariant. A class of high-order nonlineardiscrete-time systems with strict-feedback form is considered,whose continuous-time counterpart has been studied in ourprevious work Yu et al. (2011). In order to solve the problemassociated with unknown control directions in the step-by-stepdeduction, an n-step ahead state predictor approach is applied toestimate future states exploited in the control law. The proposedcontrol scheme is free of controller singularity. The tracking er-ror converges to zero asymptotically along the iterative learningaxis under random initial conditions and iteration-varying targettrajectories, while all the signals are kept bounded.
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2. PROBLEM FORMULATION AND PRELIMINARIES
2.1 Problem formulation
Consider the following strict-feedback discrete-time nonlinearsystems

x1(i, t + 1) = θT1 ξ1(x̄1(i, t), t) + b1x2(i, t),
x2(i, t + 1) = θT2 ξ2(x̄2(i, t), t) + b2x3(i, t),

...

xn(i, t + 1) = θTn ξn(x̄n(i, t), t) + bnu(i, t),
y(i, t) = x1(i, t), (1)

where x̄ j(i, t) = [x1(i, t), x2(i, t), · · · , x j(i, t)]T (1 ≤ j ≤ n) de-note the states at time instant t of ith iteration, t ∈ [0, 1, · · · ,T ],i = 0, 1, 2, · · · ; u(i, t) is the system input; θ j are the unknownbounded parameters; ξ j(x̄ j(i, t), t) are known vector-valued non-linear functions with respect to x̄ j(i, t) and t; b j are the unknowninput gains. x j(i, 0), the initial conditions of each iteration, arerandom and bounded.
To explicate the control design, we make the following assump-tions on system (1).
Assumption 1. The nonlinear functions ξ j(x̄ j(i, t), t) are globalLipschitz, i.e., ∥∥∥ξ j(η1) − ξ j(η2)∥∥∥ ≤ L j ‖η1 − η2‖, ∀1 ≤ j ≤ n,where L j are Lipschitz coefficients.
Assumption 2. The input gains b j are nonsingular, i.e., b j , 0,1 ≤ j ≤ n. The signs of b j, which are called control directions,are assumed to be unknown.
Rewrite system (1) as

y(i, t + n) = θT1 ξ1(x̄1(i, t + n − 1), t + n − 1)
+b1x2(i, t + n − 1),

x2(i, t + n − 1) = θT2 ξ2(x̄2(i, t + n − 2), t + n − 2)
+b2x3(i, t + n − 2),

...

xn(i, t + 1) = θTn ξn(x̄n(i, t), t) + bnu(i, t). (2)
After straight iteration, it is easy to obtain that

y(i, t + n) = n
∑

k=1
ΘTk ξk(x̄k(i, t + n − k), t + n − k) + bu(i, t), (3)

where Θ1 = θ1,Θk = θk
k−1
∏

j=1 b j, j = 2, 3, · · · , n, b = n
∏

j=1 b j. Define
ΘT = [ΘT1 ,ΘT2 , · · · ,ΘTn ]T, ξ(i, t+ n− 1) = [ξT1 (x̄1(i, t+ n− 1), t+n − 1), ξT2 (x̄2(i, t + n − 2), t + n − 2), · · · , ξTn (x̄n(i, t), t)]T. Thenequation (3) could be rewritten as

y(i, t + n) = ΘTξ(i, t + n − 1) + bu(i, t). (4)
Define the reference trajectory as yd(i, t), where t ∈ [0, 1, · · · ,T ],i = 0, 1, 2, · · · . Note that yd(i, t) can be variant with iterations,which removes the critical assumption of invariant desired tra-jectory in traditional ILC based on contraction mapping (Xu(1997), Wang (1998)). Then the tracking error is e(i, t) =y(i, t)−yd(i, t). The control objective is to find a sequence of suit-able system inputs u(i, t), t ∈ [0, 1, · · · ,T − n], i = 0, 1, 2, · · · ,such that the output of system (1) converges to the desiredtrajectory asymptotically along the iteration axis except for

beginning n instants of each iteration, that is limi→∞ e(i, t) = 0,t ∈ [n, · · · ,T ].Remark 1. In view of (1) and (4), the control input of initialinstant u(i, 0) is involved in the output after n steps y(i, n). Theoutputs of first n instants y(i, t), 0 ≤ t ≤ n − 1, are affected bythe random initial conditions, thus are not learnable.
2.2 Preliminaries about discrete Nussbaum gain
The discrete Nussbaum gain was first proposed in Lee andNarendra (1986). Let {χ(k)} be a discrete sequence with χ(0) =0, χ(k) ≥ 0, for k = 0, 1, 2, · · · , and |∆χ(k)| = |χ(k + 1) − χ(k)| ≤c, where c is a constant.
The discrete nonlinear Nussbaum gain is chosen asN(χ(k)) = χs(k)s(χ(k)), (5)where

χs(k) ∆= sup
σ≤k {χ(σ)} , (6)

and the sign function s(χ(k) which swings between +1 and −1is defined as follows, s(χ(0)) = +1,
At k = k1, if s(χ(k1)) = +1, then if

σ=k1
∑

σ=0
N(χ(σ))∆χ(σ) > χ3/2s (k1),

set s(χ(k1 + 1)) = −1, otherwise set s(χ(k1 + 1)) = +1.
But if s(χ(k1)) = −1, then if

σ=k1
∑

σ=0
N(χ(σ))∆χ(σ) < −χ3/2s (k1),

set s(χ(k1 + 1)) = +1, otherwise set s(χ(k1 + 1)) = −1.
Obviously it is easy for the digital implementation. Associatedwith discrete Nussbaum gain, two important properties cor-responding to that of continuous Nussbaum gain (Nussbaum(1983)) were derived.Lemma 1. (Lee and Narendra (1986))(The Oscillating-UnboundedSum Property) Let

S (χ(k)) ∆= σ=k
∑

σ=0
N(χ(σ))∆χ(σ). (7)

If χs(k) increases without bound, then
sup

χs(k)≥a1
1

χs(k)S (χ(k)) = +∞, (8)
inf

χs(k)≥a1
1

χs(k)S (χ(k)) = −∞. (9)
Lemma 2. (Lee and Narendra (1986))(The Bounded Sum Prop-erty) If χs(k) ≤ ξ1, then |S (χ(k))| ≤ ξ2 where ξ1 and ξ2 are someconstants.
Recently, a basic lemma was derived in Ge et al. (2008), whichfacilitates the application of discrete Nussbaum gain in theadaptive control design.Lemma 3. (Ge et al. (2008)) Let V(k) be a positive definitefunction defined ∀k, N(χ(k)) be the discrete Nussbaum gainproposed in Lee and Narendra (1986), and θ be a nonzeroconstant. If the following inequality holds

V(k) ≤ k
∑

k′=k1
(c1 + θN(χ(k′ )))∆χ(k′) + c2χ(k) + c3,∀k (10)



where c1, c2 and c3 are some constants, k1 is a positive integer,then V(k), χ(k), and ∑kk′=k1 (c1 + θN(χ(k′ )))∆χ(k′)+ c2χ(k)+ c3must be bounded, ∀k.
2.3 Useful definitions and lemmas
Definition 1. (Chen and Narendra (2001)) Let x(k) and y(k)(scalar or vector) be two discrete time signals defined for allk ∈ ℵ+, where ℵ+ is the set of all nonnegative integers. Let |·|denotes a norm.
• (Large order). We denote y(k) = O[x(k)] if there existpositive constants M1, M2, and k0 such that |y(k)| ≤M1 maxτ≤k |x(τ)| + M2, ∀k ≥ k0.
• (Small order). We denote y(k) = o[x(k)] if there ex-ists a discrete-time function β(k) with the property thatlimk→∞ β(k) = 0, and a constant k0 such that |y(k)| ≤
β(k) maxτ≤k |x(τ)|, ∀k ≥ k0.
• (Equivalence). If y(k) = O[x(k)] and x(k) = O[y(k)], werefer to x(k) and y(k) as being equivalent and denote it asx(k) ∼ y(k).

Lemma 4. (Goodwin and Sin (1984)) If the following con-ditions are satisfied for some given sequences {s(t)}, {σ(t)},
{b1(t)}, and {b2(t)}
(1) limt→∞

s2(t)
b1(t) + b2(t)σT (t)σ(t) = 0, where {b1(t)}, {b2(t)}, and

{s(t)} are real scalar sequences and {σ(t)} is a real (p × 1)vector sequence.(2) Uniform boundedness condition: 0 < b1(t) < K < ∞,0 < b2(t) < K < ∞, for all t ≥ 1.(3) Linear boundedness condition: σ(t) = O[s(t)].
it follows that
(1) limt→∞ s(t) = 0.
(2) ‖σ(t)‖ is bounded.

3. DISCRETE-TIME ADAPTIVE ILC DESIGN
3.1 N-step ahead state predictor
The error dynamics of the system can be expressed as

e(i, t + n) = y(i, t + n) − yd(i, t + n)
=ΘTξ(i, t + n − 1) + bu(i, t) − yd(i, t + n), (11)

where t = 0, 1, · · · ,T−n. Denote α = b−1Θ, β = b−1, the systeminput can be chosen as
u(i, t) = −α̂T(i, t)ξ(i, t + n − 1) + β̂(i, t)yd(i, t + n), (12)

where α̂(i, t) and β̂(i, t) denote the estimates of parameters α and
β at time instant t of ith iteration.
The control law (12) is a cancelation controller that aims toexactly cancel the nonlinearities using state feedback and pa-rameter adaptation. Instead of iteratively learning the iteration-invariant desired input ud(t) in traditional ILC (Xu (1997),Wang (1998)), we mainly focus on the iterative adaptation ofunknown parameters b−1Θ and b−1. Therefore, the requirementsof identical initial condition and iteration-invariant referencecan be removed. On the other hand, the control law (12) isasymptotically an inverse model algorithm on [n,T ] or equiva-lently a pole allocation algorithm allocating all poles to zero.It will be subject to the robustness issues even for the case

of linear systems (Goodwin and Sin (1984)). Consequently,considering Remark 1, the control objective is to achieve theexact tracking on interval [n,T ].
It is noticed the noncausal term ξ(i, t+n−1) appears on the rightside of (12). In order to explicate the control process, we shallestimate the states of future n steps at current step to design theappropriate input u(i, t).
Let θ̂ j(i, t) and b̂ j(i, t) denote the estimates of θ j and b j atthe j-th step. Denote φ j = [θTj , b j]T, the estimation errors are
φ̃ j = φ j − φ̂ j.
Define the one-step state predictor as

x̂ j(i, t + 1|t) = φ̂Tj (i, t − n + 2)ψ j(i, t), j = 1, 2, · · · , n − 1 (13)
where ψ j(i, t) = [ξTj (x̄ j(i, t), t), x j+1(i, t)]T.
Define the two-step state predictor as

x̂ j(i, t+2|t) = φ̂Tj (i, t−n+3)ψ̂ j(i, t+1|t), j = 1, 2, · · · , n−2 (14)
where ψ̂ j(i, t + 1|t) = [ξTj ( ˉ̂x j(i, t + 1|t), t + 1), x̂ j+1(i, t + 1|t)]T.
Define the m-step (m = 3, · · · , n − 1) state predictor as
x̂ j(i, t+m|t) = φ̂Tj (i, t−n+m+1)ψ̂ j(i, t+m−1|t), j = 1, 2, · · · , n−m(15)where ψ̂ j(i, t+m−1|t) = [ξTj ( ˉ̂x j(i, t+m−1|t), t+m−1), x̂ j+1(i, t+
m − 1|t)]T.
The parameter estimates updating law is defined as
φ̂ j(i, t+1) = φ̂ j(i, t−n+2)− x̃ j(i, t + 1|t)ψ j(i, t)

1 + ψTj (i, t)ψ j(i, t) , j = 1, 2, · · · , n−1
(16)where x̃ j(i, t + 1|t) = x j(i, t + 1) − x̂ j(i, t + 1|t).

With respect to (4), define ξ̂(i, t + n − 1|t) = [ξT1 ( ˉ̂x1(i, t + n −1|t), t+ n− 1), ξT2 ( ˉ̂x2(i, t+ n− 2|t), t+ n− 2), · · · , ξTn (x̄n(i, t), t)]T,we have the following result
Lemma 5. The parameter estimates φ̂ j(i, t), j = 1, 2, · · · , n − 1,are bounded. The estimation errors satisfy

ˉ̃x j(i, t + n − j|t) = o[O[y(i, t + n − 1)]],
ξ̃(i, t + n − 1|t) = o[O[y(i, t + n − 1)]].

Proof: See the proofs of Lemma 6 and 7 in Ge et al. (2008).
3.2 Adaptive iterative learning control design
With the n-step state predictor above, we design the systeminput as

u(i, t) = −α̂T(i, t)ξ̂(i, t + n − 1|t) + β̂(i, t)yd(i, t + n). (17)
Substituting (17) into (11), we have

e(i, t + n) = −b(α̃T(i, t)ξ(i, t + n − 1) − β̃(i, t)yd(i, t + n)
+α̂T(i, t)ξ̃(i, t + n − 1|t)), (18)

where α̃(i, t) = α̂(i, t) − α, β̃(i, t) = β̂(i, t) − β are the estimationerrors.
The parameter estimates updating law along the iteration axisis defined as



ε(i − 1, t + n) = γe(i − 1, t + n)
G(i, t)

+
N(χ(i, t))ϕ(i, t)α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t)

G(i, t) ,

α̂(i, t) = α̂(i − 1, t) +
γ

N(χ(i, t))
D(i, t) ξ(i − 1, t + n − 1)ε(i − 1, t + n),

β̂(i, t) = β̂(i − 1, t)
−γ

N(χ(i, t))
D(i, t) yd(i − 1, t + n)ε(i − 1, t + n),

∆ϕ(i, t) = ϕ(i + 1, t) − ϕ(i, t)
= −N(χ(i, t))α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t)
×ε(i − 1, t + n)/D(i, t),

∆z(i, t) = z(i + 1, t) − z(i, t) = G(i, t)ε2(i − 1, t + n)
D(i, t) ,

χ(i, t) = z(i, t) + ϕ2(i, t)
2 ,

G(i, t) = 1 + |N(χ(i, t))| ,
D(i, t) = (1 + |ϕ(i, t)|)(1 + ∣∣∣N3(χ(i, t))∣∣∣)

×(1 + ‖ξ(i − 1, t + n − 1)‖2 + y2d(i − 1, t + n)
+(α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t))2
+ε2(i − 1, t + n)), (19)

where N(χ(i, t)) is the discrete Nussbaum function defined in(5) which updates along the iteration axis at time instant t,t = 0, 1, · · · T − n. The parameter γ > 0 is tunable to improvethe learning performance.

4. LEARNING CONVERGENCE ANALYSIS
Theorem 1. Consider the discrete-time nonlinear system (1)with random initial conditions and iteration-varying desiredtrajectories, if Assumptions 1 and 2 are satisfied, applying theproposed adaptive learning control law (17) and parameter esti-mate updating law (19), all the signals in the system are guaran-teed to be bounded. Moreover, the tracking error converges tozero asymptotically along the iterative learning axis except forbeginning n instants of each iteration, that is limi→∞ e(i, t) = 0,t = n, · · · ,T .
Proof: Define a positive definite function as

V(i, t) = α̃T(i, t)α̃(i, t) + β̃2(i, t). (20)
Then the difference of V(i, t) along the iteration axis is derivedas

∆V(i, t) = V(i, t) − V(i − 1, t)
= (α̃(i, t) − α̃(i − 1, t))T(α̃(i, t) − α̃(i − 1, t))
+2α̃T(i − 1, t)(α̃(i, t) − α̃(i − 1, t))
+(β̃(i, t) − β̃(i − 1, t))2
+2β̃(i − 1, t)(β̃(i, t) − β̃(i − 1, t)). (21)

Substituting the parameter estimate updating law (19) into (21)yields

∆V(i, t) = γ2 N2(χ(i, t))
D2(i, t) ε2(i − 1, t + n)

×(‖ξ(i − 1, t + n − 1)‖2 + y2d(i − 1, t + n))
+2γN(χ(i, t))

D(i, t) ε(i − 1, t + n)(α̃T(i − 1, t)
×ξ(i − 1, t + n − 1) − β̃(i − 1, t)yd(i − 1, t + n)).

Considering the error dynamic (18) and parameter definition(19), it can be obtained that

e(i − 1, t + n) = (ε(i − 1, t + n)G(i, t) − N(χ(i, t))ϕ(i, t)
×α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t))/γ
= −b(α̃T(i − 1, t)ξ(i − 1, t + n − 1)
−β̃(i − 1, t)yd(i − 1, t + n)
+α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t)). (22)

Then it can be derived that

∆V(i, t) = γ2 N2(χ(i, t))
D2(i, t) ε2(i − 1, t + n)(‖ξ(i − 1, t + n − 1)‖2

+y2d(i − 1, t + n)) − 2
b

N(χ(i, t))
D(i, t) ε2(i − 1, t + n)G(i, t)

−2γN(χ(i, t))
D(i, t) ε(i − 1, t + n)α̂T(i − 1, t)

×ξ̃(i − 1, t + n − 1|t)
+

2
b

N(χ(i, t))
D(i, t) N(χ(i, t))ε(i − 1, t + n)ϕ(i, t)

×α̂T(i − 1, t)ξ̃(i − 1, t + n − 1|t)
≤ γ2 G(i, t)ε2(i − 1, t + n)

D(i, t)
−

2
bN(χ(i, t))(∆z(i, t) + ϕ(i, t)∆ϕ(i, t)) + 2γ∆ϕ(i, t)

≤ γ2∆z(i, t) + 1
|b|N(χ(i, t))(∆ϕ(i, t))2 + 2γ∆ϕ(i, t)

−
2
bN(χ(i, t))(∆z(i, t) + ϕ(i, t)∆ϕ(i, t)
+

(∆ϕ(i, t))2
2 ). (23)

Since

∆χ(i, t) = ∆z(i, t) + ϕ(i, t)∆ϕ(i, t) + (∆ϕ(i, t))2
2 ,

N(χ(i, t))(∆ϕ(i, t))2 ≤ ∆z(i, t), (24)
we have
∆V(i, t) ≤ (γ2 + 1

|b| )∆z(i, t) + 2γ∆ϕ(i, t) − 2
bN(χ(i, t))∆χ(i, t).

(25)Taking the sum of (25) at time instant t along the iterativelearning axis, we have



V(i, t) ≤ −2
b

i
∑

k=0
N(χ(k, t))∆χ(k, t)

+(γ2 + 1
|b| )z(i, t) + 2γϕ(i, t) + V(−1, t)

≤ −
2
b

i
∑

k=0
N(χ(k, t))∆χ(k, t)

+(γ2 + 1
|b| )χ(i, t) + 2γ2

/

(γ2 + 1
|b| ) + V(−1, t). (26)

Since V(−1, t) is a constant parameter, applying Lemma 3, wecan conclude directly that V(i, t) and χ(i, t) are bounded. Thus,N(χ(i, t)), G(i, t), α̂(i, t), β̂(i, t) are all bounded, and
limi→∞∆z(i, t) = limi→∞

G(i, t)ε2(i − 1, t + n)
D(i, t) = 0 (27)

In order to apply Lemma 4, we should guarantee the linearboundedness condition between D(i, t) and ε2(i−1, t+n). Fromerror dynamic (18), it is easy to see that
x j(i, t) =O[y(i, t + j − 1)] = O[e(i, t + j − 1)],
u(i, t) =O[y(i, t + n)] = O[e(i, t + n)]. (28)

Thus it is derived from the Lipschitz condition in Assumption1 that
ξ(i − 1, t + n − 1) = O[e(i − 1, t + n − 1)]. (29)From Lemma 5, we have

ξ̃(i−1, t+n−1|t) = o[O[y(i−1, t+n−1)]] = o[O[e(i−1, t+n−1)]].(30)It is easy to see that from the parameter definition (19)
ε(i, t) ∼ e(i, t). (31)

Thus it can be obtained that
D(i, t) = O[ε2(i − 1, t + n)]. (32)

Applying Lemma 4, considering the boundedness of G(i, t), wecan conclude that limi→∞ e(i, t) = 0, t = n, · · · ,T . ConsideringRemark 1, the pointwise tracking is achieved on interval [n,T ]except for beginning n instants affected by random initial condi-tions. Moreover, all the signals in the system are kept bounded.

5. ILLUSTRATIVE EXAMPLE
Consider the following high-order strict-feedback discrete-timenonlinear systems
x1(i, t + 1) = a1x1(i, t)cos2(x1(i, t)) + a2x1(i, t) sin(x1(i, t))

+b1x2(i, t),
x2(i, t + 1) = a3 x1(i, t) sin(x2(i, t))

3 + x21(i, t) + a4 x32(i, t)
2 + x22(i, t) + b2u(i, t),

y(i, t) = x1(i, t),
where a1 = 0.2, a2 = 0.1, a3 = 0.1, a4 = −0.5, b1 = 1.5,b2 = ∓0.1. The initial value is chosen from (−1, 0)∪(0, 1) wheniteration varies.
The desired trajectory is given as yd = m(i)[1.5 sin( πH5 t) +1.5 cos( πH20 t)], H = 0.04, where m(i) is also varying in theinterval (−1, 0) ∪ (0, 1) with iteration i. The iteration intervalis t ∈ [0, 1, · · · , 100]. The tunable parameter γ is chosen to be4.
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Fig. 1. Root mean square tracking error under random initialvalues and varying desired trajectories when b2 = −0.1
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Fig. 2. Root mean square tracking error under random initialvalues and varying desired trajectories when b2 = 0.1
To demonstrate the effectiveness of the proposed controlscheme, we carry out the simulation with b2 of the same ab-solute value but opposite signs. Simulation results with ran-dom initial values and varying desired trajectories are shownin Fig 1-6. Fig 1 and 2 show the RMS tracking error versus iter-ation number. It has shown the validity of the control algorithm.The variation of discrete Nussbaum gain along the iteration axisat time instant t = 1 is shown in Fig 3 and 4 as an example.We can see that it is first at the wrong direction, then switchesto the right direction after several iterations of learning, whichcoincides with the sign of b2. In Fig 5 and 6, discrete Nussbaumgain N(χ(t)) at the 1000th iteration is depicted. It is easy to seethat N(χ(t)) are all be the same sign with b2 for t ∈ [0, · · · , 99].

6. CONCLUSIONS
In this paper, the problem of adaptive iterative learning controlfor a class of strict-feedback discrete-time nonlinear systemswith random initial conditions and iteration-varying referencetrajectories is tackled. The discrete Nussbaum gain method isexploited to deal with the lack of the prior knowledge of controldirections. Under the proposed control scheme and parameterestimates updating law, the tracking error converges to zeropointwisely with all the signals bounded. Simulation results
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Fig. 3. Discrete Nussbaum function along the iteration axis att=1 when b2 = −0.1
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Fig. 4. Discrete Nussbaum function along the iteration axis att=1 when b2 = 0.1
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Fig. 5. Discrete Nussbaum function of the 1000th iterationwhen b2 = −0.1
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Fig. 6. Discrete Nussbaum function of the 1000th iterationwhen b2 = 0.1
have demonstrated the effectiveness of the presented controlmethod.
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