
Planck intermediate results

Published in:
Astronomy and Astrophysics

DOI:
10.1051/0004-6361/202038053

Published: 01/12/2020

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Planck intermediate results

LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II

(Affiliations can be found after the references)

Received 30 March 2020 / Accepted 28 August 2020

ABSTRACT

The largest temperature anisotropy in the cosmic microwave background (CMB) is the dipole, which has been measured with increasing accuracy for more than three decades, particularly with the Planck satellite. The simplest interpretation of the dipole is that it is due to our motion with respect to the rest frame of the CMB. Since current CMB experiments infer temperature anisotropies from angular intensity variations, the dipole modulates the temperature anisotropies with the same frequency dependence as the thermal Sunyaev-Zeldovich (tSZ) effect. We present the first, and significant, detection of this signal in the tSZ maps and find that it is consistent with direct measurements of the CMB dipole, as expected. The signal contributes power in the tSZ maps, which is modulated in a quadrupolar pattern, and we estimate its contribution to the tSZ bispectrum, noting that it contributes negligible noise to the bispectrum at relevant scales.

Key words. cosmic microwave background radiation – cosmology: observations – relativistic processes – reference systems

1. Introduction

In the study of cosmic microwave background (CMB) anisotropies, the largest signal is the dipole. This is mainly due to our local motion with respect to the CMB rest frame and it has been previously measured in Kogut et al. (1993), Fixsen et al. (1996), and Hinshaw et al. (2009), and most recently in Planck Collaboration I (2020), Planck Collaboration II (2020), and Planck Collaboration III (2020). Taking the large dipole as being solely caused by our motion, the velocity is \(v = (369.82 \pm 0.11) \text{ km s}^{-1} \) in the direction \((l, b) = (264.02, 0.01), 48.253 \pm 0.005 \) (Planck Collaboration I 2020). A velocity boost has secondary effects, such as aberration and a frequency-dependent dipolar-modulation of the CMB anisotropies (Challinor & Lewis 2002; Burles & Rappaport 2006). These two effects were first measured using Planck data, as described in

* Corresponding author: R. M. Sullivan, e-mail: rullivan@phas.ubc.ca

1 Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states and led by Principal Investigators from France and Italy, telescope reflectors provided through a collaboration between ESA and a scientific consortium led and funded by Denmark, and additional contributions from NASA (USA).
tSZ effect would be able to pull out the signal. In principle, it could also contribute a bias and source of noise in the bispectrum of the tSZ effect. This is potentially important because the tSZ effect is highly non-Gaussian and much of its information content lies in the bispectrum (Rubíño-Martín & Sunyaev et al. 2003; Bhattacharya et al. 2012; Planck Collaboration XXI 2014; Planck Collaboration XXII 2016).

In this paper we further investigate the CMB under a boost, including tSZ effects (Chluba et al. 2005; Notari & Quartin 2015). We explicitly measure the dipole using a harmonic-space-based method, similar to that outlined in Notari & Quartin (2015), and using a new map-space-based analysis, with consistent results. We also estimate the contamination in the tSZ bispectrum, finding that it is a negligible source of noise.

The structure of the paper is as follows. We describe the nature of the signal we are looking for in Sect. 2. The data that we use, including the choice of CMB maps, tSZ maps, and masks, are described in Sect. 3. The analysis is presented in Sect. 4, and the results in Sect. 5, separately for the multipole-based and map-based methods. We briefly discuss some potential systematic effects in Sect. 6 and we conclude in Sect. 7. We discuss the nature of the signal we are looking for in Sect. 2. The data that we use, including the choice of CMB maps, tSZ maps, and masks, are described in Sect. 3. The analysis is presented in Sect. 4, and the results in Sect. 5, separately for the multipole-based and map-based methods. We briefly discuss some potential systematic effects in Sect. 6 and we conclude in Sect. 7.

2. Signal

Here we derive the signal we are looking for. First let us introduce some useful definitions:

\[x \equiv \frac{h\nu}{k_B T}; \]
\[I \equiv \frac{2k_B T^3}{h^2 c^2} x^3; \]
\[f(x) \equiv \frac{e^x}{e^x - 1}; \]
\[Y(x) \equiv \frac{x e^x + 1}{e^x - 1} - 4. \]

These are the dimensionless frequency, the Planck blackbody intensity function, the frequency dependence of the CMB anisotropies, and the relative frequency dependence of the tSZ effect, respectively. Here \(h \) is Planck’s constant, \(k_B \) is the Boltzmann constant, and \(c \) is the speed of light.

To first order, anisotropies of intensity take the form

\[\delta I(\hat{n}) = I f(x) \left[\frac{\delta T(\hat{n})}{T_0} + y(\hat{n}) Y(x) \right], \]

where the first term represents the CMB anisotropies\(^2\), and the second term is the tSZ contribution, entering with a different frequency dependence and parameterized by the Compton \(y \)-parameter,

\[y = \int n_e \frac{k_B \sigma_T T_e}{m_e c^2} ds. \]

Here \(m_e \) is the electron mass, \(\sigma_T \) the Thomson cross-section, \(ds \) the differential distance along the line of sight \(\hat{n} \), and \(n_e \) and \(T_e \) are the electron number density and temperature. Next we apply a Lorentz boost \((\beta \equiv v/c)\) from the unprimed CMB frame into the primed observation or solar-system frame to obtain

\[\delta I'(\hat{n}') = I' f'(x') \left[\frac{\delta T'(\hat{n}')}{T_0'} + y'(\hat{n}') Y(x') \right]. \]

Here \(T_0' \) is the new boosted blackbody temperature, and only differs from \(T_0 \) to lowest order by \(\beta^2 \),

\[T_0' = T_0 + \frac{\beta^2}{2} T_0; \]

thus to first order \(T_0' = T_0 \). Taking each piece in turn, this transforms as (to first order)

\[I' f'(x') = I f(x) \left[1 + \beta \mu Y(x) + 3 \beta \mu \right], \]
\[\frac{\delta T'(\hat{n}')}{T_0'} = \frac{\delta T(\hat{n})}{T_0} + \beta \mu, \]
\[y'(\hat{n}') Y(x') = y(\hat{n}) Y(x) - \beta \mu \frac{dY(x)}{dx}, \]
\[\hat{n}' = \hat{n} - \nabla(\hat{n} \cdot \beta), \]

where \(\mu = \cos \theta \), and \(\theta \) is defined as the angle from the direction \(\beta \) to the line of sight.

Equation (7) can thus be written as\(^3\)

\[\delta I'(\hat{n}') = I f(x) \left[1 + \beta \mu Y(x) + 3 \beta \mu \right] \times \left[\frac{\delta T(\hat{n})}{T_0} + \beta \mu + y(\hat{n}) Y(x) - y(\hat{n}) \beta \mu \frac{dY(x)}{dx} \right]. \]

or more explicitly, to first order in \(\beta \),

\[\frac{\delta I'(\hat{n}')}{I f(x)} = \frac{\delta T(\hat{n})}{T_0} + \beta \mu \left[1 + 3 \frac{\delta T(\hat{n})}{T_0} \right] + Y(x) \left[y(\hat{n}) - \frac{\beta \mu}{T_0} \right] + \beta \mu Y(x) \left[3Y(x) + \frac{dY(x)}{dx} \right], \]

where we have split up each line on the right-hand side according to the frequency dependence. Assuming perfect component separation, and comparing with Eq. (5), the first line of Eq. (14) shows that the boost induces a pure dipole \((\beta \mu)\), an aberration effect \((\beta \mu \delta T/T_0)\), and a dipolar modulation \((3\beta \mu \delta T/T_0)\) of the CMB. The first effect is the classical CMB dipole, which has been measured many times most recently by Planck (Planck Collaboration I 2020), with the highest accuracy so far achieved. The effects of aberration and dipolar modulation (both frequency-independent and frequency-dependent parts) were measured in Planck Collaboration XXVII (2014) at a combined significance level of 5\(\sigma\).

In the second line of Eq. (14) we see that the boost also induces a change in a map of the tSZ effect. The original \(y \) signal is aberrated \((y(\hat{n}') - y(\hat{n}))\) and also gains a contribution from the dipolar modulated CMB \((\beta \mu \delta T/T_0)\). This last effect is what we measure in this paper for the first time. Its expected signal can be seen in Fig. 1 (top right panel), along with the full \(y \) map obtained via the MILCA method (Fig. 1 top left)

\(^2\) We note that for brevity we have not written the kinetic Sunyaev-Zeldovich (kSZ) effect; however, its presence is accounted for in our analysis. Our only concern is that the signal \(\delta T/T \) (whatever it consists of) is measured well compared to the noise in a CMB map.

\(^3\) We have left the primes on the \(\hat{n} \)'s as a matter of convenience; expanding this further would explicitly show the aberration effect, which we do not explore in this analysis.
Hurier et al. 2013). It is worth noting that although the contribution to the tSZ map is a dipolar modulation of the CMB anisotropies, this induces power in the \(y \) map that is modulated like a quadrupolar pattern (due to the lack of correlation between the CMB anisotropies and \(y \) signal). That is, a \(y \) map contains more power in the poles of the dipole, relative to the corresponding equator (see Fig. 1). It should be possible to pull out this signal compared with modulation patterns oriented in orthogonal directions (lower panels of Fig. 1).

We note that the final line in Eq. (14) is simply the dipole modulation of the tSZ effect, with a peculiar frequency dependence Chluba et al. (2005). In principle one could generate a map of the anisotropies in this new frequency dependence and use the known CMB dipole to measure the \(y \) anisotropies again. Such a measurement would be correlated with the original \(y \) map, but would have independent noise properties and also have a very low amplitude. From a practical perspective it is unlikely that such a measurement would yield any significant information increase, since the signal is contaminated with relativistic tSZ and kSZ effects, and is suppressed by a factor of \(\beta \) (Chluba et al. 2005).

3. Data

We look for the signal by cross-correlating a template map derived from the CMB temperature data with a \(y \) map. Therefore it is important that the CMB map is free of \(y \) residuals and that the \(y \) map is free of CMB residuals, in order to avoid spurious correlations.

To this end, we use the so-called 2D–ILC CMB temperature map (first used for kSZ detection in Planck Collaboration Int. XIII 2014), which was produced by the “Constrained ILC” component-separation method designed by Remazeilles et al. (2011) to explicitly null out the contribution from the \(y \)-type spectral distortions in the CMB map. We also use the SMICA–NOSZ temperature map, similarly produced with express intent of removing the \(y \)-type spectral distortions, and which was generated with the Planck 2018 data release (Planck Collaboration IV 2020). Likewise, we use the 2D–ILC \(y \) map, and the Planck MILCA \(y \) map, which explicitly null out the contributions from a (differential) blackbody spectral distribution in the \(y \) map (Hurier et al. 2013; Planck Collaboration XXII 2016). We also consider the Planck NILC \(y \) map, which does not explicitly null out the blackbody contribution. The extra constraint to remove CMB anisotropies in the 2D–ILC \(y \) map, or in the MILCA \(y \) map, is at the expense of leaving more contamination by diffuse foregrounds and noise. In Planck Collaboration XXII (2016), the Planck NILC \(y \) map was preferred over the 2D–ILC \(y \) map to measure the angular power spectrum of tSZ anisotropies, the CMB contaminant being negligible compared to diffuse foregrounds. Conversely, to measure the dipole modulation of the CMB anisotropies in the \(y \) map, the 2D–ILC and MILCA \(y \) maps are preferred over the Planck NILC \(y \) map because the latter does not fully null out

4 The map name “2D–ILC” was adopted because of the two-dimensional (2D) constraint imposed on the internal linear combination (ILC) weights of being aligned with the CMB/kSZ spectrum while being orthogonal to the tSZ spectrum.
the contribution from the CMB. This significantly contaminates the signal we are looking for, as can be seen in Appendix B. It is noted in Planck Collaboration XXII (2016) that for $\ell > 2000$ the signal is dominated by correlated noise, and so we use the same cut as used in their analysis of $\ell_{\text{max}} = 1411$, this is further justified in Sect. 4.2.

Figure 1 shows the mask used in our analysis. This is the union of the Planck 2018 data release common temperature confidence mask (Planck Collaboration IV 2020), and the corresponding y-map foreground masks (Planck Collaboration XXII 2016). This was then extended by 1° and apodized with a $200'$ Gaussian beam. To account for any masked sections lost during the smoothing, the original mask was then added back. Tests were also done using the y-map point-source mask, with negligible changes seen in the results, and was thus omitted from the final analysis. This procedure aims to allow for the maximum signal while minimizing the foreground contamination. Various combinations of mask sizes and apodizations were also tested and final results were consistent, independent of the choice of mask.

4. Analysis

From Eq. (14) we see that a map of the tSZ effect (M_{SZ}) contains the following terms (for each pixel, or direction \hat{n}):

$$M_{\text{SZ}} = y + \eta^\prime + \beta \eta^T / T_0,$$

where η^\prime is simply the noise in the y map, and we have neglected the aberration effect. Our goal is to isolate the final term in Eq. (15), which we do via a suitable cross-correlation with a CMB map. A map of the CMB (M_{CMB}) contains the following terms:

$$M_{\text{CMB}} = \frac{\delta T}{T_0} + \eta^T + 3\beta \eta^T / T_0,$$

where we have explicitly removed the full dipole term, and η^T is the noise in the CMB map. If we multiply our CMB map (Eq. (16)) with $\beta \eta^T$ and cross-correlate that with our tSZ map (Eq. (15)), then we can directly probe the dipole modulation. This of course neglects the noise and modulation terms in the CMB map, which we are justified in doing because the noise term is sub-dominant, except at very small scales (we make the restriction $\ell_{\text{max}} = 1411$, so that the y map and CMB maps are still signal dominated Planck Collaboration XXII 2016), and because the modulation term becomes second order in ℓ. Equivalently one could directly cross-correlate Eq. (15) with Eq. (16) and look for the signal in harmonic space from the coupling of ℓ and $\ell \pm 1$ modes.

In Planck Collaboration XXVII (2014) a quadratic estimator was used to determine the dipole aberration and modulation, in essence using the auto-correlation of the CMB fluctuation temperature maps, weighted appropriately to extract the dipole signal. The auto-correlation naturally introduces a correlated noise term, which must be well understood for this method to work. In this paper we take advantage of the fact that we know the true CMB fluctuations with excellent precision and therefore the signal that should be present in the y map. We can therefore exploit the full angular dependence of the modulation signal and remove much of the cosmic variance that would be present in the auto-correlation.

In order to implement this idea we define three templates, B_i (with $i = 1, 2, 3$) as

$$B_i \left(\hat{n} \right) = \beta \hat{n} \cdot \hat{m}_i \frac{\delta T}{T_0}(\hat{n}),$$

where $\beta = v/c = 1.23357 \times 10^{-3}$ (Planck Collaboration I 2020) and $\hat{m}_1, \hat{m}_2, \hat{m}_3$ are the CMB dipole direction, an orthogonal direction in the Galactic plane, and the third remaining orthogonal direction (see Fig. 1 and Planck Collaboration XXVII 2014, for a similar approach). Note that in Eq. (17), we simply use our CMB map in place of $\delta T/T_0$. We use two distinct methods to accomplish this, discussed in detail in Sects. 4.1 and 4.2.

In the region where the CMB is signal dominated we can regard $\delta T/T_0$ as fixed, and thus our templates B_i are fixed. Due to the presence of the CMB dipole, the signal B_i should be present in the y map. We can therefore directly cross-correlate B_i with our y map (Eq. (15)) to pull out the signal. Likewise, the cross-correlation of B_2 and B_1 with our y map should give results consistent with noise, although the coupling with the noise and mask leads to a bias that is recovered through simulations.

Our y simulations are generated by first computing the power spectra of our data y maps; specifically we apply the MASTER method using the nAMASTER routine (Alonso et al. 2019) to account for the applied mask (Hivon et al. 2002). Then we generate y maps using this power-spectrum with the HEALPix (Gorski et al. 2005) routine synfast. This is done separately for the 2D–ILC and MILCA maps because they have different noise properties (and thus different total power spectra). For our simulations that include the dipolar modulated CMB anisotropies we add the last term of Eq. (15). We finally apply a Gaussian smoothing of $5'$ to model the telescope beam.

For each analysis method (to be described in the following subsections) we estimate the amplitude of the dipole ($\hat{\beta}_i$) in each of the three orthogonal directions5. We apply the same analysis on a suite of 1000 y simulations, generated with and without the dipolar modulation term in Eq. (15). We are then able to generate a covariance that appropriately contains the effects of the mask we use and are able to compute any bias that the mask induces. On the assumption (verified by our simulations) that the $\hat{\beta}_i$ estimation is Gaussian, we are able to compute a value of χ^2 for the case of no CMB term and with the CMB term (see Table 1). We can then apply Bayes’ theorem along with our covariance to calculate the probability that each model is true (with or without the CMB term) and the posterior of our dipole parameters (β, l, b), summarized in Table 1 and Fig. 2.

We estimate the covariance C_{ij} of the $\hat{\beta}_i$ using the simulations7 and calculate the χ^2 as

$$\chi^2 = \sum_{ij} (\hat{\beta}_i - \langle \hat{\beta}_i \rangle) C_{ij}^{-1} (\hat{\beta}_j - \langle \hat{\beta}_j \rangle),$$

where k denotes whether the expectation value in the sum is taken over the simulations that do or do not include the CMB term. For definiteness we define the null hypothesis $H_0 (k = 0)$ to not include the CMB term, while hypothesis $H_1 (k = 1)$ does

5 Note this means that our simulations contain no non-Gaussianities, unlike the real SZ data; however, this should have no effect on the power spectrum, since non-Gaussianities are only detectable at higher order such as the bispectrum (see e.g., Lacasa et al. 2012). For further discussion of see Appendix A.

6 Note that $\hat{\beta}_i$ is used here to denote the estimator, not a unit vector.

7 It makes no appreciable difference whether we use the simulations with or without the dipole term to calculate the covariance.
Table 1. Values of χ^2 (with $N_{\text{dof}} = 3$) under the assumption of no dipolar modulation term (“No dipole”), and assuming the presence of the dipolar modulation term (“With dipole”) for the 2D-ILC CMB template map.

<table>
<thead>
<tr>
<th>Method</th>
<th>No dipole</th>
<th>With dipole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2</td>
<td>$P(H_0</td>
</tr>
<tr>
<td>Harmonic-space analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D-ILC</td>
<td>39.5</td>
<td>4.0×10^{-9}</td>
</tr>
<tr>
<td>MILCA</td>
<td>42.4</td>
<td>8.4×10^{-10}</td>
</tr>
</tbody>
</table>

Notes. We include the probability that hypotheses of “No dipole” and “With dipole” are true. All data and analysis combinations are consistent with the dipole modulation term. The deviations range from 6.2 to 6.6σ for the harmonic-space analysis, and from 5.0 to 5.9σ for the map-space analysis.

We include the CMB term. We can then directly calculate the probability that H_0 is true given the data ($\hat{\beta}$) as

$$P(H_0 | \hat{\beta}) = P(\hat{\beta} | H_0) P(H_0),$$

(19)

and

$$P(\hat{\beta} | H_k) = \frac{1}{\sqrt{2\pi}C} e^{-\chi^2_i/2},$$

(20)

We can calculate the odds ratio, O_{10}, on the assumption that the two hypotheses are equally likely,

$$O_{10} = \frac{P(H_1 | \hat{\beta})}{P(H_0 | \hat{\beta})} = \frac{e^{-\chi^2_i/2}}{e^{-\chi^2_0/2}}.$$

(21)

This quantity tells us to what degree H_1 should be trusted over H_0. Assuming that the two hypotheses are exhaustive, it is directly related to the probability that the individual hypotheses are true:

$$P(H_0 | \hat{\beta}) = \frac{1}{1 + O_{10}},$$

(22)

$$P(H_1 | \hat{\beta}) = \frac{O_{10}}{1 + O_{10}}.$$

(23)

These quantities and the χ^2 values are given in Table 1.

We can also generate a likelihood for our parameters with the same covariance matrix:

$$L(\beta) = \frac{1}{\sqrt{2\pi}C} e^{-\chi^2/2},$$

(24)

where we define the modified χ^2 as above. We can then apply Bayes’ theorem with uniform priors on the β_i, equating the posterior of β_i with Eq. (24). A simple conversion allows us to obtain the posterior of the parameters in spherical coordinates ($\hat{\beta}, \hat{\ell}, \hat{b}$). We show this in Fig. 2 for our two analyses, using the 2D-ILC and MILCA maps.

In the following subsections we describe two methods of cross-correlation: the first we perform directly in map-space; and the second is performed in harmonic space. An advantage of using two independent methods is that their noise properties are different; for example, working in harmonic space introduces complications with masking, whereas in map space, although it may not be clear how to optimally weight the data, the estimator has less sensitivity to large-scale systematic effects. Thus, the advantage of using two approaches will become apparent when we try to assess the level of systematic error in our analysis.

4.1. Map-space method

First we apply our mask to the templates B_i and y map. Then we locate all peaks (i.e., local maxima or minima) of the template map B_i and select a patch of radius 2θ around each peak. Our specific implementation of the peak method follows earlier studies, for example Planck Collaboration VII (2020). The weighting scheme has not been shown to be optimal, but a similar approach was used for determining constraints on cosmic birefringence Contreras et al. (2017) and gave similar results to using the power spectra (and the issue of weighting is further discussed in Jow et al. 2019). Intuitively we would expect that sharper peaks have a higher signal, and hence that influences our choice for the weighting scheme described below. For each peak we obtain an estimate of $\hat{\beta}$ by the simple operation

$$\hat{\beta}_{i,p} = \sum_{k \in D(p)} \frac{B_{i,k} y_k}{\sum_{k \in D(p)} B_{i,k}^2},$$

(25)

where $D(p)$ is the collection of all unmasked pixels in a 2θ radius centred on pixel p, and p is the position of a peak. Equation (25) is simply a cross-correlation in map space and by itself offers a highly-noisy (and largely unbiased8) estimate.

We then combine all individual peak estimates with a set of weights (w_p) to give our full estimate:

$$\hat{\beta}_i = \sum_p w_p \hat{\beta}_{i,p}.$$

(26)

The values of w_p depend solely on the templates B_i, and they can be chosen to obtain the smallest uncertainties. We choose w_p to be proportional to the square of the dipole, which ensures that peaks near the dipole direction (and anti-direction) are weighted more than those close to the corresponding equator. We further choose that the weights are proportional to the square of the Laplacian at the peak (Desjacques 2008); this favours sharply defined peaks over shallow ones. Finally we account for the scan strategy of the Planck mission by weighting by the 217GHz hits map (denoted H^2_{217} Planck Collaboration VIII 2016), though this choice provides no appreciable difference to our results. The weights then are explicitly

$$w_p = |\hat{n} \cdot \hat{m}_p|^2 \left(\nabla^2 (B_i)^2 \right)^{1/2} H^2_{217}.$$

(27)

We evaluate the Laplacian numerically in pixel space at pixel p. The weighting scheme closely resembles the bias factors that come about when relating peaks to temperature fluctuations (Bond & Efstathiou 1987), as used in Komatsu et al. (2011), Planck Collaboration Int. XLIX (2016) and Jow et al. (2019).

Combining Eqs. (26) and (27) gives us our estimates, $\hat{\beta}_i$. We apply the method for each of our simulated y maps, in exactly the same way as for the data.

8 This is strictly true for $\hat{\beta}_i$ only; the presence of a strong signal in the data is correlated in orthogonal directions due to the mask and thus may appear as a mild bias in $\hat{\beta}_i$ and $\hat{\beta}_i$. There is also a bias due to the correlations between the templates. The weighting in harmonic space is much simpler, and so this effect is taken into account in the harmonic-space method; however, due to the complicated nature of the weighting in the map-space method it is not included in this section. We discuss this further in Sect. 5.
4.2. Harmonic-space method

The alternative approach is to directly cross-correlate Eq. (17) with the y map, and compare this to the auto-correlation of Eq. (17).

Our first step is identical to the previous method in that we mask the templates B_i and y maps. Under the assumption that the y map contains the template (B_i), the y multipoles are Gaussian random numbers with mean and variance given by

$$\chi^2_{lm} = \int d\Omega \beta \hat{m}_l \cdot \hat{n} \frac{\delta T}{T_0} M(\Omega) Y_{lm}^*, \quad (28)$$

$$\sigma_{lm}^2 = C_l^y + N^y_l, \quad (29)$$

respectively, where $M(\Omega)$ is the mask over the sphere, Y_{lm} are the spherical harmonics, and the \hat{m}_l are as defined in Eq. (17). Thus
we can obtain an estimate of β by taking the cross-correlation with inverse-variance weighting. We can demonstrate this simply by writing our y map as a sum of our expected signal plus everything else:\(^9\)

$$y_{lm} = \frac{\beta}{\bar{\beta}} s^y_{lm} + \eta^y_{lm}$$

(30)

Here our signal is of course given when $\beta_l = \beta \delta_l$, and all sources of noise, such as tSZ, are given by η^y_{lm}. We then cross-corrrelate with our template and sum over all multipoles with inverse-variance weighting. We explicitly consider noise in our template, that is our template (\bar{s}^y_{lm}) is related to Eq. (29) via, $s^y_{lm} = s^y_{lm} + \eta^y_{lm}$, where η^y_{lm} is the noise in our template. Then the cross-correlation looks like,

$$\sum_{lm} s^y_{lm} y^*_{lm} / \sigma^2_{lm} = \frac{\beta}{\bar{\beta}} \sum_{lm} s^y_{lm} (s^y_{lm})^* / \sigma^2_{lm} + \sum_{lm} \eta^y_{lm} (\eta^y_{lm})^* / \sigma^2_{lm},$$

(31)

and expanding it out, becomes

$$\sum_{lm} s^y_{lm} y^*_{lm} / \sigma^2_{lm} + \sum_{lm} \eta^y_{lm} y^*_{lm} / \sigma^2_{lm} = \frac{\beta}{\bar{\beta}} \sum_{lm} s^y_{lm} (s^y_{lm})^* / \sigma^2_{lm} + \frac{\beta}{\bar{\beta}} \sum_{lm} \eta^y_{lm} (\eta^y_{lm})^* / \sigma^2_{lm} + \sum_{lm} s^y_{lm} (\eta^y_{lm})^* / \sigma^2_{lm} + \sum_{lm} \eta^y_{lm} (s^y_{lm})^* / \sigma^2_{lm}.$$

(32)

The last term on the left and last terms on the right are all statistically zero, since our template does not correlate with tSZ or any other types of noise and the noise in our template does not correlate with the template itself or with noise in the y map (by assumption). Hence we can solve for β, neglecting those terms, to produce our estimator $\hat{\beta}$:

$$\hat{\beta} = \beta \frac{\sum_{lm} \sum_{lm} s^y_{lm} (s^y_{lm})^* / \sigma^2_{lm}}{\sum_{lm} \sum_{lm} s^y_{lm} (\eta^y_{lm})^* / \sigma^2_{lm}}.$$

(33)

It is important to note that in practice we do not have s^y_{lm}, since we do not know the exact realization of noise in the CMB, so we instead use \bar{s}^y_{lm}. Using Weiner-filtered results would allow us to calculate s^y_{lm}, but adds complexity in the masking process. We can compare what the Weiner-filtered results would be,

$$\sum_{\ell} \frac{(C^T_{\ell})^2}{\sigma^2_{\ell}} (2\ell + 1)$$

$$C^T_{\ell} + N^T_{\ell}$$

(34)

to our results,

$$\sum_{\ell} \frac{(C^T_{\ell})^2}{\sigma^2_{\ell}} (2\ell + 1)$$

(35)

and find the bias to be on the order of 2% for $\ell_{\max} = 1411$, justifying our use of the cut-off. Equation (33) is in fact a direct solution for β, in the absence of noise, since it is the direct solution of Eq. (32) in the absence of noise.

\(^9\) Note that here η^y_{lm} is different to that in Eq. (15), since it now also includes the y signal, which is treated as a noise term in this analysis.

Table 2. As in Table 1 but using SMICA–tSZ CMB template maps.

<table>
<thead>
<tr>
<th>Method</th>
<th>No dipole</th>
<th>With dipole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2</td>
<td>$P(H_0</td>
</tr>
<tr>
<td>Harmonic-space analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D–ILC</td>
<td>41.9</td>
<td>1.5×10^{-9}</td>
</tr>
<tr>
<td>MILCA</td>
<td>45.4</td>
<td>3.1×10^{-10}</td>
</tr>
<tr>
<td>Map-space analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D–ILC</td>
<td>40.1</td>
<td>8.9×10^{-9}</td>
</tr>
<tr>
<td>MILCA</td>
<td>27.9</td>
<td>1.1×10^{-6}</td>
</tr>
</tbody>
</table>

Relating back to the map-space method, s^y_{lm} are the spherical harmonic coefficients of the templates denoted previously by B_i, and y_{lm} are the spherical harmonic coefficients of the y map. The values for $s^y_{lm}(s^y_{lm})^*$ and $s^y_{lm}(y_{lm})^*$ may be computed using the maps with the HEALPix (Gorski et al. 2005) routine anafast. In the case of the term $s^y_{lm}(s^y_{lm})^*$ this results in a 3×3 matrix for each ℓ, with the cross-power spectrum for the three templates on the off-diagonals.

In the absence of a mask M the signal $|s^y_{lm}|^2$ induces power in a $\cos^2 \theta$ pattern. The presence of a mask (being largely quadrupolar in shape) induces power in a more complicated way, but has strong overlap with a cos$^2 \theta$ pattern as well. Therefore the application of a mask necessarily makes this method sub-optimal; however, since the template is masked in the same way, the method is unbiased.

We apply the method for each of our simulated y maps, in exactly the same way as for the data, in order to assess whether the dipole modulation is detected.

5. Results

The main results of this paper are presented in Tables 1 and 2 and Fig. 2. They show how consistent the data are with the presence (or non-presence) of the dipole term, and the recovered posteriors of the dipole parameters, respectively. In the following subsections we describe our results for each method in more detail.

5.1. Map-space results

First we compare the consistency of the data with our two sets of simulations (with and without the dipole term). This comparison shown in Fig. 3, with blue histograms being the simulations with the dipole term and orange histograms without. The data (black line) for 2D–ILC and MILCA can clearly be seen to be consistent with the simulations with the dipole term; this observation is made quantitative from examination of the χ^2 (see Tables 1 and 2). The map-space method is more susceptible to biases induced by the mask, particularly in the off-dipole directions, $\beta_{\ell2}$ and $\beta_{\ell3}$; this is due to subtle correlations between the mask and templates, but has only a small effect in those directions (at the level of a few tenths of σ), as can be seen in Fig. 3. Converted into the equivalent probabilities for Gaussian statistics, we can say that the dipole modulation is detected at the 5.0 to 5.9σ level.

5.2. Harmonic-space analysis

Figure 4 is the equivalent of Fig. 3, but for the harmonic-space analysis. Similar to the previous subsection the data are
Fig. 3. Histograms of $\hat{\beta}_i/\beta$ values (with 1, 2, and 3 corresponding to the CMB dipole direction, Galactic plane, and a third orthogonal direction) using the map-space analysis for MILCA (top) and 2D–ILC (bottom) y maps, and for CMB template maps SMICA–W0SZ (left) and 2D–ILC (right). Blue histograms are simulations with the dipolar modulation term, and orange histograms are simulations without. Black vertical lines denote the values of the data, demonstrating that they are much more consistent with the existence of the dipolar modulation term than without it. Dashed lines show the 68% regions for a Gaussian fit to the histograms.

Fig. 4. As in Fig. 3, except now for the harmonic-space analysis.

much more consistent with the modulated simulations than the unmodulated simulations. Tables 1 and 2 contain the explicit χ^2 values and verify this quantitatively. The harmonic-space method is somewhat susceptible to biases induced by the mask, due to the complex coupling that occurs, mainly between the ℓ and $\ell \pm 2$ modes. This can be seen in the slight bias in the results for $\hat{\beta}_2$ and $\hat{\beta}_3$. Nevertheless, we can say that we confidently detect the dipole modulation at the 6.2 to 6.6σ level.

6. Systematics

We have generated results using two distinct methods, namely the map-space method and harmonic-space method, with two
distinct CMB maps and two distinct y maps, and have shown that the results to be consistent with the presence of a dipole-modulation signal in the expected direction. Each test is subject to slightly different systematics, but since the results are consistent, we can conclude that there is likely no significant systematic interfering with the results. Further tests, relaxing the limits of ℓmax = 1411 show that it is possible to achieve even higher levels of significance using smaller-scale data (see Appendix C). In that sense, the results in this paper are conservative; however, if it becomes possible to construct reliable y maps out to higher multipoles then it should be possible to achieve the detection of the dipole modulation at perhaps twice the number of σ as found here.

6.1. Residuals in the component separation

The NILC y maps are known to contain some remnant CMB contamination, unlike the MILCA and 2D–ILC y maps, which have been generated with the express purpose of eliminating the CMB contribution. This contaminates the signal we are looking for; the results from the NILC y maps may be seen in Appendix B. Any contamination remaining in the NILCA and 2D–ILC y maps is sufficiently low that it does not hide the dipole modulation signal.

6.2. Galactic foregrounds

It is known that the y maps are contaminated by Galactic foregrounds; however, as the results here are from a cross-correlation with the modulated CMB maps with the grounds; however, as the results here are from a cross-correlation it is su

7. Conclusions

Due to the existence of the CMB dipole, a tSZ map necessarily contains a contaminating signal that is simply the dipole modulation of the CMB anisotropies. This occurs because CMB experiments do not directly measure temperature anisotropies, but instead measure intensity variations that are conventionally converted to temperature variations. This contamination adds power to the tSZ map in a Y20 pattern, with its axis parallel to the dipole direction. We have measured this effect and determined a statistically independent value of the CMB dipole, which is consistent with direct measurements of the dipole. Using a conservative multipole cut on the y map, the significance of the detection of the dipole modulation signal is around 5 or 6σ, depending on the precise choice of data set and analysis method. This is a significant improvement from the 2 to 3σ results in Planck Collaboration XXVII (2014). We also find that the contamination of the tSZ map contributes negligible noise to the bispectrum calculations (see Appendix A).

Acknowledgements. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU–IN2P3–INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RNC (Norway); SFI (Ireland); FCT/MCTES (Portugal); and ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package and the Ishter package and some plots were generated using the PyGTC package.

References

A100, page 9 of 14
Appendix A: The tSZ bispectrum

Fundamentally the modulation is a correlation between C_{ℓ} and $C_{\ell+1}$. The signal considered here therefore shows up most prominently in the 4-point function (i.e., trispectrum) and thus we do not expect it to bias the measurements of the tSZ bispectrum; however, since the bispectrum is an important quantity for characterizing the tSZ signal, it is worth checking to ensure that the dipolar modulation does not add significant noise. In other words, we want to check if it is important to remove the dipole modulations before performing analysis of the tSZ bispectrum. Lacasa et al. (2012) and Bucher et al. (2010) describe in detail the calculation of the bispectrum and the binned bispectrum, and this is summarized below. The reduced bispectrum is given by

$$B_{\ell_1\ell_2\ell_3} = (N_{\ell_1\ell_2\ell_3})^{-1/2} \times \sum_{m_1,m_2,m_3} \left(\begin{array}{ccc} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{array} \right) a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3},$$ \hspace{1cm} (A.1)

where ℓ_1, ℓ_2, ℓ_3 represent the Wigner-3j functions and

$$N_{\ell_1\ell_2\ell_3} = \frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)}{4\pi \ell_1 \ell_2 \ell_3}. $$ \hspace{1cm} (A.2)

The normalized bispectrum is non-zero for terms where $m_1 + m_2 + m_3 = 0, |\ell_2 - \ell_3| \geq \ell_1 \geq \ell_2$ and $\ell_1 + \ell_2 + \ell_3$ is even (this is due to the term before the sum with $m_1, m_2, m_3 = 0$). Typically, the binned bispectrum is analysed to reduce the number of terms calculated and saved, which constitutes only a small loss of information because the bispectrum is expected to vary slowly with ℓ (Lacasa et al. 2012). The data are binned by breaking down the interval from ℓ_{\min} to ℓ_{\max} into i bins, denoted by Δ. An average for the bispectrum of a particular bin can then be calculated using

$$B_{i_{\ell_1\ell_2\ell_3}} = \frac{1}{\Xi_{i_{\ell_1\ell_2\ell_3}}} \sum_{\ell_1 m_1} \sum_{\ell_2 m_2} \sum_{\ell_3 m_3} B_{\ell_1\ell_2\ell_3},$$ \hspace{1cm} (A.3)

where $\Xi_{i_{\ell_1\ell_2\ell_3}}$ is the number of non-zero elements in the given bin. Both the bispectrum and the binned bispectrum may be calculated using an integral over the map space as well, rather than in harmonic space. This is achieved by first generating the binned scalemaps defined by

$$y_{\Delta}(\hat{n}) = \sum_{\ell \Delta m} y_{\ell m} Y_{\ell m}(\hat{n}),$$ \hspace{1cm} (A.4)

where the sum goes from ℓ_{\min} to ℓ_{\max} in the bin Δ. We can then use

$$B_{i_{\ell_1\ell_2\ell_3}} = \frac{1}{N_{i_{\ell_1\ell_2\ell_3}}} \int d^2 \hat{n} \ y_{\Delta_1}(\hat{n}) y_{\Delta_2}(\hat{n}) y_{\Delta_3}(\hat{n}),$$ \hspace{1cm} (A.5)

which gives the weighted average of the bispectrum within the bins (Lacasa et al. 2012).

In Figs. A.1 and A.2 we show a subset of the binned normalized bispectra for the y maps, with and without the dipole modulation. For simplicity, since we are just comparing the results of two simulated maps, there are no non-Gaussianities and no mask applied. This analysis was performed using the NILC y map and the SMICA–NO-SZ CMB temperature map. Plots are constructed in the style suggested by Lacasa et al. (2012) for an ℓ_{\max} of 500 (and an N_{side} of 512 to speed up computation).

Useful definitions here are

$$\sigma_1 = \ell_1 + \ell_2 + \ell_3,$$
$$\sigma_2 = \ell_1 \ell_2 + \ell_1 \ell_3 + \ell_2 \ell_3,$$
$$\sigma_3 = \ell_1 \ell_2 \ell_3,$$
$$\bar{\sigma}_2 = 12 \sigma_2/\sigma_1^2 - 3, \in [0, 1],$$
$$\bar{\sigma}_3 = 27 \sigma_3/\sigma_1^3, \in [0, 1],$$
$$F = 32 (\bar{\sigma}_2 - \bar{\sigma}_3)/3 + 1,$$
$$S = \bar{\sigma}_3,$$
$$P = \sigma_1,$$

where P is the perimeter, each plot represents the results of a particular perimeter size, F is plotted along the y-axis of the panels and S is plotted along the x-axis of the panels.

Our main goal is to determine whether the dipole modulation contamination of the y maps is significant, and to what degree it is significant for current and future analysis as data improves. For this purpose a subset of the tested perimeter values are plotted, for data with the dipole modulation and without, and the absolute value of the differences. It does not appear that the dipole modulation has a noticeable effect on the bispectrum results.
Fig. A.1. Binned bispectrum, for simulated y maps, with $\ell_{\text{max}} = 500$ and bin sizes of 10, and “scalemaps” defined in Eq. (A.4), of $N_{\text{side}} = 512$. Left panels: bispectrum for a simulated y map with the dipole modulation; right panels: same with no dipole-modulation. The quantities P, F, and S are as defined in Eq. (A.13).
Fig. A.2. Absolute (left) and relative (right) difference between the bispectrum with and without the dipole-modulation term.
Appendix B: NILC y-map results

In creating the Planck y maps using NILC, the choices were optimized for removal of the contamination by CMB, foregrounds, and noise. With the MILCA y maps there was an additional constraint added to fully eliminate the CMB, at the expense of adding more foregrounds and noise contamination. For this reason the CMB contamination in the NILC y maps is too high for us to robustly detect the dipole modulation. The 2D-ILC y map was also produced with the express intent of removing all CMB contamination, and both it and the MILCA maps clearly show that the dipole modulation is present. For completeness, here we present the effect of the contamination in the NILC y maps in Fig. B.1. The dipole modulation signal is seen to be completely hidden by the CMB contamination.

Appendix C: Increased ℓ_{max} results

In our analysis for the harmonic-space method the results were truncated at $\ell_{\text{max}} = 1411$, since this is the recommendation from Planck Collaboration XXII (2016) to avoid the correlated noise and foreground contaminations present in higher ℓ. If we were to assume that the simulations model the data properly up to a higher ℓ_{max}, and that we also trust the data up to this higher ℓ_{max}, then we would be able to achieve a greater significance than reported in the conclusions. This can be seen in the simulation results using the MILCA y map and the SMICA–N0SZ CMB templates. These particular results are from 500 simulations for $N_{\text{side}} = 1024$, and $\ell_{\text{max}} = 2750$. The significance appears to be at the $>12\sigma$ level. To do the analysis fully at this ℓ_{max} the Weiner filter would also need to be applied to the CMB maps, as without it the bias would be much larger than the 2% found in our analysis.

Fig. B.1. As in Figs. 3 (top) and 4 (bottom), except using the NILC y maps. Top panels: results from the map-space method, bottom panels: those from the harmonic-space method.

Fig. C.1. As in Fig. 4, but with $\ell_{\text{max}} = 2750$ compared to $\ell_{\text{max}} = 1411$ used in the paper. If we were to trust the y map out to these multipoles, then these results would have a significance of $>12\sigma$.