
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Chukharev, Konstantin; Suvorov, Dmitrii; Chivilikhin, Daniil; Vyatkin, Valeriy
SAT-Based Counterexample-Guided Inductive Synthesis of Distributed Controllers

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2020.3037780

Published: 01/01/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Chukharev, K., Suvorov, D., Chivilikhin, D., & Vyatkin, V. (2020). SAT-Based Counterexample-Guided Inductive
Synthesis of Distributed Controllers. IEEE Access, 8, 207485-207498. Article 9257351.
https://doi.org/10.1109/ACCESS.2020.3037780

https://doi.org/10.1109/ACCESS.2020.3037780
https://doi.org/10.1109/ACCESS.2020.3037780

Received September 30, 2020, accepted October 29, 2020, date of publication November 16, 2020,
date of current version November 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037780

SAT-Based Counterexample-Guided Inductive
Synthesis of Distributed Controllers
KONSTANTIN CHUKHAREV 1,2, DMITRII SUVOROV1,2, DANIIL CHIVILIKHIN 1,2,
AND VALERIY VYATKIN2,3,4, (Senior Member, IEEE)
1Sirius University of Science and Technology, 354340 Sochi, Russia
2Computer Technologies Laboratory, ITMO University, 197101 Saint Petersburg, Russia
3Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
4Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden

Corresponding authors: Konstantin Chukharev (kchukharev@itmo.ru) and Daniil Chivilikhin (chivdan@itmo.ru)

Funding: The reported study was funded by RFBR, project number 19-37-51066.

ABSTRACT This article proposes a new method for automatic synthesis of distributed discrete-state
controllers from given temporal specification and behavior examples. The proposed method develops known
synthesis methods to the distributed case, which is a fundamental extension. This method can be applied for
automatic generation of correct-by-design distributed control software for industrial automation. The pro-
posed approach is based on reduction to the Boolean satisfiability problem (SAT) and has Counterexample-
Guided Inductive Synthesis (CEGIS) at its core. We evaluate the proposed approach using the classical
distributed alternating bit protocol.

INDEX TERMS Control system synthesis, inference algorithms, Boolean satisfiability, counterexample-
guided inductive synthesis, formal verification, model checking.

I. INTRODUCTION
The design of robust industrial automation systems is a com-
plex problem. It is common to use deterministic finite-state
models in order to reduce the complexity of engineering
and benefit from automated software verification techniques
[1]–[5]. Thus, controller logic is often designed as a set of
interacting automata.

Usually, finite-state models of controllers are designed by
hand. This is a tedious and error-prone process, especially
when long-term maintenance is required. Often there is no
access to the controller logic source code, leading to the prob-
lem of migrating to new automation standards, e.g. migra-
tion from the IEC 61131-3 [6] standard for programmable
logic controllers (PLCs) to the modern IEC 61499 [5] for
distributed industrial automation systems. Alternatively, one
could employ finite-state automata synthesis techniques and
infer controller models from behavioral examples and/or tem-
poral specification [7]–[14].

Automatic synthesis of finite-state models is a well-known
problem [3], [4], [7], [8], [11], [15]–[17]. Over the past
years, various methods have been proposed that can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Dong Shen .

directly applied for controller model inference. However,
these methods are mostly focused on inference of a mono-
lithic controller, i.e. controller that is implemented as one sin-
gle finite-state machine. In this work, we address the problem
of synthesizing finite-state models for a set of independent
controllers which communicate with each other via network.
More specifically, we target systems implemented following
the international standard for distributed automation systems
development IEC 61499 [5], which defines control systems
as networks of interacting function blocks (FBs), specified
by their interfaces and implementations (control algorithms).
Essentially, control algorithms are finite-state automata.

The main contribution of this article is a method for syn-
thesis of finite-state models for a distributed controller (set of
interconnected individual controllers) from behavior exam-
ples and temporal specification. We implement the proposed
method as an extension of the tool fbSAT [18], [19] and
evaluate it using the Alternating Bit Protocol (ABP) [20] as
an example.

The rest of this article is structured as follows. In Section II,
we introduce the necessary definitions and notation.
In Section III, we formally state the problem addressed in
this article. Section IV contains a survey of related work.
In Section V, we briefly describe the previous work done

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 207485

https://orcid.org/0000-0002-4636-2379
https://orcid.org/0000-0002-6417-6254
https://orcid.org/0000-0003-1063-1351

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

on the synthesis of monolithic controllers [18]. Then,
in Section VI, we describe the main contribution of this
article: extension of monolithic controller synthesis for
distributed systems. Section VII describes our experiments
with ABP. The results are discussed in Section VIII, and
Section IX concludes the paper.

II. PRELIMINARIES
A. FUNCTION BLOCKS AND AUTOMATA
In this work we consider function blocks (FBs), defined in
the IEC 61499 standard, as a target implementation for syn-
thesized systems. A function block is defined by an interface
and a control algorithm. An interface (see e.g. Fig. 1) speci-
fies interaction between function block and environment, and
consists of the sets of input and output events (denoted with
I and O respectively), and the sets of input and output vari-
ables (denoted withX andZ respectively). We only consider
Boolean input/output variables.

FIGURE 1. A function block.

A control algorithm is a Moore-type finite-state machine,
called execution control chart (ECC). Later we will refer to
such ECC simply as automaton. A rigorous description of FB
semantics including a formal definition of ECC can be found
in [21]. In this article we only consider canonical ECCs with
logical inputs and outputs. Formally, an automaton A is a
tuple (Q, qinit, I,O,X ,Z, λ, ψ, ω), where:
• Q is a set of states;
• qinit ∈ Q is the initial state;
• I, O are the sets of input/output events;
• X , Z are the sets of input/output variables;
• λ : Q×I×B|X | 7→ Q is the partial transition function;
• ψ : Q × I × B|X | → (O ∪ {ε}) is the output event
function;

• ω : Q×I×B|X |×B|Z|→ B|Z| is the output function.
The states of an automaton are marked with output events and
algorithms. Algorithm is a function that changes the values of
output variables Z . In this article we consider algorithms of
form B|Z|→ B|Z|, where each output variable only depends
on its previous value. The transitions of an automaton are
marked with input events and guard conditions – functions of
a form B|X | → B which enables/disables a given transition
for current input variables values. We label a transition with
R & x to indicate it is marked with an input event R and a
guard x.

An automaton reads a sequence of input actions and trans-
forms it into a sequence of output actions. An input action i[x̄]
is a pair of an input event i ∈ I and a vector of input variable
values x̄ = 〈x1, . . . , x|X |〉, where xi ∈ X . Similarly, an output
action o[x̄] is pair of an output event o ∈ O∪{ε} and a vector
of output variable values z̄ = 〈z1, . . . , z|Z|〉, where zi ∈ Z .
An empty output event ε is producedwhen automaton ignores
an input action and does not make a transition. Later we will
refer to x̄ and z̄ simply as input and output. The semantics
of an execution step is as follows. An automaton receives an
input action i[x̄] and changes its state to q′ = λ(q, i, x̄), where
q is the current state and x̄ are current input variable values.
Next, it produces an output event o′ = ψ(q, i, x̄) changes
the output variable values to z̄′ = ω(q, i, x̄, z̄), where z̄ are
current output variable values. Note that the automaton may
ignore some input actions, in that case the output event is an
empty event: o′ = ε, and the state and the values of output
variables do not change: q′ = q, z̄′ = z̄.

B. EXECUTION SCENARIOS
An execution scenario is a sequence of scenario elements si.
A scenario element is a pair of an input action and an output
action: si = 〈i[x̄], o[z̄]〉. An automaton A satisfies a scenario
s, if after processing a sequence of input actions in s it
produces the exact same sequence of output actions as in s.
A positive scenario is an execution scenario, that repre-

sents a desired behavior of the automaton. Positive scenar-
ios can either be obtained by running a simulation of some
model or by accessing a real automation system. For example,
in [22], execution scenarios are obtained directly from the
legacy automation system: each legacy PLC is physically
connected with a data collection PLC that observes and logs
all input/output signals of the legacy PLC, thus producing
a positive execution scenario. A separate problem addressed
in [22] is denoising the hardware-derived execution scenarios
that may exhibit various types of errors. In this work we
assume that execution scenarios do not contain errors.

C. FORMAL VERIFICATION WITH MODEL CHECKING
In this work we specify a system with a set of linear tem-
poral logic (LTL) [23] formulas. An LTL formula is defined
over execution paths and describes some temporal properties
of these paths. LTL formulas include atomic propositions
(some elementary statements about the system), propositional
logic connectives (∧, ∨, ¬, →), and temporal operators
(e.g., X – ‘‘next’’, U – ‘‘until’’, G – ‘‘always’’, F – ‘‘even-
tually’’). With LTL formulas one can specify safety (‘‘some-
thing bad never happens’’) and liveness (‘‘something good
will eventually happen’’) properties of a given system.
An example of a safety property is a formula G¬P, which
states that some predicate P is always false. An example of
a liveness property is a formula G(P → FQ), which states
that if a predicate P is true, then a predicate Q will eventually
become true.
Model checking [24] is a technique that can be used to

verify a given finite-state model w.r.t. a given specification

207486 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

(here, set of LTL formulas) and obtain a counterexample exe-
cution path if this specification is violated. Counterexamples
can further be translated to negative scenarios – execution
scenarios representing undesired behavior of an automaton
or a system of automata. This process is described in detail in
Section V-A2.

D. BOOLEAN SATISFIABILITY PROBLEM
The SAT problem consists in determining whether a Boolean
formula in Conjunctive Normal Form (CNF) is satisfiable.
A Boolean variable has values from the set B = {0, 1}.
Boolean variable x and its negation ¬x are called literals; lit-
erals x and¬x are called contrary. A clause is a disjunction of
non-contrary literals, e.g., x1 ∨ x2 ∨ ¬x3. A Boolean formula
in CNF is a conjunction of clauses. A formula is called sat-
isfiable if there exists an assignment of variable values such
that all clauses evaluate to 1; such an assignment is called sat-
isfying. If a satisfying assignment does not exist, the formula
is called unsatisfiable. The problem is to determine if a given
formula is satisfiable, and if it is, to find a satisfying assign-
ment. SAT is the classical NP-complete problem [25], [26].
Extensive research in SAT theory and algorithms resulted
in modern SAT solvers based on the conflict-driven clause
learning (CDCL) algorithm [27], which are now considered
to be a standard computational tool used in various applica-
tion domains [28].

Instead of developing an ad-hoc algorithm for a hard prob-
lem at hand, in many cases one may develop a reduction of
the problem to SAT: a function that, given a problem instance,
produces a CNF formula that is satisfiable if and only if the
original problem has a solution. The resulting CNF formula
is then fed as input to a SAT solver tool. The outcome of SAT
solving process is either a satisfying assignment, or UNSAT
– an indication that the formula is unsatisfiable.

III. DISTRIBUTED CONTROLLER SYNTHESIS PROBLEM
In this work we consider a setup of a distributed controller,
in which multiple individual controllers, also called mod-
ules, communicate with each other via some environment.
We assume that the controllers are implemented (or could
be implemented) with FBs, hence the communication is
done by exchanging messages and setting Boolean variables.
We do not formalize what an environment is, but instead
require that it can be modeled with an input language of some
model checker (in our experiments we use NuSMV [29]).
By avoiding a more rigorous definition of an environment
we gain more flexibility in the application of the proposed
approach. For instance, we can model a synchronous setup,
when controllers are attached to a common bus, like in [22],
or we can model a true distributed system, in which modules
communicate via unreliable channels.

We assume that we can observe the system and gather
behavior examples, and that there is some temporal specifi-
cation of the system. Our goal is to infer a set of FB mod-
els, one for each module of the distributed controller, such
that the distributed system complies with the given positive

scenarios and LTL/specification. Denote the number of mod-
ules withM , and let m ∈ [1 ..M] be the index of a module in
the rest of this article. Ultimately, the problem addressed in
this work is to infer a set of automata {A(m)

} for all modules,
that comply with a given set of individual positive scenarios
S+(m) for each module, and an LTL/specification L for the
whole system. The module interfaces (i.e. sets X (m), Z (m),
I(m), andO(m)) are known beforehand, and LTL formulas use
variables from these sets as atomic propositions.

IV. RELATED WORK
Our work is mainly inspired by [16], where an approach
for automatic synthesis of distributed protocols has been
proposed. Distributed protocols are similar to distributed
industrial control systems in the sense that they too can be
modeled with a set of communicating finite-state machines.
Correctness of protocols is also specified with safety and
liveness temporal properties. The approach proposed in [16]
uses the idea of program sketching [30], in which the devel-
oper of the protocol specifies an incomplete implementation,
and the synthesis tool automatically completes the manual
implementation by means of search and verification of tem-
poral properties. This approach of protocol completion deals
with the known undecidability of the distributed synthesis
problem [31]: limiting the sizes of the synthesized finite-state
machines and their number of transitions makes the comple-
tion problem decidable [16]. The approach of [16], similar
to our work, is based on counterexample-guided inductive
synthesis (CEGIS) [32]. However, it uses the following strong
assumptions.

1) An incomplete protocol process (automaton or module)
is defined as an automaton in which some transitions
are missing (in comparison with a complete process).
Thus, it is assumed that the protocol developer provides
a partial implementation, in which some needed tran-
sitions are missing, and, more importantly, all present
transitions are correct. In this assumption, the synthesis
(or rather, completion) algorithm only needs to add some
missing transitions. This scenario does not appear to
be very practical: an error in the manually prepared
transitions will prevent the algorithm from finding the
solution.

2) Following from the first assumption, the input scenarios
in [16] are assumed to cover all necessary states of each
protocol. If this assumption is violated, the algorithm
will fail to complete the distributed protocol.

3) Due to previous assumptions, the learner part of the
CEGIS in [16], the one that is supposed to provide
candidate completions for verification, is a simple enu-
meration algorithm. Though the use of enumeration
algorithms is quite a valid approach when the search
space is small, in practice it quickly becomes infeasible.
A better approach employed in our research is delegation
of enumeration to a SAT solver, which performs it in a
more intelligent and efficient way.

VOLUME 8, 2020 207487

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

4) Finally, the algorithm used in [16] to construct incom-
plete automata from input scenarios heavily depends
on so-called labels that annotate messages [33]. Labels
affect the way that the scenario elements are merged,
thus having an effect on the produced automata. In fact,
labels mostly define the mapping of scenario elements
to states of the incomplete process.

In contrast to the above, in our approach we do not make
any assumptions about the input scenarios (apart that they
must define a deterministic system), do not require scenarios
to cover all states of the distributed controller, use an intel-
ligent SAT encoding to construct state machines from input
scenarios and provide candidate distributed controllers for
verification.

Use of SAT solvers is a common approach in automatic
passive synthesis of automata [7]–[9], [12], [17], [34], as well
as in many other application domains [28]. A related paper
that is based on the use SAT solvers is [22], where a modular
controller is synthesized from one set of positive scenarios,
not considering temporal properties. This is in contrast with
the problem addressed in the present paper, where each part
of the distributed controller (each automaton) is synthesized
from a separate set of positive scenarios, and the functioning
of the distributed system as a whole is bounded by temporal
properties, producing a set of negative scenarios for the entire
system.

V. OVERVIEW OF MONOLITHIC CONTROLLER
SYNTHESIS WITH fbSAT
In this section we briefly describe the fbSAT approach
for the synthesis of a single monolithic finite-state func-
tion block model from a set of positive scenarios and an
LTL/specification, proposed in [18]. The method is based
on a reduction to SAT. First, fbSAT builds an automaton
that satisfies the positive scenarios, that are represented with
a (positive) scenario tree. This is done with a SAT encoding
that ensures correspondence of scenario elements with corre-
sponding states of the automaton.

Second, the solution constructed from positive scenarios is
refined by means of counterexample-guided inductive syn-
thesis: on each iteration a model checker is used to ver-
ify the compliance of the current automaton with the LTL/
specification; if counterexamples are generated, then SAT
formula is appended with additional clauses that encode that
the sought solution must not demonstrate the behavior repre-
sented by the counterexample.

A. SCENARIO TREE
1) POSITIVE SCENARIO TREE
A scenario tree T is a prefix tree constructed from the set
of execution scenarios. Each execution scenario is prepended
with an empty element ε[〈0 . . . 0〉] so that they share a com-
mon prefix. Each node of a scenario tree is marked with an
output action, and each incoming edge is marked with an
input action. A node with its incoming edge correspond to

FIGURE 2. Positive scenario tree.

a scenario element. A scenario tree constructed from a set
of positive scenarios is called a positive scenario tree and
denoted with T +.

The following notation will be used throughout the paper.
The set of all unique inputs in the scenario tree is denotedwith
U ⊆ B|X |. The set of scenario tree nodes is denoted with V ,
ρ ∈ V is the root of the tree. The following functions are used
to describe the scenario tree:
• tp(v) ∈ V is the parent of node v ∈ V , v 6= ρ;
• tie(v) ∈ I is the input event on the incoming edge of
node v ∈ V , v 6= ρ;

• toe(v) ∈ O ∪ {ε} is the output event in node v ∈ V ;
• tin(v) ∈ U is the input on the incoming edge of node
v ∈ V , v 6= ρ;

• tov(v, z) ∈ B is the value of the output variable z ∈ Z in
node v ∈ V .

Tree nodes, other than the root, are divided into active V(act)
and passive V(pass) nodes, those with a non-empty and empty
output event respectively:
• V(act) = {v ∈ V \ {ρ}toe(v) 6= ε};
• V(pass) = {v ∈ V \ {ρ}toe(v) = ε}.

The scenario tree for the following positive scenarios is
shown in Fig. 2:

[〈R[00], ε[0]〉; 〈R[01],B[1]〉; 〈R[00], ε[1]〉;

〈R[01],B[0]〉],

[〈R[00], ε[0]〉; 〈R[10],A[0]〉; 〈R[00], ε[0]〉;

〈R[01],B[1]〉],

[〈R[00], ε[0]〉; 〈R[10],A[0]〉; 〈R[10],A[0]〉].

2) NEGATIVE SCENARIO TREE
An automaton can be verified against a given LTL/
specificationwith amodel checker tool, such asNuSMV [29].
A model checker finds a counterexample for each violated
LTL property in the form of an execution state sequence.
Note that execution states of NuSMV models should not be
confused with states of automata.

Counterexamples are translated into negative scenarios.
A counterexample for a safety property is a finite sequence
of execution states. Consider the system depicted in Fig. 3.
Every state produces an output event C and it is omitted in the
picture. A safety LTL property G¬z is violated as shown by

207488 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

FIGURE 3. Example automaton with a looping behavior.

the following counterexample (the notation [q1/0] indicates
the execution state, in which the automaton is in the state q1,
and the current value of z is 0):

[q1/0] R[1]−−−→[q2/0] R[1]−−−→[q4/0] R[1]−−−→[q5/1].

This counterexample is translated into the following loopless
negative scenario:

[〈R[1],C[0]〉; 〈R[1],C[0]〉; 〈R[1],C[1]〉].

A counterexample for a liveness property is an infinite
sequence, which can be represented as a finite prefix followed
by a loop. Consider a liveness property F z for the same
system. A counterexample for it would be the following:

A negative execution scenario obtained from this coun-
terexample contains a loopback and looks like this (the
beginning of the loop is underlined):

[〈R[1],A〉;〈R[1],C[0]〉; 〈R[0],C[0]〉; 〈R[1],C[0]〉].

A negative scenario tree T − is a prefix tree constructed
from a set of negative scenarios. It contains auxiliary edges
that represent loopbacks in negative scenarios. A set of tree
nodes connected via a loopback edge with a node v̂ is denoted
with t̂be(̂v) ⊆ V̂ . The notation for negative trees is the same
as for positive trees, but all symbols are marked with a hat:
v̂ ∈ V̂ , t̂p(v), V̂ (act), etc.

B. FB MODEL INFERENCE USING SAT SOLVER
The described approach is based on a reduction to SAT: a
Boolean formula is constructed which is satisfiable if and
only if there exists an automaton A of a predefined size
that satisfies positive scenarios and does not satisfy negative
scenarios. For non-Boolean variables with finite domains the
standard pairwise [35] encoding is used. Tseytin transforma-
tions [36] are employed to convert all constraints to CNF.
The encoding consists of four parts which are covered in
subsequent sections.

The following notation is used hereinafter. The number
C = |Q| is the number of states in automaton A, each state
has at most K ≤ C outgoing transitions. It is also assumed
that b ∈ B = {0, 1}, q ∈ Q, k ∈ [1 ..K], i ∈ I, o ∈ O, u ∈ U ,
v ∈ V , unless stated otherwise.

1) AUTOMATON STRUCTURE ENCODING
The first part of the encoding defines automaton states and
transitions. Variable φq ∈ O ∪ {ε} denotes the output event
associated with state q. Variable γq,z,b ∈ B denotes the new
value for the output variable z in dependence from its old
value b and state q. Thus, variable γ encodes the algorithm
associated with state q.

A transition is characterized by its destination state, input
event, and guard condition. Variable τq,k ∈ Q0, where
Q0 = Q∪{q0}, denotes the destination state of the k-th transi-
tion from state q. Some statesmay have less thanK transitions
– to deal with it, an auxiliary state q0 is introduced: τq,k = q0
indicates the absence of the k-th transition from the state q.
Variable ξq,k ∈ I ∪ {ε} denotes the input event associated
with the k-th transition from the state q. To encode guard
conditions the following variables are introduced. θq,k,u ∈ B
denotes the value of the guard condition associated with the
k-th transition from the state q for the input u, and δq,k,i,u ∈ B
is true if and only if that guard condition fires for an input
action i[u].
Finally, to represent how the automaton changes states

when processing the positive scenarios, variable λq,i,u ∈ Q0
is introduced. It denotes the state to which the automaton
switches after processing the input action i[u] in the state q.
λq,i,u = q0 denotes the situation when the automaton ignores
the input action i[u] and remains in the state q.

To reduce the search space size, symmetry-breaking con-
straints [10], [37] are declared. These constraints enforce that
the states of the automaton are enumerated in the breadth-first
search (BFS) traversal order. Variable τ bfsqi,qj ∈ B (qi, qj ∈ Q)
encodes whether there is a transition from state qi to state qj.
Variables τ bfsqi,qj ∈ B are defined through τ in the following
way:

τ bfsqi,qj ↔
∨

k∈[1..K]

(τqi,k = qj).

Variable πbfs
qj ∈ {q1, . . . , qj−1} (j ∈ [2 ..C]) denotes the

parent of the state qj in the BFS traverse tree:

(πbfs
qj = qi)↔ τ bfsqi,qj ∧

∧
r<i

(¬τ bfsqr ,qj).

Finally, the symmetry-breaking constraint requires that each
state has a parent in the BFS traverse tree with a smaller
number:

(πbfs
qj = qi)→

∧
r<i

(πbfs
qj+1 6= qr).

2) GUARD CONDITIONS STRUCTURE ENCODING
In the approach described so far, guard conditions are rep-
resented as truth tables (via variable θ). This representation
is inconvenient and is not human-readable. In [18], guard
conditions are represented with parse trees of corresponding
Boolean formulas and explicitly encoded in SAT. In this
encoding, the parameter P is the guard condition parse tree
size, and the parameter N is the upper bound for a total

VOLUME 8, 2020 207489

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

number of parse tree nodes in all guard conditions. We do not
describe this encoding here, since it is not necessary for the
understanding of the rest of the paper.

3) POSITIVE SCENARIO TREE MAPPING ENCODING
In order to make the automaton A comply with a set of
positive scenarios represented as scenario tree T +, a map-
ping µ : V → Q is organized between the tree nodes and the
automaton states. The variable µv ∈ Q denotes the satisfying
state (also called ‘‘mapped’’) in which the automaton finishes
processing a sequence of input actions on the path from ρ

to v ∈ V .
The root of the tree maps to the initial automaton state:

µρ = qinit. A passive node in the scenario tree represents the
case when the automaton ignores an input action and does
not change state. Thus, passive nodes map to the same state
as their parents:

(µv = q) ∧ (λq,i,u = q0),

where v ∈ V(pass), p = tp(v), q = µp, i = tie(v), u = tin(v).
Active nodes, on the contrary, represent the situation when

the automaton reacts to an input action i[u] and follows a tran-
sition – exactly to the satisfying state, where the automaton
must produce exactly the same output action as specified in
the active node:

(µv = q′)→ (λq,i,u = q′) ∧ (φq′ = o) ∧
∧
z∈Z

(γq′,z,b = b′),

where v ∈ V(act), p = tp(v), q = µp, q′ ∈ Q, i = tie(v),
u = tin(v), o = toe(v), z ∈ Z , b = tov(p, z), b′ = tov(v, z).

4) NEGATIVE SCENARIO TREE MAPPING ENCODING
Similar to the positive tree mapping, a mapping µ̂ : V̂ → Q0
is organized between the negative tree nodes and the automa-
ton states. Variable µ̂̂v ∈ Q0 denotes the satisfying state
(or its absence) in which the automaton finishes processing a
sequence of input actions on the path from ρ̂ to ¬ ∈ V̂ . Note
that it is acceptable for the automaton not to behave in the way
specified in the negative scenario tree, e.g., it might produce
mismatching output actions – in such cases the corresponding
nodes will be unsatisfied (also called unmapped), which is
denoted by µ̂̂v = q0, where q0 is an auxiliary automaton
state.

The root ρ̂ of the negative scenario tree T − maps to the
initial state of the automaton: µ̂ρ̂ = qinit.
Passive nodes either (1) map to the same state as their

parent, or (2) become unmapped (this happens when the
automaton does not exhibit the passive behavior):

(µ̂̂v = µ̂p̂) ∨ (µ̂̂v = q0),

where v̂ ∈ V̂ (pass), p̂ = t̂p(̂v). In the first case, the automa-
ton ignores the input action and remains in the same state
(i.e. does not follow any transition):

(µ̂̂v = q′)→ (λ̂q′,i,u = q0),

where v̂ ∈ V̂ (pass), q′ ∈ Q, i = t̂ie(̂v), u = t̂in(̂v). And in
the second case, the automaton does the inverse – follows
some transition:

(µ̂̂v = q0)→ (λ̂q,i,u 6= q0),

where v̂ ∈ V̂ (pass), p̂ = t̂p(̂v), q = µ̂p̂, i = t̂ie(̂v), u = t̂in(̂v).
Active nodes map to the state in which the automaton

finishes processing the input action i[u]:

(µ̂̂v = q′)↔ (λ̂q,i,u = q′) ∧ (φ̂q′ = o) ∧
∧
z∈Z

(γ̂q′,z,b = b′),

where v̂ ∈ V̂ (act), p̂ = t̂p(̂v), q = µp̂, q′ ∈ Q,
i = t̂ie(̂v), u = t̂in(̂v), o = t̂oe(̂v), z ∈ Z , b = t̂ov(̂p, z),
b′ = t̂ov(̂v, z). Note that this constraint, compared to positive
mapping, uses equivalence (↔) instead of implication (→):
a node maps to some state if and only if the automaton has
matching behavior. This allows to declare the definitions of
µ̂̂v = q′ only for q′ ∈ Q, without explicitly considering the
case µ̂̂v = q0 (which would require a large number of long
clauses, which generally makes the SAT problem harder for
a SAT solver [28]). When the automaton does not exhibit the
behavior specified in the scenario tree node, this node remains
unmapped (i.e. maps to q0).

If a negative tree node is unmapped, then all its descendants
are unmapped as well:

(µ̂t̂p(̂v) = q0)→ (µ̂̂v = q0).

Finally, for undesired behavior prohibition, it is required
that the first and the last nodes of the loop in the negative
tree either map to different states, or both are unmapped
(i.e. map to q0):∧

v̂′∈t̂be(̂v)

[
(µ̂̂v 6= µ̂̂v′) ∨ (µ̂̂v = µ̂̂v′ = q0)

]
.

C. COUNTEREXAMPLE-GUIDED INDUCTIVE SYNTHESIS
The approach described so far accepts positive and neg-
ative scenarios as input, without specifying the mecha-
nism of producing the negative scenarios. This is done via
counterexample-guided inductive synthesis [32]. A CEGIS
iteration consists of three steps. First, some automaton A
is inferred based on current positive and negative scenario
trees. Second, the inferred automaton is checked against the
specification L with a model checker, and, possibly, some
counterexamples describing incorrect behavior are obtained.
Finally, these counterexamples are translated into negative
scenarios, which are added to the negative tree, and the proce-
dure repeats until there are nomore counterexamples, or there
is no such automaton that satisfies positive scenarios and does
not satisfy negative scenarios. In the first case the inferred
automaton complies with the given temporal specification.
A CEGIS loop is schematically shown in Fig. 4.

VI. FROM MONOLITHIC TO DISTRIBUTED SYNTHESIS
This article proposes an extension of the fbSAT
approach [18] described in the previous section. The
proposed extension allows for synthesis of distributed

207490 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

FIGURE 4. CEGIS loop.

controllers, and is based on two ideas. The first one is to
declare a reduction for monolithic case for each module
independently. This is described in Section VI-A. The second
idea has to do with the adaptation of CEGIS developed in [18]
to make it applicable for distributed synthesis, and is the
main idea of the paper. The difficulty of using CEGIS for
distributed synthesis is that since the specification is written
for the system as a whole, negative scenarios derived from
counterexamples are also written for the system as a whole.
Section VI-B describes the structure of these scenarios. The
difficulty is that it is not known in advance, which modules
behave incorrectly in some particular negative scenario, and
thus we do not know, in which module do we need to prohibit
the negative scenario.

The naïve approach would be to prohibit each negative
scenario for all modules, but it would be incorrect to do so:
a behavior that is incorrect for one of the modules may be
completely normal for another one. Thus, this naïve approach
would lead to unsatisfiability of corresponding Boolean for-
mulas, and the sought distributed controller would not be
synthesized.

The key idea to cope with this difficulty is to make sure that
each negative scenario is prohibited for at least one module.
This is described in Section VI-C. Finally, in Section VI-Dwe
discuss the algorithm for minimization of inferred automata
in terms of their parameters, e.g., number of states and total
size of guard conditions.

A. REDUCTION FOR DISTRIBUTED SYNTHESIS FROM
POSITIVE SCENARIOS
We declare the reduction described in Section V for each
module independently, adding the module index to every
variable. Thus, respective constraints remain the same, but
are now quantified over all modules. For instance, variable
τ
(m)
q,k ∈ Q0 denotes the destination state of the k-th transition
from state q in the automaton for the m-th module, and
variable ξ (m)q,k ∈ I∪{ε} denotes the input event associated with
that transition. With the constraint (τ (m)q,k = q0)↔ (ξ (m)q,k = ε)
we enforce that only transitions to q0 are marked with the
ε input event. We also add module indices to the reduction
parameters. For example, C (m) denotes the number of states
in A(m) – the automaton for the m-th module. All other parts
of the encoding from Section V are extended in a similar way,
except for the negative mapping, which we discuss below.

The difference with positive scenarios is that now we have
a set of positive scenario trees {T +m }m∈[1..M], one for each

module of the distributed controller. Variable µ(m)
v denotes

a state in which the automaton for the m-th module finishes
processing a sequence of inputs formed by following the
positive tree from the root till the node v (since the tree is
deterministic, for each node v there is only one path from the
root). This variable represents a mapping µ(m)

: V (m)
→ Q(m)

between the nodes of T +m and the states of an automatonA(m),
and the constraints on this mapping are the same to those
described in Section V-B3.

B. COMPOUND NEGATIVE SCENARIO TREE
A compound negative scenario is a sequence of compound
scenario elements ci, where ci is an M -tuple of scenario
elements for each synthesized module: ci = (smi), where
smi = 〈i[x̄], o[z̄]〉.

Consider a system of two interconnected modules depicted
in Fig. 5. The graph and the table in Fig. 5 show the execution
state sequence of this system, illustrating the violation of
the LTL property: GF¬z. A compound negative scenario
obtained from this execution sequence is shown below (the
beginning of the loop is marked with an underline).

[(〈R[0], ε[0]〉, 〈R,C[1]〉);

(〈R[1],C[1]〉, 〈R,C[0]〉);

(〈R[0], ε[1]〉, 〈R,C[0]〉);

(〈R[0], ε[1]〉, 〈R,C[1]〉);

(〈R[1],C[1]〉, 〈R,C[0]〉);

(〈R[0],C[1]〉, 〈R,C[0]〉)]

One important difference from the monolithic case is that
in distributed synthesis we assume that the input event might
be empty: i ∈ I ∪ {ε}. This corresponds to the case when one
of the modules does not receive any input at some point in
time. We also assume that in valid scenarios i = ε implies
o = ε, i.e. if a module does not receive any input event, then
it remains idle. Note that in negative traces derived from
counterexamples obtained from the model checker, it might
be the case that all synthesized modules do not receive an
input event. It happens when all modules are idle, awaiting
some input events from the environment. We filter out such
elements, since they do not carry any information useful for
the synthesis.

A compound negative scenario tree (or compound tree)
CT − is a negative scenario tree built from a set of com-
pound negative scenarios in a similar way as described in
Section V-A. Each node of CT − and its incoming edge cor-
respond to a compound scenario element. We denote the set
of nodes of tree CT − with ĈV and reuse the negative tree
auxiliary functions (t̂p(̂v), t̂ie(̂v), etc.) for the compound tree.

A projection of a compound scenario element to modulem
is simply its m-th element. A projection T −m of a compound
tree CT − to module m is a tree isomorphic to CT −, each
node of which is a projection of the scenario element in the
respective node of CT − to module m.

VOLUME 8, 2020 207491

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

FIGURE 5. Looping distributed system.

C. COMPOUND NEGATIVE SCENARIO TREE MAPPING
Variable µ̂(m)

v̂ denotes the satisfying state in automaton A(m)

for node v̂ ∈ ĈV , with µ̂(m)
v̂ = q0 in case when the automaton

does not exhibit this particular behavior, and hence there is
no satisfying state for v̂ (auxiliary state q0 is common for all
modules). For each module, the root node of the compound
negative tree maps to the initial state of the corresponding
automaton: µ̂(m)

ρ̂ = qinit(m).
The projection of a compound tree may contain nodes with

i = ε on an incoming edge – we call such nodes idle. Among
non-idle nodes, we recognize passive (with t̂oe(̂v) = ε) and
active nodes (with t̂oe(̂v) 6= ε) with the same properties as
for regular negative trees. We denote the sets of idle, passive
and active nodes of the compound negative tree as ĈV (idle),
ĈV (pass), and ĈV (act) respectively.
The constraints for passive and active nodes are the same

as in the reduction for monolithic synthesis. Each idle node
maps to the same state as its parent. The only difference
from passive nodes is that we do not need to encode that the
automaton ignores an input action, since, in fact, it does not
receive any: (µ̂(m)

v̂ = µ̂
(m)
t̂p(̂v)), where v̂ ∈ ĈV (idle).

Similar to the monolithic case, we ensure that if the node
v̂ ∈ ĈV is unmapped (i.e.mapped to q0), then this property is
propagated down the tree:

(µ̂(m)
t̂p(̂v) = q0)→ (µ̂(m)

v̂ = q0).

Finally, we need to prohibit the looping behavior described
in counterexamples, but in such a way that each loop is
prohibited in at least one module. This is done by adding a
disjunction over m ∈ [1 ..M] for each loop:∧
v̂′∈t̂be(̂v)

∨
m∈[1..M]

[
(µ̂(m)

v̂ 6= µ̂
(m)
v̂′) ∨ (µ̂(m)

v̂ = µ̂
(m)
v̂′ = q0)

]
.

Thus, on each CEGIS iteration we accumulate clauses in the
SAT formula to encode that this particular negative scenario is
prohibited for at least one module. Essentially, this approach
is an implicit search delegated to a SAT solver.

D. FINDING A MINIMAL DISTRIBUTED CONTROLLER
Ultimately, we want to infer the minimal distributed con-
troller complying with the given specification L. Mini-
mal models have more value in practice – they are much
more comprehensible for humans and more efficient in

the hardware. However, if we start minimizing (e.g., by
adding additional constraints) the solution – set of modules
{A(m)
} – found by a CEGIS, the resulting minimal solution

may (and, in practice, will) not comply with the specification
L, though the already obtained negative scenarios will still
not be satisfied, as expected. Therefore, the minimization
step should be included into the CEGIS loop. Moreover,
producing minimal models on each CEGIS iteration allows to
performmodel checkingmuch faster, because smaller models
have a smaller state space. Later we will refer to CEGIS with
minimization included as CEGIS-min.

In order to enable the minimization of the synthesized
automata in terms of total number of states we perform the
following extensions of the reduction to SAT. To begin with,
observe that parameters C (m) – maximum number of states
in each module m ∈ [1 ..M] – have to be known before the
beginning of inference process, and the solution (if found)
will have exactly the specified size (number of states). The
simplest strategy for finding a satisfying solution with a
minimal total number of states would be an iterative strategy
– linear bottom-up search. However, in case of M > 1
(i.e. any non-monolithic synthesis) it is unclear how to per-
form the iteration of parameters – efficiently, whereas main-
taining the minimality – and this becomes a problem by itself.
One possible way is to iterate all C (m) altogether until we
find some solution (all ‘‘too small’’ values result in UNSAT),
and then try to decrease some of C (m). However, the latter
– inference with different C (m) values – requires restarts of
the SAT solver, since the declared variables (those with index
q ∈ Q(m)) and constraints depend on the C (m) statically, i.e.
this parameter cannot be easily changed while preserving the
satisfiability. Hence, we need a dynamic way to gradually
‘‘disable’’ some states in the modules. This can be done
using the ‘‘used states’’ approach proposed in [22]. The main
idea is to mark each state used /unused, which allows us to
minimize the total number of used states by encoding it with
the totalizer [38].

Variable ζq ∈ B denotes whether the state q is used by an
automaton, i.e. is reachable from the initial state qinit. Clearly,
the initial state is always used. A (non-initial) state is used if
and only if it has an incoming transition:

ζqinit ∧
∧

q∈Q\{qinit}

[
ζq ↔

∨
q∈Q

k∈[1..K]

(τq′,k = q)
]
.

207492 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

Additionally, the following constraint ensures that unused
states have the largest indices:

¬ζqi → ¬ζqi+1 .

In the context of distributed synthesis, this variable is declared
for each module m ∈ [1 ..M]: ζ (m)q . The total number of used
states in all modules is denoted Cused and encoded using the
totalizer [38].
Symmetry-breaking constraints declared earlier

(Section V-B1 require the states of the automaton to be
enumerated in the BFS traversal order, i.e. to be included
in the BFS traverse tree. This implies that all states (except
the initial one) have an incoming transition, due to the
definition of πbfs

q variable – parent of the state q in the
BFS traverse tree. Consequently, this implies that all states
are used, by definition. In order to both reduce the search
space by using the BFS constraints and allow the states to be
unused, the former have to be modified in the following way.
Modified variable πbfs-mod

qj ∈ {q0, q1, . . . , qj−1} (j ∈ [2 ..C])
includes q0 in its domain, which represents the absence of a
parent for the state qj ∈ Q. Only unused states do not have a
parent:

¬ζqj ↔ (πbfs-mod
qj = q0).

Variable τ bfsqi,qj ∈ B and all other constraints – definitions
of τ bfs and πbfs-mod, and the actual BFS constraint – do not
require any additional changes.

The main procedure implementing the CEGIS-min is
shown in Algorithm 1. First, we estimate parameter D: the
common upper bound for the number of states in each mod-
ule. The estimation is done by a simple bottom-up linear
search. On each iteration we call the function infer(∗∗∗),
where ∗∗∗ denotes the common arguments ({S+(m)}, CS−,
{C (m)

= D},P). The infer procedure is responsible for:
1) building positive scenario trees for {S+(m)} and a nega-

tive compound scenario tree for CS−;
2) reducing the inference problem to SAT by declaring the

constraints described in this article;
3) delegating to a SAT solver to actually solve the SAT

problem;
4) building a solution – set of automata (modules) {A(m)

}

satisfying given scenarios – from the satisfying assign-
ment found by the SAT solver.

Next, we start an actual CEGIS loop. First, we minimize
Cused using a top-down approach. Here, we call infer
with an extra predicate/argument ‘‘Cused < UB’’, where UB
denotes the upper bound for a total number of used (reach-
able) states in all synthesized automata. This predicate rep-
resents a cardinality constraint which is encoded using a
totalizer technique [38]. Next, we minimize N used using
the same approach. After that, we perform model check-
ing of the synthesized distributed controller represented
by automata {A(m)

} for compliance with the given LTL/
specificationL using NuSMV [29] model checker, and obtain
a set of negative compound scenarios CS−new – if there are any,

Algorithm 1: Distributed-CEGIS-min({S+(m)}, L, P)
Input: set of positive scenario sets {S+(m)}m∈[1..M],

LTL-specification L, parse tree size P.
Output: automata {A(m)

}m∈[1..M] complying with L.
// Compound negative scenarios
CS−← ∅
// Common arguments (for “infer”)
∗∗∗ := ({S+(m)}, CS−, {C (m)

= D},P)

label start

// Estimate D
for D← 1 to∞ do
{A(m)
} ← infer(∗∗∗)

if {A(m)
} 6= null then break

while true do
// Minimize Cused

{A(m)
} ← infer(∗∗∗,Cused <∞)

if {A(m)
} = null then

goto start

while {A(m)
} 6= null do

Cused
min ← numberOfUsedStates({A(m)

})
{A(m)
} ← infer(∗∗∗,Cused < Cused

min)

// Minimize N used

{A(m)
} ← infer(∗∗∗,Cused

= Cused
min ,N

used <∞)
while {A(m)

} 6= null do
N used
min ←

numberOfParseTreeNodes({A(m)
})

{A(m)
} ← infer(∗∗∗,Cused

= Cused
min ,N

used <

N used
min)

{A(m)
} ← infer(∗∗∗,Cused

= Cused
min ,N

used
=

N used
min)

CS−new← performModelChecking({A(m)
},L)

if CS−new = ∅ then // No counterexamples
return {A(m)

}

CS−← CS−∪ CS−new

they will be taken into account on the next iteration, else the
CEGIS is done and {A(m)

} is the satisfying solution.

VII. CASE STUDY: ALTERNATING-BIT PROTOCOL
We evaluate the proposed approach on the example of the
classical Alternating-bit protocol (ABP) [20]. It is widely
used to illustrate the concepts of formal verification and
model checking, e.g. [16], [39], [40].

A. ABP DESCRIPTION
The purpose of the ABP is to allow for a communication
over an unreliable channel. The system shown in Fig. 6 con-
sists of several modules, which interact with each other via
message passing. The Sender and the Receiver modules

VOLUME 8, 2020 207493

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

FIGURE 6. Alternating-bit protocol scheme.

implement the protocol, and our goal is to infer finite-state
FBmodels for them. There are also several environment mod-
ules, which we model with NuSMV. Environment modules
have the following semantics.
• Forward Channel and Backward Channel transmit
messages from Sender to Receiver and vice versa,
respectively. Channels model unreliable transmission:
messages can either be lost or duplicated.

• Timer sends timeouts to Sender in order to force a mes-
sage retransmission to cope with a lost message.

• Sender Client and Receiver Client model protocol
clients, which communicate with each other via the pro-
tocol and expect reliable message transmission.

More specifically, the modules communicate as follows.
• Sender receives a SendMsg from Sender Client when-
ever the latter wants to send a message, and replies with
DoneMsg upon a successful message transmission.

• Sender receives a TimeoutMsg from Timer and uses
this information to retransmit messages over Forward
Channel.

• Sender sends PacketMsg to Receiver via a Forward
Channel. This message is annotated with a single bit of
information.

• Receiver reports with DeliverMsg to Receiver Client
upon a successful packet deliver.

• Receiver sends AcknowledgeMsg to Sender via a
Backward Channel. This message is annotated with a
single bit of information and acknowledges the delivery
of a PacketMsg annotated with the same bit.

For technical reasons we represent messages with
input/output variables instead of direct representation with
events. To store the bit annotatingPacketMsg, we introduce
variables input_bit and output_bit for both Sender
andReceiver.We also introduce a special input eventREQ and
a special output event CNF (widely used in IEC 61499 [5])
with the following semantics. A module receives a REQ
(request) event from the environment whenever some input

variables of this module have changed value. And it produces
a CNF (confirmation) output event to notify the system that
it has reacted on the request and modified values of its
output variables accordingly. In fact, every event-oriented
system can be transformed into a REQ/CNF-system, and the
reverse transformation is also possible. Thus, Sender has the
following interface:
• Is
= {REQ};

• Os
= {CNF};

• X s
= {send, timeout, acknowledge,

input_bit};
• Zs

= {done,packet,output_bit}.
The Receiver module has the following interface:
• Ir
= {REQ};

• Or
= {CNF};

• X r
= {packet,input_bit};

• Z r
= {deliver,acknowledge,output_bit}.

We transform safety and liveness monitors that are used
in [16] to formally specify the ABP system into the following
LTL properties.
First, we introduce four safety properties Lsafe which

ensure the correct order between send and deliver, and
between deliver and done.
1) ¬(¬sendUdeliver): deliver can only happen

after send.
2) G(send → X¬(¬deliverUsend)): two sends

cannot occur in a row without a deliver in between.
3) ¬(¬deliverUdone): done can only happen after

deliver.
4) G(deliver → X¬(¬doneUdeliver)): two

deliver’s cannot occur in a row without a done in
between.

Next, we augment the specification with three liveness prop-
erties Llive. With P we denote the formula for fairness
assumption under which we verify liveness properties: we
do not take into account infinite execution paths with no
timeout, and we ensure that the channels cannot lose

207494 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

packets infinitely often. The first two properties guarantee the
message delivery. The third one ensures that the Sender Client
is not stale and at any moment in time it will eventually send
a packet.
1) P → G(send → Fdeliver): any send is eventu-

ally followed by deliver.
2) P → G(send → Fdone): any send is eventually

followed by done.
3) P→ GFsend: send occurs infinitely often.

Manually designed automata for Sender and Receiver com-
plying with the described LTL/specification are shown
in Fig. 6.

B. EXPERIMENTAL EVALUATION
We apply the proposed Distributed-Cegis-min method to
infer a minimal distributed controller complying with the
given positive scenarios {S+(m)} and the LTL/specificationL.
For a model checker we used NuSMV [29]. For a SAT

solver we used MiniSAT [41] through the native interface.
Experiments were conducted on a computer with an Intel(R)
Core(TM) i7-7700HQ CPU@ 3.40GHz and 32GB of RAM.

Since our designed liveness properties contain fairness
assumptions, their verification – even for ‘‘small’’ mod-
els – takes an excessive amount of time (typically, around
20 seconds, but sometimes it spans up to 3 minutes). This
should be taken into an account, because the verification step
is performed on each iteration of CEGIS. Hence, we split the
specification and additionally perform the further described
experiments using safety properties only. However, the results
of such evaluations are less informative and can only be
regarded as proof of CEGIS convergence.

A sufficient number of behavior examples allows inferring
minimal models complying with the given LTL/specification
in just several CEGIS iterations. In particular, 10 scenarios of
length 25 or more are sufficient to cover all safety properties
Lsafe so that the initial inference only from those scenarios
produces satisfying automata – in Table 1 this corresponds to
‘‘#iter = 1’’. The liveness properties Llive are much harder
to cover by positive scenarios alone, so the inference process
requires multiple CEGIS iterations, but the size and number
of scenarios still contribute a lot. The key observation is the
following: if the initial automata constructed only from pos-
itive scenarios have sizes equal (e.g., 3+4 within this exper-
iment) to the sizes of the sought automata – which means
that the given scenarios are sufficient to render the overall
structure – then the CEGIS process will converge in several
iterations. On the other hand, when the given positive sce-
narios by themselves are insufficient (extreme case is when
there are no positive scenarios at all) to capture the desired
behavior, the CEGIS process resembles the enumerative
LTL synthesis – in such cases, the proposed method is not
very suitable. Example of such case is the evaluation on
S1×50 – 1 scenario of length 50 – execution was aborted after
6 hours without a satisfying result. This confirms the clause
in [16] that the problem of inference from scratch is quite
challenging.

TABLE 1. Experimental results.

It should be noted that the sizes of scenarios in Table 1
denote the number of execution states in the NuSMV simu-
lation traces, which are generated randomly and may contain
plenty of idle steps, resulting in effectively poorly informative
scenarios.

To sum up, the results in Table 1 indicate the effectiveness
of the proposed Distributed-Cegis-min method on datasets of
various sizes, especially if the given positive scenarios are
sufficient to capture the desired behavior of the distributed
system.

Models for Sender (left) and Receiver (right) modules of
ABP synthesized from S10×50 with Lall using the proposed
algorithm are shown in Fig. 7. By manually assessing the
synthesized automata, we make sure that they indeed guar-
antee the packet delivery. Obviously, by construction they
comply with the scenarios and the LTL/specification. The
automaton for the Sender module contains only three states,
whereas manually constructed has four. Sender and Receiver
have guard conditions of sizes N (s)

= 13 and N (r)
= 7,

as opposed to 11 and 28 in the manually prepared automata.
The synthesized automata are not easily understandable by
human and operate in such a way that might seem unnatural.
For example, if Receiver receives a PacketMsg annotated
with 0 in the state 3, it (1) produces an AcknowledgeMsg
annotated with 1, and relies on the Sender, that it will handle
this correctly (in fact it must handle this case, because mes-
sages may duplicate); (2) changes its state to 1, and awaits
for another PacketMsg from the Sender. Thus, Receiver
behaves suboptimally. If optimal behavior is desired,
the specification could be supplemented with the following
LTL properties:

G(pi→ X ai), where

p0 = packet ∧ input_bit,

p1 = packet ∧ ¬input_bit,

a0 = acknowledge ∧ output_bit,

a1 = acknowledge ∧ ¬output_bit,

VOLUME 8, 2020 207495

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

FIGURE 7. Models for Sender (left) and Receiver (right) modules of ABP synthesized from S10×50 with Lall.

which ensure that the Receiver reacts with immediate
AcknowledgeMsg to every PacketMsg. However, this is
not a drawback of the proposed method, and the question of
what should be considered a complete specification is beyond
the scope of this article.

C. COMPARISON WITH THE PROTOCOL
COMPLETION APPROACH
Recall the protocol completion approach proposed by the
authors of [16] for distributed synthesis. First, they use exe-
cution scenarios to build incomplete processes (automata),
which comprise the distributed protocol. Here, they assume
that the scenarios are sufficient to cover all process states.
Next, they try to complete those incomplete processes by
adding some missing transitions, basically using an enumer-
ative CEGIS approach. The main downside of this approach
is that the initially derived states and transitions are fixed
throughout the CEGIS process, which may (and should) lead
to unsatisfiability results in practice.

Ultimately, the goal of experiments reported in [16] is to
synthesize ABP from scratch, by only specifying the number
of states of the Sender and Receiver, i.e. by completing an
incomplete protocol that has no defined transitions at all.
Striving to reach this goal, authors of [16] performed two
interesting sets of experiments.

In the first set of experiments they start with the manually
designed ABP, and remove transitions one by one (though,
not all), consecutively asking the completion tool to synthe-
size all possible completions.
In the second set of experiments they start with the

incomplete protocol built from a sufficient set of execution

scenarios, and remove its transitions one by one, each time
running the completion tool to synthesize a single cor-
rect complete solution. The results reported by the authors
indicate that the initial incomplete protocol could be com-
pleted in 65 iterations in 19 seconds. Further removal of
transitions led to an increase of running time, and in the
extreme case, when all 8 transitions from the incomplete
protocol were removed, the tool execution was aborted after
4 hours.

We can perform a set of experiments resembling the second
experiment set and compare the outcomes. However note that
since the target models of our research and of [16] are quite
different, the following cannot be considered a one-to-one
comparison.

We will consider two sets of execution scenarios: S10×50
(10 scenarios, each of length 50) will play a role of ‘‘suffi-
cient’’ set of scenarios, and S1×50 (1 scenario of length 50)
will be considered ‘‘insufficient set of scenarios’’. Presum-
ably, the larger scenario set size is, the more automaton
state it will cover. Hence, using sufficient set of scenar-
ios will result in a more efficient inferring with CEGIS.
Inference of ABP only from ‘‘sufficient’’ scenarios results
in the Sender with 3 states and the Receiver with 4 states.
On the contrary, inference only from ‘‘insufficient’’ scenarios
results in the Sender with only 2 states and the Receiver
with only 3 states. Note that in both cases the resulting
automata do not comply with the LTL/specification Lall, yet.
As already shown in Table 1, the application of the proposed
Distributed-Cegis-min method to the scenarios S10×50 allows
inferring the satisfying ABP complying with Lall in just
2 iterations in 8 seconds.

207496 VOLUME 8, 2020

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

The execution of the proposed method on S1×50 was
aborted after several hours without a result. However, since
we know the parameters (number of states C (m) and parse
trees nodes N (m)) of the final ABP, we can specify them to
the proposed method, which greatly reduces the search space.
By initially specifying C (m)

= 3 + 4 and N (m)
= 13 + 7

we obtained ABP satisfying S1×50 and complying with Lall
in 622 iterations in 27867 seconds. Note that most of this time
was spend on model checking, not on SAT solving – verifica-
tion time ranged from 10 to 200 seconds. A similar run, but
only with safety properties Lsafe, completed in 565 iterations
in 1231 seconds.

VIII. DISCUSSION
The experiments described in the previous section show that
the synthesis works most effectively when supplied with a
sufficient set of positive scenarios (e.g. S10×50), resulting in
a single CEGIS iteration for Lsafe and a few more for Lall.
The solving time increases as we decrease the total size of
scenarios, resulting in a timeout for S1×50.
An extreme case of the problem is to infer automata

from LTL/specification only, which makes CEGIS practi-
cally infeasible, because it is much harder to describe the
automaton with a set of negative scenarios only, than with
a set of positive scenarios. In other words, positive scenar-
ios describe what a system should do, while negative sce-
narios describe what it should not do. Naturally, the state
space of undesired behaviors is much larger than that of
desired ones.

Observe that in [16] the process completion strictly
requires a set of execution scenarios that cover all states of
protocol processes. The approach for distributed synthesis
proposed in the present paper, on the other hand, requires
some representative behavior examples: ideally, covering all
states as in [16], but not necessarily.

Also note that in our experiments we observed that model
checking is taking 90-95 % of run time in each CEGIS itera-
tion. This can be partially explained by the fact that we used
a symbolic model checker NuSMV in our implementation.
Research (e.g. [42]) indicates that in many cases explicit-
/state model checking (e.g., using SPIN1) is much faster than
symbolic model checking. Thus, if we switch to explicit-state
model checking, the verification time may decrease, leading
to better overall performance of our algorithm.

The presented experimental evaluation was conducted on
rather small examples, however, we observe a relatively short
execution time (especially the synthesis time compared to the
verification time), which indicates that the proposed approach
would scale well on larger data.

IX. CONCLUSION AND FUTURE WORK
We have developed a complete SAT-based counterexample-
guided approach for the synthesis of a distributed finite-state
controller from given behavior examples of a legacy system
and formal specification in the form of LTL properties. The

1http://spinroot.com/

approach generates a set of finite-state machines implement-
ing the distributed controller, one for each designated ele-
ment (module) of the distributed control system. Thought
the proposed method itself is quite general, our imple-
mentation reported in this article is specifically tailored to
IEC 61499 function blocks, allowing direct application to
synthesis of distributed controllers in an industrial format and
their use in real industrial automation systems.

Future research may include speeding up CEGIS by exten-
sively employing the iterative SAT solving, e.g., by elim-
inating the solver restarts after the minimization on each
CEGIS iteration. Also, LTL properties during the CEGIS can
be taken into account gradually, one by one, in the order
of their complexity, which might reduce the total execution
time – due to not spending time on the model checking on
early iterations. Another research direction is the support of
non-canonical ECCs – those with multiple output events in
automata states.

ACKNOWLEDGMENT
(Konstantin Chukharev and Dmitrii Suvorov contributed
equally to this work.)

REFERENCES
[1] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke,

‘‘A systematic survey of program comprehension through dynamic analy-
sis,’’ IEEE Trans. Softw. Eng., vol. 35, no. 5, pp. 684–702, Sep. 2009.

[2] M. Shahbaz and R. Groz, ‘‘Analysis and testing of black-box component-
based systems by inferring partial models,’’ Softw. Test., Verification Rel.,
vol. 24, no. 4, pp. 253–288, Jun. 2014.

[3] N. Walkinshaw and K. Bogdanov, ‘‘Inferring finite-state models with tem-
poral constraints,’’ in Proc. 23rd IEEE/ACM Int. Conf. Automated Softw.
Eng., Sep. 2008, pp. 248–257.

[4] N. Walkinshaw, R. Taylor, and J. Derrick, ‘‘Inferring extended finite state
machinemodels from software executions,’’Empirical Softw. Eng., vol. 21,
no. 3, pp. 811–853, Jun. 2016.

[5] V. Vyatkin, ‘‘IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-Art review,’’ IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 768–781, Nov. 2011.

[6] Programmable Controllers—Part 1: General Information, document IEC
61131-1:2003, 2003. [Online]. Available: https://webstore.iec.ch/
publication/4550

[7] M. J. H. Heule and S. Verwer, ‘‘Exact DFA identification using SAT
solvers,’’ inGrammatical Inference: Theoretical Results and Applications.
Berlin, Germany: Springer, 2010, pp. 66–79.

[8] P. Faymonville, B. Finkbeiner, and L. Tentrup, ‘‘BoSy: An experimentation
framework for bounded synthesis,’’ inComputer Aided Verification. Cham,
Switzerland: Springer, 2017, pp. 325–332.

[9] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, ‘‘Exact finite-state machine
identification from scenarios and temporal properties,’’ Int. J. Softw. Tools
Technol. Transf., vol. 20, no. 1, pp. 35–55, Feb. 2018.

[10] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto, ‘‘BFS-based symme-
try breaking predicates for DFA identification,’’ in Language and
Automata Theory and Applications. Cham, Switzerland: Springer, 2015,
pp. 611–622.

[11] G. Giantamidis and S. Tripakis, ‘‘Learning Moore machines from input–
output traces,’’ in Formal Methods. Cham, Switzerland: Springer, 2019,
pp. 291–309.

[12] F. Avellaneda and A. Petrenko, ‘‘FSM inference from long traces,’’ in
Formal Methods. Cham, Switzerland: Springer, 2018, pp. 93–109.

[13] C.-H. Cheng, C.-H. Huang, H. Ruess, and S. Stattelmann, ‘‘G4LTL-ST:
Automatic generation of PLC programs,’’ in Computer Aided Verification.
Cham, Switzerland: Springer, 2014, pp. 541–549.

[14] R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager, ‘‘Model learning as a
satisfiability modulo theories problem,’’ in Language and Automata The-
ory and Applications. Cham, Switzerland: Springer, 2018, pp. 182–194.

VOLUME 8, 2020 207497

K. Chukharev et al.: SAT-Based CEGIS of Distributed Controllers

[15] E. M. Gold, ‘‘Complexity of automaton identification from given data,’’
Inf. Control, vol. 37, no. 3, pp. 302–320, Jun. 1978.

[16] R. Alur and S. Tripakis, ‘‘Automatic synthesis of distributed protocols,’’
ACM SIGACT News, vol. 48, no. 1, pp. 55–90, Mar. 2017.

[17] I. Buzhinsky and V. Vyatkin, ‘‘Automatic inference of finite-state plant
models from traces and temporal properties,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 1521–1530, Aug. 2017.

[18] K. Chukharev and D. Chivilikhin, ‘‘FbSAT: Automatic inference of min-
imal finite-state models of function blocks using SAT solver,’’ 2019,
arXiv:1907.03285. [Online]. Available: http://arxiv.org/abs/1907.03285

[19] fbSAT. Accessed: Nov. 12, 2020. [Online]. Available: http://www.github.
com/ctlab/fbSAT

[20] J. Kurose and K. Ross, Computer Networking: A Top-down Approach,
5th ed. Reading, MA, USA: Addison-Wesley, 2009, p. 862.

[21] V. Dubinin and V. Vyatkin, ‘‘Towards a formal semantic model of IEC
61499 function blocks,’’ inProc. IEEE Int. Conf. Ind. Informat., Aug. 2006,
pp. 6–11.

[22] D. Chivilikhin, S. Patil, K. Chukharev, A. Cordonnier, and V. Vyatkin,
‘‘Automatic state machine reconstruction from legacy PLC using data
collection and SAT solver,’’ IEEE Trans. Ind. Informat., vol. 16, no. 12,
pp. 7821–7831, Dec. 2020.

[23] Z.Manna andA. Pnueli, Temporal Verification of Reactive Systems: Safety.
Berlin, Germany: Springer-Verlag, 1995, p. 512.

[24] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999, p. 330.

[25] S. A. Cook, ‘‘The complexity of theorem-proving procedures,’’ in Proc.
3rd Annu. ACM Symp. Theory Comput. (STOC), 1971, pp. 151–158.

[26] L. A. Levin, ‘‘Universal sequential search problems,’’ Problems Inf. Trans-
miss., vol. 9, no. 3, pp. 265–266, 1973.

[27] J. Marques-Silva, I. Lynce, and S. Malik, ‘‘Conflict-driven clause learning
SAT solvers,’’ in Handbook of Satisfiability, (Frontiers in Artificial Intel-
ligence and Applications), vol. 185. Amsterdam, The Netherlands: IOS
Press, 2009, pp. 131–153.

[28] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of Sat-
isfiability (Frontiers in Artificial Intelligence and Applications). vol. 185.
Amsterdam, The Netherlands: IOS Press, 2009, p. 980

[29] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NUSMV: A new
symbolic model checker,’’ Int. J. Softw. Tools for Technol. Transf. (STTT),
vol. 2, no. 4, pp. 410–425, Mar. 2000.

[30] A. Solar-Lezama, ‘‘Program sketching,’’ Int. J. Softw. Tools Technol.
Trans., vol. 15, no. 5, pp. 475–495, Oct. 2013.

[31] A. Pneuli and R. Rosner, ‘‘Distributed reactive systems are hard to synthe-
size,’’ in Proc. 31st Annu. Symp. Found. Comput. Sci., vol. 2, Oct. 1990,
pp. 746–757.

[32] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, ‘‘Com-
binatorial sketching for finite programs,’’ ACM SIGARCH Comput. Archit.
News, vol. 34, no. 5, pp. 404–415, Oct. 2006.

[33] R. Alur, M. Martin, M. Raghothaman, C. Stergiou, S. Tripakis, and
A. Udupa, ‘‘Synthesizing finite-state protocols from scenarios and require-
ments,’’ in Hardware and Software: Verification and Testing. Cham,
Switzerland: Springer, 2014, pp. 75–91.

[34] A. Petrenko, F. Avellaneda, R. Groz, and C. Oriat, ‘‘FSM inference and
checking sequence construction are two sides of the same coin,’’ Softw.
Qual. J., vol. 27, no. 2, pp. 651–674, Jun. 2019.

[35] T. Walsh, ‘‘SAT υ CSP,’’ in Proc. 6th Int. Conf. Princ. Pract. Constraint
Program. Berlin, Germany: Springer, 2000, pp. 441–456.

[36] G. S. Tseytin, ‘‘On the complexity of derivation in propositional calculus,’’
in Automation of Reasoning: 2: Classical Papers on Computational Logic
1967–1970. Berlin, Germany: Springer, 1983, pp. 466–483.

[37] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. Ulyantsev, and
J. Marques-Silva, ‘‘Efficient symmetry breaking for SAT-based minimum
DFA inference,’’ in Language and Automata Theory and Applications.
Springer, 2019, pp. 159–173.

[38] O. Bailleux and Y. Boufkhad, ‘‘Efficient CNF encoding of Boolean cardi-
nality constraints,’’ in Principles and Practice of Constraint Programming.
Berlin, Germany: Springer, 2003, pp. 108–122.

[39] G. Holzmann, The SPIN Model Checker: Primer Reference Manual.
Reading, MA, USA: Addison-Wesley, 2004, p. 608.

[40] N. Lynch, Distributed Algorithms. San Mateo, CA, USA:
Morgan Kaufmann, 1996.

[41] N. Eén and N. Sörensson, ‘‘An extensible SAT-solver,’’ in Theory and
Applications of Satisfiability Testing. Berlin, Germany: Springer, 2003,
pp. 502–518.

[42] I. Buzhinsky, A. Pakonen, and V. Vyatkin, ‘‘Explicit-state and symbolic
model checking of nuclear I&C systems: A comparison,’’ in Proc. 43rd
Annu. Conf. IEEE Ind. Electron. Soc., Oct./Nov. 2017, pp. 5439–5446.

KONSTANTIN CHUKHAREV received the bache-
lor’s degree in control systems and informatics and
the master’s degree in applied mathematics and
informatics from ITMO University, Saint Peters-
burg, Russia, in 2018 and 2020, respectively,
where he is currently pursuing the Ph.D. degree
with the Computer Technologies Laboratory.

He finished the one-year program ‘‘Algorithmic
Bioinformatics’’ at the Bioinformatics Institute,
Saint Petersburg, in 2017. He is currently a Junior

Research Associate with the Computer Technologies Laboratory, ITMO
University. He studies formal methods, software engineering, SAT and phy-
logenetics, while teaching students discrete mathematics and working on his
Ph.D. degree.

DMITRII SUVOROV received the bachelor’s and
master’s degrees in applied mathematics and infor-
matics from ITMO University, Saint Petersburg,
Russia, in 2016 and 2018, respectively, where he
is currently pursuing the Ph.D. degree with the
Computer Technologies Laboratory.

He has worked as a Software Engineer. He is
currently a Junior Research Associate with the
Computer Technologies Laboratory, ITMO Uni-
versity. He also teaches discrete mathematics. His

research interests include programming languages, formal verification, and
distributed systems.

DANIIL CHIVILIKHIN received the bachelor’s
and master’s degrees in applied mathematics and
informatics and the Ph.D. degree in technical sci-
ences (mathematics and software for computing
systems) from ITMOUniversity, Saint Petersburg,
Russia, in 2011, 2013, and 2015, respectively.

He is currently an Associate Professor with the
Computer Technologies Laboratory, ITMO Uni-
versity. His research interests include program
synthesis and verification, industrial informatics,

evolutionary algorithms, and SAT solver applications.

VALERIY VYATKIN (Senior Member, IEEE)
received the Ph.D. and Dr.Sc. degrees in applied
computer science from the Taganrog Radio Engi-
neering Institute, Russia, in 1992 and 1999,
respectively, the Dr.Eng. degree from the Nagoya
Institute of Technology, Japan, in 1999, and the
Habilitation degree in Germany, in 2002.

He was a Visiting Scholar with Cambridge Uni-
versity, U.K., and had permanent appointments
with the University of Auckland, New Zealand;

and Martin Luther University, Germany, as well as in Japan and Russia.
He is currently on joint appointment as the Chair of Dependable Compu-
tations and Communications, Luleå University of Technology, Sweden, and
a Professor of information technology in automation with Aalto University,
Finland. He is also the Co-Director of the International Research Laboratory
‘‘Computer Technologies,’’ ITMO University, Saint Petersburg, Russia. His
research interests include dependable distributed automation and industrial
informatics; software engineering for industrial automation systems; artifi-
cial intelligence; distributed architectures; and multi-agent systems in vari-
ous industries: smart grid, material handling, building management systems,
datacenteres, and reconfigurable manufacturing.

Dr. Vyatkin received the Andrew P. Sage Award for the Best IEEE
TRANSACTIONS paper in 2012. He is the Chair of IEEE IES Technical Com-
mittee on Industrial Informatics.

207498 VOLUME 8, 2020

