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ON REGULARITY OF THE LOGARITHMIC FORWARD MAP OF
ELECTRICAL IMPEDANCE TOMOGRAPHY\ast 

HENRIK GARDE\dagger , NUUTTI HYV\"ONEN\ddagger , AND TOPI KUUTELA\ddagger 

Abstract. This work considers properties of the logarithm of the Neumann-to-Dirichlet bound-
ary map for the conductivity equation in a Lipschitz domain. It is shown that the mapping from
the (logarithm of) the conductivity, i.e., the (logarithm of) the coefficient in the divergence term
of the studied elliptic partial differential equation, to the logarithm of the Neumann-to-Dirichlet
map is continuously Fr\'echet differentiable between natural topologies. Moreover, for any essentially
bounded perturbation of the conductivity, the Fr\'echet derivative defines a bounded linear operator
on the space of square integrable functions living on the domain boundary, although the logarithm of
the Neumann-to-Dirichlet map itself is unbounded in that topology. In particular, it follows from the
fundamental theorem of calculus that the difference between the logarithms of any two Neumann-
to-Dirichlet maps is always bounded on the space of square integrable functions. All aforementioned
results also hold if the Neumann-to-Dirichlet boundary map is replaced by its inverse, i.e., the
Dirichlet-to-Neumann map.

Key words. Neumann-to-Dirichlet map, Fr\'echet derivative, logarithm, functional calculus,
electrical impedance tomography

AMS subject classifications. 35J15, 46T20, 47A60, 35R30
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1. Introduction. This work is motivated by electrical impedance tomography
(EIT), i.e., the imaging modality whose aim is to reconstruct (useful information
about) the conductivity inside a physical body from boundary measurements of cur-
rent and voltage. The idealized mathematical model for EIT is to determine the
strictly positive and bounded coefficient \sigma : \Omega \rightarrow \BbbR in the elliptic conductivity
equation

(1.1) \nabla \cdot (\sigma \nabla u) = 0 in \Omega 

from the Cauchy data of all its solutions on the boundary of the domain \Omega \subset \BbbR d, d \geq 2.
In this paper, we employ this ideal model and assume the available measurement is the
Neumann-to-Dirichlet (ND) boundary map associated to (1.1), although all practical
setups for EIT actually employ a finite number of contact electrodes, resulting in
a finite-dimensional measurement (cf. [7, 22]). However, it would also be possible to
formulate our main ideas for realistic electrode models (cf. [16]). For more information
on practical EIT as well as on the related theoretical uniqueness and stability results,
we refer to the review papers [2, 3, 5, 23] and the references therein.

The reconstruction task of EIT, as any other nonlinear inverse problem, can be
straightforwardly tackled via regularized least squares minimization, that is, by itera-
tively linearizing the dependence of the data on the unknown and solving the resulting
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198 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

illposed linear problems by resorting to a suitable regularization technique. In EIT, it
is also possible to obtain useful information about the unknown by only taking a single
linearization step [1, 6, 12]. The success of such straightforward approaches definitely
depends on the degree of nonlinearity in the forward map that takes the unknown to
the data, i.e., on the linearization error. On the other hand, the nonlinearity of the
forward map can be altered by choosing different parametrizations for the unknown
and the data.

Such an idea was tested for EIT in [16], where it was numerically demonstrated
that the completely logarithmic forward map of EIT, taking the logarithm of the
conductivity to the logarithm of the ND map, is significantly less nonlinear than,
say, the standard forward map that sends the conductivity to the ND map itself.
To be slightly more precise, the mean relative linearization errors around the unit
conductivity were computed over certain random samples of 50,000 conductivities in
the unit disk with different parametrizations for the forward map of EIT, and these
mean errors were found to be approximately an order of magnitude smaller for the
completely logarithmic forward map than for the standard one. This lower degree
of nonlinearity was also observed with the complete electrode model (see [7, 22]) as
well as in the mean L2(\Omega ) reconstruction errors for a simple one-step reconstruc-
tion algorithm. What is more, the ``almost linearity"" of the completely logarithmic
forward map can actually be explicitly characterized in some simple geometries [16,
Examples 2 and 3]. It should be noted, however, that some other transformation
could well lead to an even more advantageous parametrization for the forward map
of EIT.

The studies in [16] were mainly based on finite-dimensional numerical approxima-
tions. In particular, the Fr\'echet differentiability of the infinite-dimensional completely
logarithmic forward map of EIT was not established and no actual mathematical proof
for its low degree of nonlinearity was presented. The main goal of this work is to fix
the first of these two imperfections. To be more precise, we prove that the completely
logarithmic forward map is continuously Fr\'echet differentiable from L\infty (\Omega ) to the
space of bounded linear operators between the mean-free Sobolev spaces H\epsilon 

\diamond (\partial \Omega ) and
H - \epsilon 

\diamond (\partial \Omega ) for any \epsilon > 0. This is not an obvious result because the eigenvalues of an
ND map accumulate at the origin and those of its logarithm at minus infinity.

Although it is natural to consider the logarithm of an ND map as an operator
from H\epsilon 

\diamond (\partial \Omega ) to H - \epsilon 
\diamond (\partial \Omega ) because it is not bounded on the space of mean-free square

integrable functions L2
\diamond (\partial \Omega ), it turns out that the corresponding Fr\'echet derivative

is more regular and defines a bounded linear operator on L2
\diamond (\partial \Omega ) for any essentially

bounded perturbation of the (log-)conductivity. In particular, it follows from the
fundamental theorem of calculus that the difference between the logarithms of any
two ND maps is always bounded on L2

\diamond (\partial \Omega ). We want to emphasize that this slight
increase in regularity when taking the difference holds for any two log-conductivities
in L\infty (\Omega ) without any extra assumptions on their (common) behavior at or close to
\partial \Omega ; such assumptions are needed for the difference of two ND maps to exhibit higher
regularity than either of the maps on their own (cf., e.g., [19]). Loosely speaking, the
``singularity"" preventing the logarithms of ND maps from mapping L2

\diamond (\partial \Omega ) to itself
is the same for all conductivities, and it thus disappears when subtracting any two of
such logarithms.

We present all our results for the ND map as it is more suitable for numerical
studies than its inverse, the Dirichlet-to-Neumann (DN) map. However, our main
theorems could as well be formulated for the DN map because the logarithms of the
ND and DN maps for a given conductivity only differ by a change of sign.
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REGULARITY OF THE LOGARITHMIC FORWARD MAP OF EIT 199

This article is organized as follows. This introduction is first completed by re-
viewing the employed notation and terminology. The mathematical setting is formally
introduced and the main results are formulated in section 2. Subsequently, section 3
moves the spectrum of the ND map by \tau > 0 to the right from the origin and proves
Fr\'echet differentiability and other auxiliary results for the associated shifted logarith-
mic isomorphism. Finally, the main results are proven in section 4 by letting \tau > 0
tend to zero in a controlled manner. The paper is concluded with two appendices con-
sidering the Fr\'echet derivatives of the ND map and equivalent norms for the mean-free
Sobolev spaces Hr

\diamond (\partial \Omega ) with r \in [ - 1
2 ,

1
2 ]. These equivalent norms form an essential

tool for our analysis.

1.1. Notation and terminology. We denote by L (X,Y ) the space of bounded
linear operators between Banach spaces X and Y and introduce the shorthand nota-
tion L (X) := L (X,X). If X is a Hilbert space, then Lsa(X) \subset L (X) denotes the
closed subspace consisting of the bounded self-adjoint operators.

Let \Omega \subset \BbbR d, d \geq 2, be a bounded domain with a Lipschitz boundary \partial \Omega . The
bracket \langle \cdot , \cdot \rangle : H - r(\partial \Omega ) \times Hr(\partial \Omega ) \rightarrow \BbbC denotes the sesquilinear dual pairing on \partial \Omega 
with an interpretation as an extension of the L2(\partial \Omega ) inner product.

For r \in [ - 1
2 ,

1
2 ], we define the mean-free subspaces of Hr(\partial \Omega ) as

Hr
\diamond (\partial \Omega ) := \{ v \in Hr(\partial \Omega ) | \langle 1, v\rangle = 0\} .

Since Hr
\diamond (\partial \Omega ) \subset Hr(\partial \Omega ), it follows that H - r

\diamond (\partial \Omega ) \subset H - r(\partial \Omega ) = (Hr(\partial \Omega ))\prime \subseteq 
(Hr

\diamond (\partial \Omega ))
\prime , where the latter inclusion is not an embedding as it is not injective. On

the other hand, if f \in (Hr
\diamond (\partial \Omega ))

\prime , then we may define its extension by zero via

\langle \~f, g\rangle =

\Biggl\{ 
\langle f, g\rangle , g \in Hr

\diamond (\partial \Omega ),

0, g \in span(1).

Obviously, \~f \in (Hr(\partial \Omega ))\prime = H - r(\partial \Omega ) is well defined and satisfies \langle \~f, 1\rangle = 0, i.e.,
\~f \in H - r

\diamond (\partial \Omega ). Identifying f with \~f gives a natural isometric isomorphism between
(Hr

\diamond (\partial \Omega ))
\prime and H - r

\diamond (\partial \Omega ).
We denote by T \ast \in L (H - r

\diamond (\partial \Omega ), Hr
\diamond (\partial \Omega )) the unique dual operator of a bounded

linear map T \in L (H - r
\diamond (\partial \Omega ), Hr

\diamond (\partial \Omega )) with respect to the dual bracket. In particular,
for all f, g \in H - r

\diamond (\partial \Omega ) it holds

\langle f, Tg\rangle = \langle g, T \ast f\rangle .

If T = T \ast , we call T symmetric with respect to the dual bracket.

2. The setting and main results. In this section, we first recall the definition
of the ND map for the conductivity equation together with some of its basic proper-
ties. Subsequently, we define the logarithmic ND operator, introduce the completely
logarithmic forward map of EIT, and finally state the main results of this work.

2.1. ND operator and its derivatives. Let us consider the Neumann bound-
ary value problem

\nabla \cdot (\sigma \nabla u) = 0 in \Omega ,

\sigma 
\partial u

\partial \nu 
= f on \partial \Omega ,

(2.1)

where \Omega \subset \BbbR d, d \geq 2, is a bounded domain with a Lipschitz boundary \partial \Omega . The

electrical conductivity \sigma \in L\infty 
+ (\Omega ) is real-valued and isotropic, but f \in H

 - 1/2
\diamond (\partial \Omega ) is
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200 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

in general complex-valued. The conductivity coefficient \sigma is bounded from below by
a positive constant, that is,

L\infty 
+ (\Omega ) := \{ \varsigma \in L\infty (\Omega ;\BbbR ) | ess inf \varsigma > 0\} .

Note that apart from L\infty (\Omega ) := L\infty (\Omega ;\BbbR ), the multiplier field for all employed func-
tion spaces is \BbbC .

The variational form of the Neumann problem (2.1) is to find u \in H1(\Omega ) such
that

(2.2)

\int 
\Omega 

\sigma \nabla u \cdot \nabla v dx =
\bigl\langle 
f, v| \partial \Omega 

\bigr\rangle 
holds for all v \in H1(\Omega ). The standard theory for elliptic partial differential equations
reveals that there exists a unique solution to (2.2) in the quotient space H1(\Omega )/\BbbC for

any given current density f \in H
 - 1/2
\diamond (\partial \Omega ). In particular, there is a unique mean-free

boundary potential

(2.3) U := u| \partial \Omega \in H
1/2
\diamond (\partial \Omega )

that depends linearly and boundedly on the corresponding f \in H
 - 1/2
\diamond (\partial \Omega ). To be

more precise,

(2.4) \| U\| H1/2(\partial \Omega ) \leq C(\Omega )\| u\| H1(\Omega )/\BbbC \leq C(\Omega )

ess inf \sigma 
\| f\| H - 1/2(\partial \Omega ),

as easily deduced using the Lax--Milgram lemma, trace theorem, and Poincar\'e in-
equality [11].

The linear map f \mapsto \rightarrow U , which obviously depends on \sigma , is called the ND operator
and denoted by \Lambda (\sigma ). For any given \sigma \in L\infty 

+ (\Omega ), the mapping

\Lambda (\sigma ) :

\Biggl\{ 
f \mapsto \rightarrow U,

H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega )

is a symmetric linear isomorphism. Moreover \Lambda (\sigma ) is positive,

\langle f,\Lambda (\sigma )f\rangle \geq c\| f\| 2H - 1/2(\partial \Omega ) for all f \in H
 - 1/2
\diamond (\partial \Omega ) and some c > 0,

as can be easily deduced from (2.2) and Neumann trace theorems for those elements
of H1(\Omega )/\BbbC for which the range of \nabla \cdot (\sigma \nabla (\cdot )) is a subspace of L2(\Omega ) (cf., e.g., [8,
p. 381, Lemma 1]).

It follows from (2.2) that considering \Lambda (\sigma ) as an element of L (L2
\diamond (\partial \Omega )) makes it

self-adjoint as well as compact due to the compact and dense embeddingsH
1/2
\diamond (\partial \Omega ) \lhook \rightarrow 

L2
\diamond (\partial \Omega ) \lhook \rightarrow H

 - 1/2
\diamond (\partial \Omega ), which inherit their properties from the standard case

H1/2(\partial \Omega ) \lhook \rightarrow L2(\partial \Omega ) \lhook \rightarrow H - 1/2(\partial \Omega ), e.g., via taking intersections with H
 - 1/2
\diamond (\partial \Omega ).

In particular, \Lambda (\sigma ) admits a spectral decomposition

(2.5) \Lambda (\sigma )f =

\infty \sum 
k=1

\lambda k\langle f, \phi k\rangle \phi k,

where the eigenvalues satisfy \lambda k \geq \lambda k+1 and \BbbR + \ni \lambda k \rightarrow 0 as k \rightarrow \infty , and the

corresponding eigenfunctions \{ \phi k\} \infty k=1 \subset H
1/2
\diamond (\partial \Omega ) form an orthonormal basis for
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L2
\diamond (\partial \Omega ). Observe that the representation (2.5) holds for all f \in H

 - 1/2
\diamond (\partial \Omega ) by

boundedness of \Lambda (\sigma ) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega ) and the density of the embedding

L2
\diamond (\partial \Omega ) \lhook \rightarrow H

 - 1/2
\diamond (\partial \Omega ).

The nonlinear mapping

(2.6) \Lambda : \sigma \mapsto \rightarrow \Lambda (\sigma ), L\infty 
+ (\Omega ) \rightarrow L (H

 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega ))

is in this work called the standard forward operator of EIT. The idealized inverse
problem of EIT is to find \sigma from the knowledge of \Lambda (\sigma ). It is well known that the
map \sigma \mapsto \rightarrow \Lambda (\sigma ) is infinitely times continuously Fr\'echet differentiable. In particular,
the first and second derivatives,

D\Lambda (\sigma ; \eta ) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega ),

D2\Lambda (\sigma ; \eta , \xi ) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega ),

are continuous with respect to \sigma \in L\infty 
+ (\Omega ), symmetric, and depend (bi)linearly

and boundedly on the perturbations \eta , \xi \in L\infty (\Omega ) with respect to the topology of

L (H
 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )). To be more precise,

\| D\Lambda (\sigma ; \cdot )\| 
L (L\infty (\Omega ),L (H

 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega )))

\leq C

ess inf \sigma 2
,(2.7)

\| D2\Lambda (\sigma ; \cdot , \cdot )\| 
L (L\infty (\Omega )2,L (H

 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega )))

\leq C

ess inf \sigma 3
,(2.8)

where C = C(\Omega ) > 0 does not depend on \sigma . For the sake of completeness, we have
included the precise definitions of D\Lambda (\sigma ; \eta ) and D2\Lambda (\sigma ; \eta , \xi ) and the proofs of (2.7)
and (2.8) in Appendix A.

2.2. Logarithmic forward operator and the main results. Using the spec-
tral decomposition (2.5), the logarithm of the ND operator can be defined as

(2.9) log\Lambda (\sigma ) : f \mapsto \rightarrow 
\infty \sum 
k=1

log(\lambda k)\langle f, \phi k\rangle \phi k,

where log denotes the principal branch of the natural logarithm. As demonstrated
in [16], if one defines the domain of log\Lambda (\sigma ) to be

\scrD 
\bigl( 
log\Lambda (\sigma )

\bigr) 
=

\biggl\{ 
g \in L2

\diamond (\partial \Omega )
\bigm| \bigm| \bigm| \infty \sum 

k=1

log2(\lambda k)| \langle g, \phi k\rangle | 2 < \infty 
\biggr\} 
,

it becomes a self-adjoint unbounded operator on L2
\diamond (\partial \Omega ) for any \sigma \in L\infty 

+ (\Omega ). However,
log\Lambda (\sigma ) can also be interpreted as a symmetric compact operator

log\Lambda (\sigma ) : H\epsilon 
\diamond (\partial \Omega ) \rightarrow H - \epsilon 

\diamond (\partial \Omega ), \epsilon > 0;

see [16, Corollary 1].
Following [16], we now introduce the completely logarithmic forward map of EIT.
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Definition 2.1. The completely logarithmic forward map is defined via

(2.10) L : \kappa \mapsto \rightarrow log\Lambda (e\kappa ), L\infty (\Omega ) \rightarrow L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega ))

for any fixed \epsilon > 0.

Now we are finally ready to present the main results of this work.

Theorem 2.2. The completely logarithmic forward map of EIT

L : L\infty (\Omega ) \rightarrow L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )), \epsilon > 0,

is Fr\'echet differentiable. The corresponding Fr\'echet derivative

DL(\kappa ; \cdot ) \in L
\bigl( 
L\infty (\Omega ),L (L2

\diamond (\partial \Omega ))
\bigr) 
\subset L

\bigl( 
L\infty (\Omega ),L (H\epsilon 

\diamond (\partial \Omega ), H
 - \epsilon 
\diamond (\partial \Omega ))

\bigr) 
depends continuously on the log-conductivity \kappa \in L\infty (\Omega ). More precisely, for any
\kappa 1, \kappa 2 \in L\infty (\Omega ) lying inside the origin-centered ball of radius R > 0 in the topology
of L\infty (\Omega ), it holds

(2.11) \| DL(\kappa 2, \cdot ) - DL(\kappa 1, \cdot )\| L (L\infty (\Omega ),L (L2
\diamond (\partial \Omega ))) \leq C\| e\kappa 2  - e\kappa 1\| L\infty (\Omega ),

where C > 0 only depends on \Omega and R.

Although L(\kappa ) /\in L (L2
\diamond (\partial \Omega )) for all \kappa \in L\infty (\Omega ), it follows straightforwardly from

Theorem 2.2 that this regularity issue disappears for a relative completely logarithmic
forward map.

Corollary 2.3. For any \kappa , \kappa 0 \in L\infty (\Omega ), the operator L(\kappa ) - L(\kappa 0) continuously
extends to a self-adjoint operator in L (L2

\diamond (\partial \Omega )). In particular, for a fixed \kappa 0 \in 
L\infty (\Omega ),

\kappa \mapsto \rightarrow L(\kappa ) - L(\kappa 0)

is continuously Fr\'echet differentiable as a map L\infty (\Omega ) \rightarrow L (L2
\diamond (\partial \Omega )), with the

derivative DL(\kappa , \cdot ). Moreover, for any \kappa 1, \kappa 2 \in L\infty (\Omega ) lying inside the origin-
centered ball of radius R > 0 in the topology of L\infty (\Omega ), it holds

(2.12) \| L(\kappa 2) - L(\kappa 1)\| L (L2
\diamond (\partial \Omega )) \leq C\| e\kappa 2  - e\kappa 1\| L\infty (\Omega ),

where C > 0 only depends on \Omega and R.

The following example sheds light on Corollary 2.3 in case of homogeneous con-
ductivities. The reader is also encouraged to consult [16, Example 3].

Example 2.4. Consider two positive constant conductivities \sigma , \sigma 0 \in \BbbR + in \Omega and
denote the corresponding log-conductivities by \kappa , \kappa 0 \in \BbbR , respectively. If \Lambda (\sigma ) obeys
the spectral decomposition (2.5), then via a simple scaling argument (see, e.g., [16,
Example 1]),

\Lambda (\sigma 0)f =

\infty \sum 
k=1

\sigma 

\sigma 0
\lambda k\langle f, \phi k\rangle \phi k, f \in L2

\diamond (\partial \Omega ).

Hence, for any f \in H\epsilon 
\diamond (\partial \Omega ) with \epsilon > 0,

\bigl( 
L(\kappa ) - L(\kappa 0)

\bigr) 
f =

\bigl( 
log\Lambda (e\kappa ) - log\Lambda (e\kappa 0)

\bigr) 
f =

\infty \sum 
k=1

(\kappa 0  - \kappa )\langle f, \phi k\rangle \phi k = (\kappa 0  - \kappa )f.

In other words, L(\kappa )  - L(\kappa 0) extends to L (L2
\diamond (\partial \Omega )) as (\kappa 0  - \kappa )I, where I is the

identity map.
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We also obtain the following representation for DL, generalizing [16, Theorem 1]
to infinite dimensions.

Corollary 2.5. Let \kappa , \eta \in L\infty (\Omega ) be arbitrary and denote by \{ \lambda k, \phi k\} k\in \BbbN a
normalized eigensystem of \Lambda (e\kappa ). Then for any f \in L2

\diamond (\partial \Omega ),

DL(\kappa ; \eta )f =

\infty \sum 
j=1

\infty \sum 
k=1

cj,k \langle f, \phi k\rangle 
\bigl\langle 
D\Lambda (e\kappa ; \eta e\kappa )\phi k, \phi j

\bigr\rangle 
\phi j ,

where

cj,k :=

\left\{   
log(\lambda j) - log(\lambda k)

\lambda j  - \lambda k
, \lambda j \not = \lambda k,

1
\lambda j
, \lambda j = \lambda k.

The rest of this paper aims at proving the above results and providing further
insight on their natural generalizations; the final proofs of Theorem 2.2, Corollary
2.3, and Corollary 2.5 are presented at the end of section 4. The remaining work
is divided into two parts: In the following section, we translate the spectrum of
\Lambda (\sigma ) by \tau > 0 to the right of the origin and prove the Fr\'echet differentiability of the
resulting logarithmic isomorphism log\Lambda \tau (\sigma ) : L

2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ) as well as some other
useful properties. Section 4 is then devoted to checking that everything stays intact
when \tau tends to zero. In addition, auxiliary results on equivalent norms for Hr

\diamond (\partial \Omega ),
r \in [ - 1

2 ,
1
2 ], defined using the \sigma -dependent singular system of \Lambda (\sigma ) are presented in

Appendix B.

Remark 2.6. As the completely logarithmic forward map L defined by (2.10) is
the one that was found to be closer to linear than, say, the standard forward map
\sigma \mapsto \rightarrow \Lambda (\sigma ) in the numerical studies of [16], our main results presented above are
formulated for L. However, when proving Theorem 2.2, it is more natural to first
consider

(2.13) log\Lambda : \sigma \mapsto \rightarrow log\Lambda (\sigma )

that maps L\infty 
+ (\Omega ) to L (H\epsilon 

\diamond (\partial \Omega ), H
 - \epsilon 
\diamond (\partial \Omega )) and subsequently resort to the chain rule

for Banach spaces.

3. Shifted ND map \Lambda \bfittau and its logarithm. Adding a positive multiple \tau > 0
of identity to the ND map allows to define a shifted logarithmic ND map that is
bounded on all of L2

\diamond (\partial \Omega ) and can be differentiated with respect to the conductivity
by means of standard functional calculus. This section provides uniform norm bounds
with respect to \tau for the first and second order derivatives of this shifted logarithmic
boundary map in L (L\infty (\Omega ),L (L2

\diamond (\partial \Omega ))) and L (L\infty (\Omega )2,L (L2
\diamond (\partial \Omega ))), respectively.

Such bounds guarantee the existence of well defined limit operators for these deriv-
atives as \tau \rightarrow 0+. In particular, the limit of the first derivative provides a natural
candidate for the searched for Dlog\Lambda (\sigma ; \cdot ) in L (L\infty (\Omega ),L (L2

\diamond (\partial \Omega ))).

3.1. Definition and basic properties. We define the shifted ND map, or a
Neumann-to-Robin map, as

\Lambda \tau (\sigma ) := \Lambda (\sigma ) + \tau I : L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ),(3.1)
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204 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

where I : L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ) is the identity map. Obviously,

\Lambda \tau (\sigma )f = U + \tau f =

\infty \sum 
k=1

(\lambda k + \tau )\langle f, \phi k\rangle \phi k,

where the mean-free Dirichlet boundary value U \in H
1/2
\diamond (\partial \Omega ) is defined by (2.3) and

the singular system \{ \lambda k, \phi k\} \infty k=1 \subset \BbbR + \times H
1/2
\diamond (\partial \Omega ) is as in (2.5). In particular, the

spectrum of \Lambda \tau (\sigma ) is contained in the interval [\tau , \tau +\| \Lambda (\sigma )\| L (L2
\diamond (\partial \Omega ))]. The following

remark summarizes some obvious properties of \Lambda \tau (\sigma ).

Remark 3.1. For any \sigma \in L\infty 
+ (\Omega ) and \tau > 0, the shifted ND map \Lambda \tau (\sigma ) :

L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ) is a self-adjoint isomorphism. The spectrum of \Lambda \tau (\sigma ) consists
solely of its strictly positive eigenvalues \lambda k,\tau := \lambda k + \tau , k \in \BbbN , and their accumula-

tion point \tau . Moreover, \Lambda \tau (\sigma ) extends to an isomorphism from H
 - 1/2
\diamond (\partial \Omega ) to itself

(denoted by the same symbol).

Observe that the shifted forward map induced by (3.1), i.e.,

L\infty 
+ (\Omega ) \ni \sigma \mapsto \rightarrow \Lambda \tau (\sigma ) \in L (H

 - 1/2
\diamond (\partial \Omega )),

obviously has the same Fr\'echet derivative as the original unshifted version (2.6), since
the perturbation \tau I is independent of \sigma . In particular, the derivative D\Lambda \tau (\sigma ; \eta ) =

D\Lambda (\sigma ; \eta ) belongs to L (H
 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )) and is thus more smoothening than

\Lambda \tau (\sigma ) itself.

3.2. Differentiability of log\Lambda \bfittau . We define the logarithm of \Lambda \tau (\sigma ) in the nat-
ural manner, i.e.,

(3.2) log\Lambda \tau (\sigma ) : f \mapsto \rightarrow 
\infty \sum 
k=1

log(\lambda k + \tau )\langle f, \phi k\rangle \phi k, \tau > 0.

It is obvious that log\Lambda \tau (\sigma ) is a bounded self-adjoint operator on L2
\diamond (\partial \Omega ) for any \tau > 0

as its spectrum lies on the bounded interval [log(\tau ), log(\tau + \lambda 1)] \subset \BbbR (but it is only
self-adjoint for \tau = 0). Moreover, log\Lambda \tau (\sigma ) - log(\tau )I is compact since its eigenvalues
log(\lambda k

\tau + 1) converge to zero as k \rightarrow \infty . This implies that log\Lambda \tau (\sigma 2)  - log\Lambda \tau (\sigma 1) is
also compact for any \sigma 1, \sigma 2 \in L\infty 

+ (\Omega ) and \tau > 0.
As \Lambda \tau (\sigma ) is itself an element of L (L2

\diamond (\partial \Omega )), the definition (3.2) coincides with
the more general Riesz--Dunford formula

(3.3) log(T ) =
1

2\pi i

\int 
\Gamma 

log(z)(zI  - T ) - 1dz,

that is valid for any T \in L (L2
\diamond (\partial \Omega )) for which there exists a positively oriented

rectifiable Jordan curve \Gamma \subset \BbbC that encloses the spectrum of T without intersecting
the closed negative real axis.

We also introduce the ``shifted logarithmic"" forward operator

(3.4) log\Lambda \tau : \sigma \mapsto \rightarrow log\Lambda \tau (\sigma ), L\infty 
+ (\Omega ) \rightarrow L (L2

\diamond (\partial \Omega ))

for any \tau > 0. Because the natural logarithm is analytic in a neighborhood of the
spectrum of \Lambda \tau (\sigma ), we have the following preliminary differentiability result. In what
follows, we employ the shorthand notation \Lambda  - 1

\tau +s(\sigma ) := (\Lambda \tau +s(\sigma ))
 - 1; recall from Re-

mark 3.1 that \Lambda  - 1
\tau +s(\sigma ) \in L (L2

\diamond (\partial \Omega )) for \tau + s > 0 because the spectrum of \Lambda \tau +s(\sigma )
lies on the interval [\tau + s, \lambda 1 + \tau + s] not containing the origin.
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Lemma 3.2. The operator logarithm is differentiable at \Lambda \tau (\sigma ) in the sense that
there exists Dlog(\Lambda \tau (\sigma ); \cdot ) \in L (Lsa(L

2
\diamond (\partial \Omega ))) such that

1

\| S\| 
\bigm\| \bigm\| log(\Lambda \tau (\sigma ) + S) - log\Lambda \tau (\sigma ) - Dlog(\Lambda \tau (\sigma );S)

\bigm\| \bigm\| \rightarrow 0 as \| S\| \rightarrow 0

for a self-adjoint perturbation S and with \| \cdot \| = \| \cdot \| L (L2
\diamond (\partial \Omega )). The derivative allows

the representation

(3.5) Dlog(\Lambda \tau (\sigma );S) =

\int \infty 

0

\Lambda  - 1
\tau +s(\sigma )S \Lambda  - 1

\tau +s(\sigma ) ds

understood in the sense of a Bochner integral.

Moreover, if S can be extended to an operator in L (H
 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )) and

0 < \varsigma  - \leq \sigma \leq \varsigma + < \infty almost everywhere in \Omega , then

(3.6) \| Dlog(\Lambda \tau (\sigma );S)\| L (L2
\diamond (\partial \Omega )) \leq C\| S\| 

L (H
 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega ))

,

where C = C(\Omega , \varsigma  - , \varsigma +) is independent of \sigma and \tau > 0.

Proof. The differentiability result and the representation (3.5) follow from the
material in [21]; in particular, see the last formula of section 4.3 on page 155 in [21].

What remains to be proven is (3.6). By [15, Theorem 3.7.3, p. 78]1 continuous lin-
ear maps commute with Bochner integrals. Hence, we may utilize the self-adjointness
of Dlog(\Lambda \tau (\sigma );S) to estimate

\| Dlog(\Lambda \tau (\sigma );S)\| L (L2
\diamond (\partial \Omega ))

= sup
\| f\| L2(\partial \Omega )=1

\bigm| \bigm| \langle f, Dlog(\Lambda \tau (\sigma );S)f\rangle 
\bigm| \bigm| 

\leq sup
\| f\| L2(\partial \Omega )=1

\int \infty 

0

\bigm| \bigm| \bigl\langle f, \Lambda  - 1
\tau +s(\sigma )S\Lambda 

 - 1
\tau +s(\sigma )f

\bigr\rangle \bigm| \bigm| ds
= sup

\| f\| L2(\partial \Omega )=1

\int \infty 

0

\bigm| \bigm| \bigl\langle \Lambda  - 1
\tau +s(\sigma )f, S\Lambda 

 - 1
\tau +s(\sigma )f

\bigr\rangle \bigm| \bigm| ds
\leq \| S\| 

L (H
 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega ))

sup
\| f\| L2(\partial \Omega )=1

\int \infty 

0

\| \Lambda  - 1
\tau +s(\sigma )f\| 2H - 1/2(\partial \Omega ) ds,(3.7)

where we employed the boundedness of the dual bracket over H
 - 1/2
\diamond (\partial \Omega )\times H

1/2
\diamond (\partial \Omega ).

We now resort to the equivalent norm \| \cdot \|  - 1/2,\sigma for H
 - 1/2
\diamond (\partial \Omega ) defined by (B.3),

for which it obviously holds \| \Lambda  - 1
\tau +s(\sigma )f\|  - 1/2,\sigma \leq \| \Lambda  - 1

s (\sigma )f\|  - 1/2,\sigma for any \tau , s > 0
and f \in L2

\diamond (\partial \Omega ). In particular, we have

(3.8) \| \Lambda  - 1
\tau +s(\sigma )f\| 2H - 1/2(\partial \Omega ) \leq C\| \Lambda  - 1

s (\sigma )f\| 2 - 1/2,\sigma = C

\infty \sum 
k=1

\lambda k

(s+ \lambda k)2
| \langle f, \phi k\rangle | 2,

where C = C(\Omega , \varsigma  - , \varsigma +) can be chosen to be independent of \sigma itself due to Theo-
rem B.2. Denoting \| \cdot \| = \| \cdot \| 

L (H
 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega ))

and plugging (3.8) into (3.7), we

finally obtain

\| Dlog(\Lambda \tau (\sigma );S)\| L (L2
\diamond (\partial \Omega )) \leq C\| S\| sup

\| f\| L2(\partial \Omega )=1

\infty \sum 
k=1

| \langle f, \phi k\rangle | 2
\int \infty 

0

\lambda k

(s+ \lambda k)2
ds = C\| S\| ,

since \{ \phi k\} k\in \BbbN is an orthonormal basis for L2
\diamond (\partial \Omega ).

1Observe that the Pettis integral is a generalization of the Bochner integral.

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

30
.2

33
.1

91
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

206 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

Due to (3.6), the right-hand side of (3.5) defines a self-adjoint operator in

L (L2
\diamond (\partial \Omega )) for any S \in L (H

 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )) \cap Lsa(L

2
\diamond (\partial \Omega )) even if \tau = 0.

This limit behavior will be central in the following.
In Lemma 3.2 the perturbation S is an arbitrary element of Lsa(L

2
\diamond (\partial \Omega )). How-

ever, we are actually only interested in perturbations of \Lambda \tau (\sigma ) induced by a change
in the conductivity \sigma . This observation leads to the following proposition.

Proposition 3.3. For \tau \geq 0 and \sigma \in L\infty 
+ (\Omega ), we define an operator DF\tau (\sigma ; \cdot )

belonging to L (L\infty (\Omega ),L (L2
\diamond (\partial \Omega ))) via

(3.9) DF\tau (\sigma ; \eta ) :=

\int \infty 

0

\Lambda  - 1
\tau +s(\sigma )D\Lambda (\sigma ; \eta ) \Lambda  - 1

\tau +s(\sigma ) ds.

The following hold:
(i) If 0 < \varsigma  - \leq \sigma \leq \varsigma + < \infty almost everywhere in \Omega , then

(3.10) \| DF\tau (\sigma ; \cdot )\| L (L\infty (\Omega ),L (L2
\diamond (\partial \Omega ))) \leq C,

where C = C(\Omega , \varsigma  - , \varsigma +) is independent of \sigma and \tau \geq 0.
(ii) If \tau > 0, the shifted logarithmic forward operator log\Lambda \tau defined by (3.4)

is continuously Fr\'echet differentiable with the derivative

Dlog\Lambda \tau (\sigma ; \cdot ) = DF\tau (\sigma ; \cdot ).

Proof. For log\Lambda \tau with \tau > 0, the continuous Fr\'echet differentiability and the
representation (3.9) for its derivative follow from the combination of Lemma 3.2,
the continuous Fr\'echet differentiability of the standard forward map L\infty 

+ (\Omega ) \ni \sigma \mapsto \rightarrow 
\Lambda (\sigma ) \in L (H

 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )) \subset L (L2

\diamond (\partial \Omega )) considered in Appendix A, the chain
rule for Banach spaces, and the continuous Fr\'echet differentiability of the operator
logarithm. Indeed, the derivative of the operator logarithm is continuous in some
neighborhood of any strictly positive definite element of Lsa(L

2
\diamond (\partial \Omega )), which applies

in particular to \Lambda \tau (\sigma ) for any \sigma \in L\infty 
+ (\Omega ) and \tau > 0 (cf. [21]). See also the comment

succeeding Remark 3.1.
To prove the bound (3.10), we first of all note that D\Lambda (\sigma ; \eta ) : L2

\diamond (\partial \Omega ) \rightarrow L2
\diamond (\partial \Omega )

is self-adjoint for any \sigma \in L\infty 
+ (\Omega ) and \eta \in L\infty (\Omega ); see Appendix A. By virtue of

(3.6), the comment after the proof of Lemma 3.2, and (2.7), we thus get

\| DF\tau (\sigma ; \eta )\| L (L2
\diamond (\partial \Omega )) \leq C(\Omega , \varsigma  - , \varsigma +)\| \eta \| L\infty (\Omega )

for any \tau \geq 0. The claim then follows by taking the supremum over \eta \in L\infty (\Omega )
satisfying \| \eta \| L\infty (\Omega ) = 1.

According to Proposition 3.3, DF\tau (\sigma ; \eta ) : L
2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ) is well defined and
bounded even for \tau = 0. In particular, DF0(\sigma ; \cdot ) provides the natural candidate for
the Fr\'echet derivative of the (unshifted) logarithmic forward map from (2.13).

We next introduce an alternative representation for DF\tau (\sigma ; \eta ), arguably more
suitable for numerical considerations. Take note that this formula is known to hold
for \tau > 0 due to, e.g., [10, Corollary 2.3] and employing the Riesz--Dunford formula
(3.3) to define log\Lambda \tau (\sigma ). However, we also consider the case \tau = 0 here. The following
proposition can be considered a prequel for Corollary 2.5.
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Proposition 3.4. Let \tau \geq 0, \sigma \in L\infty 
+ (\Omega ), and \eta \in L\infty (\Omega ). The following repre-

sentation in the eigenbasis \{ \phi k\} k\in \BbbN is valid for any f \in L2
\diamond (\partial \Omega ):

DF\tau (\sigma ; \eta )f =

\infty \sum 
j=1

\infty \sum 
k=1

cj,k,\tau \langle f, \phi k\rangle 
\bigl\langle 
D\Lambda (\sigma , \eta )\phi k, \phi j

\bigr\rangle 
\phi j ,

where

cj,k,\tau :=

\left\{   
log(\lambda j + \tau ) - log(\lambda k + \tau )

\lambda j  - \lambda k
, \lambda j \not = \lambda k,

1
\lambda j+\tau , \lambda j = \lambda k.

Proof. SinceDF\tau (\sigma ; \eta ) \in L (L2
\diamond (\partial \Omega )) for \tau \geq 0 by Proposition 3.3, we are allowed

to write

DF\tau (\sigma ; \eta )f =

\infty \sum 
j=1

\infty \sum 
k=1

\langle f, \phi k\rangle 
\bigl\langle 
DF\tau (\sigma ; \eta )\phi k, \phi j

\bigr\rangle 
\phi j .

The proof is concluded by expanding \langle DF\tau (\sigma ; \eta )\phi k, \phi j\rangle . To this end, we employ (3.9)
and the spectral decomposition of \Lambda  - 1

\tau +s(\sigma ) to deduce

\langle DF\tau (\sigma ; \eta )\phi k, \phi j\rangle 

=

\int \infty 

0

\bigl\langle 
D\Lambda (\sigma ; \eta )\Lambda  - 1

\tau +s(\sigma )\phi k,\Lambda 
 - 1
\tau +s(\sigma )\phi j

\bigr\rangle 
ds

=

\int \infty 

0

\infty \sum 
m=1

\infty \sum 
n=1

1

(\lambda m + \tau + s)(\lambda n + \tau + s)
\langle \phi k, \phi m\rangle 

\bigl\langle 
D\Lambda (\sigma ; \eta )\phi m, \phi n

\bigr\rangle 
\langle \phi j , \phi n\rangle ds

= \langle D\Lambda (\sigma ; \eta )\phi k, \phi j\rangle 
\int \infty 

0

1

(\lambda k + \tau + s)(\lambda j + \tau + s)
ds,

where the integral over s gives cj,k,\tau .

To complete this section, we still need to consider the second Fr\'echet derivative
of log\Lambda \tau as well as its uniform boundedness with respect to \tau > 0.

Proposition 3.5. For \tau \geq 0 and \sigma \in L\infty 
+ (\Omega ), we define an operator D2F\tau (\sigma ; \cdot , \cdot )

belonging to L (L\infty (\Omega )2,L (L2
\diamond (\partial \Omega ))) via

D2F\tau (\sigma ; \eta , \xi ) :=

\int \infty 

0

\Lambda  - 1
\tau +s(\sigma )D

2\Lambda (\sigma ; \eta , \xi ) \Lambda  - 1
\tau +s(\sigma ) ds(3.11)

 - 
\int \infty 

0

\Lambda  - 1
\tau +s(\sigma )D\Lambda (\sigma ; \eta ) \Lambda  - 1

\tau +s(\sigma )D\Lambda (\sigma ; \xi ) \Lambda  - 1
\tau +s(\sigma ) ds

 - 
\int \infty 

0

\Lambda  - 1
\tau +s(\sigma )D\Lambda (\sigma ; \xi ) \Lambda  - 1

\tau +s(\sigma )D\Lambda (\sigma ; \eta ) \Lambda  - 1
\tau +s(\sigma ) ds.

The following hold:
(i) If 0 < \varsigma  - \leq \sigma \leq \varsigma + < \infty almost everywhere in \Omega , then

(3.12) \| D2F\tau (\sigma ; \cdot , \cdot )\| L (L\infty (\Omega )2,L (L2
\diamond (\partial \Omega ))) \leq C,

where C = C(\Omega , \varsigma  - , \varsigma +) is independent of \sigma and \tau \geq 0.
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208 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

(ii) If \tau > 0, the shifted logarithmic forward operator log\Lambda \tau defined by (3.4)
is twice Fr\'echet differentiable with the second order derivative

D2log\Lambda \tau (\sigma ; \cdot , \cdot ) = D2F\tau (\sigma ; \cdot , \cdot ).

Proof. For log\Lambda \tau with \tau > 0, the representation (3.11) for the second derivative
is a consequence of Proposition 3.3, the product rule for Banach spaces, the differen-
tiation formula

D\Lambda  - 1
\tau +s(\sigma ; \cdot ) =  - \Lambda  - 1

\tau +s(\sigma )D\Lambda \tau +s(\sigma ; \cdot )\Lambda  - 1
\tau +s(\sigma ) =  - \Lambda  - 1

\tau +s(\sigma )D\Lambda (\sigma ; \cdot )\Lambda  - 1
\tau +s(\sigma ),

and Hille's theorem (see [14, Lemma 1] or [15, Theorem 3.7.12, p. 83]) that requires
the Bochner integrals resulting from the differentiation under the integral sign are
well defined. This condition is satisfied by virtue of (3.12) that is established below.

The bound (3.12) follows from the triangle inequality after separately estimating
the three terms I1, I2, and I3 (defined in the order they appear) on the right-hand
side of (3.11). The first one can be handled by resorting to (3.6) and (2.8):

\| I1\| L (L2
\diamond (\partial \Omega )) \leq C\| \eta \| L\infty (\Omega )\| \xi \| L\infty (\Omega ),

where C = C(\Omega , \varsigma  - , \varsigma +) > 0 can be chosen to be independent of \sigma . Combining (3.6)
next with (2.7), it is easy to see that the other two terms satisfy

\| Ij\| L (L2
\diamond (\partial \Omega )) \leq C\| \eta \| L\infty (\Omega )\| \xi \| L\infty (\Omega )\| \Lambda  - 1

\tau +s(\sigma )\| L (H
1/2
\diamond (\partial \Omega ),H

 - 1/2
\diamond (\partial \Omega ))

, j = 2, 3,

where C = C(\Omega , \varsigma  - , \varsigma +) > 0 can once again be chosen independently of the actual \sigma .
To estimate \| \Lambda  - 1

\tau +s(\sigma )\| L (H
1/2
\diamond (\partial \Omega ),H

 - 1/2
\diamond (\partial \Omega ))

, we first use the equivalent norm \| \cdot \| 1/2,\sigma 
for H

1/2
\diamond (\partial \Omega ) defined by (B.3) along with Theorem B.2 to deduce

\| \Lambda  - 1
\tau +s(\sigma )\| L (H

1/2
\diamond (\partial \Omega ),H

 - 1/2
\diamond (\partial \Omega ))

\leq C(\Omega , \varsigma  - , \varsigma +)\| \Lambda  - 1(\sigma )\| 
L (H

1/2
\diamond (\partial \Omega ),H

 - 1/2
\diamond (\partial \Omega ))

\leq C(\Omega , \varsigma  - , \varsigma +)\| \Lambda  - 1(\varsigma +)\| L (H
1/2
\diamond (\partial \Omega ),H

 - 1/2
\diamond (\partial \Omega ))

\leq C(\Omega , \varsigma  - , \varsigma +),

where the second step is a consequence of the monotonicity relation in Lemma B.3 for
\sigma \leq \varsigma + together with \Lambda  - 1(\sigma ) and \Lambda  - 1(\varsigma +) being symmetric. Combining the preceding
estimates finally gives

\| D2F\tau (\sigma ; \eta , \xi )\| L (L2
\diamond (\partial \Omega )) \leq C(\Omega , \varsigma  - , \varsigma +)\| \eta \| L\infty (\Omega )\| \xi \| L\infty (\Omega ),

and the proof is completed by taking the supremum over \eta , \xi \in L\infty (\Omega ) such that
\| \eta \| L\infty (\Omega ) = \| \xi \| L\infty (\Omega ) = 1.

Remark 3.6. The continuity of the second derivative \sigma \mapsto \rightarrow D2log\Lambda \tau (\sigma ; \cdot , \cdot ) for
\tau > 0 could be established, e.g., by repeating the arguments in the proof of Propo-
sition 3.5 to show that log\Lambda \tau , \tau > 0, is actually three times Fr\'echet differentiable.
However, we skip such technical calculations because the continuity of the second
derivative is not actually needed when proving the main results of this work.

4. Proofs of the main results. We now verify that Dlog\Lambda := DF0, defined
by (3.9), is in fact the Fr\'echet derivative of log\Lambda , and for this reason we call DF0 by
its new name in the rest of this section. We start by considering the convergence of
log\Lambda \tau (\sigma ) and Dlog\Lambda \tau (\sigma ; \cdot ) towards log\Lambda (\sigma ) and Dlog\Lambda (\sigma ; \cdot ), respectively, as \tau > 0
tends to zero.
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Proposition 4.1. If 0 < \varsigma  - \leq \sigma \leq \varsigma + < \infty almost everywhere in \Omega , then for
any fixed 0 < \epsilon \leq 1

2 ,

(4.1) \| log\Lambda (\sigma ) - log\Lambda \tau (\sigma )\| L (H\epsilon 
\diamond (\partial \Omega ),H - \epsilon 

\diamond (\partial \Omega )) \leq C\epsilon  - 1\tau 2\epsilon 

and

(4.2) \| Dlog\Lambda (\sigma ; \cdot ) - Dlog\Lambda \tau (\sigma ; \cdot )\| L (L\infty (\Omega ),L (H\epsilon 
\diamond (\partial \Omega ),H - \epsilon 

\diamond (\partial \Omega ))) \leq C\tau \epsilon ,

where C = C(\Omega , \varsigma  - , \varsigma +) > 0 does not depend on \sigma , \tau \geq 0, or \epsilon .

Proof. Using the spectral decompositions (2.9) and (3.2), we get

\bigl( 
log\Lambda (\sigma ) - log\Lambda \tau (\sigma )

\bigr) 
f =  - 

\infty \sum 
k=1

log
\Bigl( 
1 +

\tau 

\lambda k

\Bigr) 
\langle f, \phi k\rangle \phi k

for any f \in H\epsilon 
\diamond (\partial \Omega ). Hence,

\bigm\| \bigm\| (log\Lambda (\sigma ) - log\Lambda \tau (\sigma ))f
\bigm\| \bigm\| 2
H - \epsilon (\partial \Omega )

\leq C

\infty \sum 
k=1

\lambda 2\epsilon 
k log2

\Bigl( 
1 +

\tau 

\lambda k

\Bigr) 
| \langle f, \phi k\rangle | 2

\leq C sup
t\in \BbbR +

t4\epsilon log2
\Bigl( 
1 +

\tau 

t

\Bigr) \infty \sum 
k=1

\lambda  - 2\epsilon 
k | \langle f, \phi k\rangle | 2

\leq C sup
t\in \BbbR +

t4\epsilon log2
\Bigl( 
1 +

\tau 

t

\Bigr) 
\| f\| 2H\epsilon (\partial \Omega ),(4.3)

where we used Theorem B.2 that also indicates C = C(\Omega , \varsigma  - , \varsigma +) is independent of \sigma 
and f . Since \epsilon \in (0, 1

2 ], we have

log(1 + y) \leq 1

2\epsilon 
y2\epsilon for all y \geq 0.

This estimate can be easily proven, e.g., by first observing that it holds at y = 0 and
then comparing the derivatives of the two sides. Hence, taking the square root and
supremum over f \in H\epsilon 

\diamond (\partial \Omega ) with \| f\| H\epsilon (\partial \Omega ) = 1 in (4.3), one arrives at

\| log\Lambda (\sigma ) - log\Lambda \tau (\sigma )\| L (H\epsilon 
\diamond (\partial \Omega ),H - \epsilon 

\diamond (\partial \Omega )) \leq C\epsilon  - 1\tau 2\epsilon ,

which proves the first part of the claim.
In order to prove (4.2), we first consider the difference of \Lambda  - 1

\tau +s(\sigma ) and \Lambda  - 1
s (\sigma ) for

fixed \tau , s > 0. To this end, we write

(\Lambda  - 1
s (\sigma ) - \Lambda  - 1

\tau +s(\sigma ))f =

\infty \sum 
k=1

\tau 

(s+ \lambda k)(\tau + s+ \lambda k)
\langle f, \phi k\rangle \phi k

for f \in L2
\diamond (\partial \Omega ). Hence, due to Theorem B.2,

\bigm\| \bigm\| (\Lambda  - 1
s (\sigma ) - \Lambda  - 1

\tau +s(\sigma ))f
\bigm\| \bigm\| 2
H - 1/2(\partial \Omega )

\leq C

\infty \sum 
k=1

\lambda k\tau 
2

(s+ \lambda k)2(\tau + s+ \lambda k)2
| \langle f, \phi k\rangle | 2

\leq C sup
t\in \BbbR +

\omega 2
\tau ,s,\epsilon (t)

\infty \sum 
k=1

\lambda k

(s+ \lambda k)2
\lambda  - 2\epsilon 
k | \langle f, \phi k\rangle | 2,(4.4)

D
ow

nl
oa

de
d 

01
/0

6/
21

 to
 1

30
.2

33
.1

91
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

210 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

where C = C(\Omega , \varsigma  - , \varsigma +) > 0 is independent of \sigma and

\omega \tau ,s,\epsilon (t) :=
t\epsilon \tau 

\tau + s+ t
.

As \omega \tau ,s,\epsilon : \BbbR + \rightarrow \BbbR + vanishes both at the origin and at infinity, its maximum is found
at

t\ast =
\epsilon 

1 - \epsilon 
(\tau + s),

where \omega \prime 
\tau ,s,\epsilon is zero. Hence,

(4.5) sup
t\in \BbbR +

\omega \tau ,s,\epsilon (t) = \epsilon \epsilon (1 - \epsilon )1 - \epsilon \tau 

(\tau + s)1 - \epsilon 
\leq \tau \epsilon ,

for all \tau , s > 0 and \epsilon \in (0, 1
2 ].

Note that supk \lambda k = \| \Lambda (\sigma )\| L (L2
\diamond (\partial \Omega )) \leq \| \Lambda (\varsigma  - )\| L (L2

\diamond (\partial \Omega )) where the inequality
is a consequence of monotonicity; cf. Appendix B. In particular,

\lambda 2\epsilon 
k \leq max

\bigl\{ 
1, \| \Lambda (\varsigma  - )\| L (L2

\diamond (\partial \Omega ))

\bigr\} 
, k \in \BbbN .

Hence, we have

(4.6)
\bigm\| \bigm\| \Lambda  - 1

s (\sigma )f
\bigm\| \bigm\| 2
H - 1/2(\partial \Omega )

\leq C

\infty \sum 
k=1

\lambda k

(s+ \lambda k)2
\lambda  - 2\epsilon 
k | \langle f, \phi k\rangle | 2,

where C = C(\Omega , \varsigma  - , \varsigma +) is independent of \sigma by Theorem B.2. Mimicking the proof of
Lemma 3.2, one may write\bigl\langle 
f, (Dlog\Lambda (\sigma ; \eta ) - Dlog\Lambda \tau (\sigma ; \eta ))f

\bigr\rangle 
=

\int \infty 

0

\Bigl( \bigl\langle 
\Lambda  - 1
s (\sigma )f, D\Lambda (\sigma ; \eta )\Lambda  - 1

s (\sigma )f
\bigr\rangle 
 - 
\bigl\langle 
\Lambda  - 1
\tau +s(\sigma )f, D\Lambda (\sigma ; \eta )\Lambda  - 1

\tau +s(\sigma )f
\bigr\rangle \Bigr) 

ds

=

\int \infty 

0

\bigl\langle 
\Lambda  - 1
s (\sigma )f, D\Lambda (\sigma ; \eta )(\Lambda  - 1

s (\sigma ) - \Lambda  - 1
\tau +s(\sigma ))f

\bigr\rangle 
ds

+

\int \infty 

0

\bigl\langle 
(\Lambda  - 1

s (\sigma ) - \Lambda  - 1
\tau +s(\sigma ))f, D\Lambda (\sigma ; \eta )\Lambda  - 1

\tau +s(\sigma )f
\bigr\rangle 
ds.

Because Dlog\Lambda (\sigma ; \eta )  - Dlog\Lambda \tau (\sigma ; \eta ) : H\epsilon 
\diamond (\partial \Omega ) \rightarrow H - \epsilon 

\diamond (\partial \Omega ) is symmetric and by
denoting \| \cdot \| = \| \cdot \| H - 1/2(\partial \Omega ), we obtain

\| Dlog\Lambda (\sigma ; \eta ) - Dlog\Lambda \tau (\sigma ; \eta )\| L (H\epsilon 
\diamond (\partial \Omega ),H - \epsilon 

\diamond (\partial \Omega ))

= sup
\| f\| H\epsilon (\partial \Omega )=1

\bigm| \bigm| \bigl\langle f, (Dlog\Lambda (\sigma ; \eta ) - Dlog\Lambda \tau (\sigma ; \eta ))f
\bigr\rangle \bigm| \bigm| 

\leq C\| \eta \| L\infty (\Omega ) sup
\| f\| H\epsilon (\partial \Omega )=1

\Biggl( \int \infty 

0

\| \Lambda  - 1
s (\sigma )f\| \| \Lambda  - 1

s (\sigma ) - \Lambda  - 1
\tau +s(\sigma )f\| ds

+

\int \infty 

0

\| \Lambda  - 1
s (\sigma ) - \Lambda  - 1

\tau +s(\sigma )f\| \| \Lambda  - 1
\tau +s(\sigma )f\| ds

\Biggr) 

\leq C\| \eta \| L\infty (\Omega ) sup
\| f\| H\epsilon (\partial \Omega )=1

\int \infty 

0

\| \Lambda  - 1
s (\sigma ) - \Lambda  - 1

\tau +s(\sigma )f\| \| \Lambda  - 1
s (\sigma )f\| ds,
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where we used the triangle inequality, the boundedness of the dual bracket over

H
 - 1/2
\diamond (\partial \Omega ) \times H

1/2
\diamond (\partial \Omega ), and the estimates (2.7), (3.8), and (B.2). Note that the

generic constant C = C(\Omega , \varsigma  - , \varsigma +) remains independent of \sigma .
Substituting (4.4)--(4.6), we finally get

\| Dlog\Lambda (\sigma ; \eta ) - Dlog\Lambda \tau (\sigma ; \eta )\| L (H\epsilon 
\diamond (\partial \Omega ),H - \epsilon 

\diamond (\partial \Omega ))

\leq C(\Omega , \varsigma  - , \varsigma +)\tau 
\epsilon \| \eta \| L\infty (\Omega ) sup

\| f\| H\epsilon (\partial \Omega )=1

\infty \sum 
k=1

\lambda  - 2\epsilon 
k | \langle f, \phi k\rangle | 2

\int \infty 

0

\lambda k

(s+ \lambda k)2
ds

\leq C(\Omega , \varsigma  - , \varsigma +)\tau 
\epsilon \| \eta \| L\infty (\Omega ),

where the last step is a simple consequence of Theorem B.2. Taking the supremum
over \eta \in L\infty (\Omega ) with \| \eta \| L\infty (\Omega ) = 1 proves (4.2).

Now we have developed all the necessary weaponry to prove our main results.
Proof of Theorem 2.2. We prove the first part of Theorem 2.2 for log\Lambda : \sigma \mapsto \rightarrow 

log\Lambda (\sigma ) in place of L : \kappa \mapsto \rightarrow log\Lambda (e\kappa ). Because L = log\Lambda \circ exp, the actual differen-
tiability result for L then immediately follows from the chain rule for Banach spaces.
In the rest of this proof, \| \cdot \| = \| \cdot \| L (H\epsilon 

\diamond (\partial \Omega ),H - \epsilon 
\diamond (\partial \Omega )) for some fixed \epsilon \in (0, 1

2 ], if not

explicitly stated otherwise.
To begin with, the triangle inequality yields

(4.7)

\| log\Lambda (\sigma + \eta ) - log\Lambda (\sigma ) - Dlog\Lambda (\sigma ; \eta )\| 

\leq \| log\Lambda \tau (\sigma + \eta ) - log\Lambda \tau (\sigma ) - Dlog\Lambda \tau (\sigma ; \eta )\| + \| Dlog\Lambda \tau (\sigma ; \eta ) - Dlog\Lambda (\sigma ; \eta )\| 

+ \| log\Lambda (\sigma + \eta ) - log\Lambda \tau (\sigma + \eta )\| + \| log\Lambda \tau (\sigma ) - log\Lambda (\sigma )\| 

\leq \| log\Lambda \tau (\sigma + \eta ) - log\Lambda \tau (\sigma ) - D log\Lambda \tau (\sigma ; \eta )\| + C(\epsilon  - 1\tau 2\epsilon + \tau \epsilon \| \eta \| L\infty (\Omega )).

The latter step is a consequence of Proposition 4.1 assuming that, say, \| \eta \| L\infty (\Omega ) \leq 
ess inf(\sigma /2) so that all conductivities considered during the limit process are uniformly
bounded away from zero and infinity. In particular, the constant C = C(\Omega , \sigma ) > 0 in
(4.7) is independent of (small enough) \eta and \tau > 0.

Let [\sigma , \sigma + \eta ] := \{ \sigma + t\eta | t \in [0, 1]\} denote the line segment in L\infty 
+ (\Omega ) connecting

\sigma and \sigma + \eta . By virtue of Taylor's theorem for Banach spaces, Proposition 3.5, and
the topology of L (L2

\diamond (\partial \Omega )) being finer than that of L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )),

\| log\Lambda \tau (\sigma + \eta ) - log\Lambda \tau (\sigma ) - Dlog\Lambda \tau (\sigma ; \eta )\| 

\leq 1

2
sup

\varsigma \in [\sigma ,\sigma +\eta ]

\bigm\| \bigm\| D2log\Lambda \tau (\varsigma ; \cdot , \cdot )
\bigm\| \bigm\| 

L (L\infty (\Omega )2,L (L2
\diamond (\partial \Omega )))

\| \eta \| 2L\infty (\Omega ) \leq C\| \eta \| 2L\infty (\Omega ),

where the constant C = C(\Omega , \sigma ) can be chosen independent of (small enough) \eta and
\tau > 0. Combining this with (4.7), we have altogether deduced that for any \tau > 0,

(4.8) \| log\Lambda (\sigma +\eta ) - log\Lambda (\sigma ) - Dlog\Lambda (\sigma ; \eta )\| \leq C
\bigl( 
\epsilon  - 1\tau 2\epsilon +\tau \epsilon \| \eta \| L\infty (\Omega )+\| \eta \| 2L\infty (\Omega )

\bigr) 
.

If one chooses \tau = \tau (\| \eta \| L\infty (\Omega )) = \| \eta \| 1/\epsilon L\infty (\Omega ), then the right-hand side of (4.8) becomes

o(\| \eta \| L\infty (\Omega )), and thereby the first part of the proof is complete.
The next goal is to prove the continuity of \sigma \mapsto \rightarrow Dlog\Lambda (\sigma ; \cdot ) as a map from

L\infty 
+ (\Omega ) to L (L\infty (\Omega ),L (L2

\diamond (\partial \Omega ))). According to the first part of the proof, Dlog\Lambda 
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212 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

is the Fr\'echet derivative of log\Lambda in the topology of L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )), and by

repeating the first part in the proof of Proposition 3.5 with \tau = 0, its second Fr\'echet
derivative is D2log\Lambda := D2F0. The continuity of \sigma \mapsto \rightarrow Dlog\Lambda (\sigma ; \cdot ) now follows from
any differentiable map being continuous, but let us anyway write a brief proof that
provides an explicit Lipschitz-type estimate.

Obviously, D2log\Lambda (\sigma ; \eta , \cdot ) is the Fr\'echet derivative of \sigma \mapsto \rightarrow Dlog\Lambda (\sigma ; \eta ) in the
topology of L (L2

\diamond (\partial \Omega )) for any fixed \eta \in L\infty (\Omega ). Let us fix \sigma 1, \sigma 2 \in L\infty 
+ (\Omega ) and

note that there exist scalars \varsigma + and \varsigma  - such that 0 < \varsigma  - \leq \varsigma \leq \varsigma + < \infty for any
\varsigma \in [\sigma 1, \sigma 2] := \{ \sigma 1 + t(\sigma 2  - \sigma 1) | t \in [0, 1]\} almost everywhere in \Omega . Due to the
mean-value theorem and Proposition 3.5, we have

\| Dlog\Lambda (\sigma 2; \eta ) - Dlog\Lambda (\sigma 1; \eta )\| L (L2
\diamond (\partial \Omega )) \leq sup

\varsigma \in [\sigma 1,\sigma 2]

\bigm\| \bigm\| D2log\Lambda (\varsigma ; \eta , \sigma 2  - \sigma 1)
\bigm\| \bigm\| 

L (L2
\diamond (\partial \Omega ))

\leq C(\Omega , \varsigma  - , \varsigma +)\| \eta \| L\infty (\Omega )\| \sigma 2  - \sigma 1\| L\infty (\Omega ).(4.9)

Taking the supremum over \eta \in L\infty (\Omega ) with \| \eta \| L\infty (\Omega ) = 1 implies \sigma \mapsto \rightarrow Dlog\Lambda (\sigma , \cdot )
is locally Lipschitz continuous as a map L\infty 

+ (\Omega ) \rightarrow L (L\infty (\Omega ),L (L2
\diamond (\partial \Omega ))).

Let us then consider (2.11). Due to the chain rule for Banach spaces, the Fr\'echet
derivative of the completely logarithmic forward map considered in Theorem 2.2 is
given by

(4.10) DL(\kappa ; \eta ) = Dlog\Lambda (e\kappa ; \eta e\kappa ), \kappa , \eta \in L\infty (\Omega ).

In particular, it follows from Proposition 3.3 and (4.9) that for any \kappa 1, \kappa 2 \in L\infty (\Omega ),

\| DL(\kappa 2; \eta ) - DL(\kappa 1; \eta )\| L (L2
\diamond (\partial \Omega )) =

\bigm\| \bigm\| Dlog\Lambda (e\kappa 2 ; \eta e\kappa 2) - Dlog\Lambda (e\kappa 1 ; \eta e\kappa 1)
\bigm\| \bigm\| 

L (L2
\diamond (\partial \Omega ))

\leq 
\bigm\| \bigm\| Dlog\Lambda (e\kappa 2 ; \eta e\kappa 2) - Dlog\Lambda (e\kappa 1 ; \eta e\kappa 2)

\bigm\| \bigm\| 
L (L2

\diamond (\partial \Omega ))

+
\bigm\| \bigm\| Dlog\Lambda (e\kappa 1 ; \eta (e\kappa 2  - e\kappa 1))

\bigm\| \bigm\| 
L (L2

\diamond (\partial \Omega ))

\leq C\| \eta \| L\infty (\Omega )

\bigl( 
\| e\kappa 2\| L\infty (\Omega ) + 1

\bigr) 
\| e\kappa 2  - e\kappa 1\| L\infty (\Omega )

\leq C\| \eta \| L\infty (\Omega )\| e\kappa 2  - e\kappa 1\| L\infty (\Omega ),

where C > 0 only depends on \Omega and maxj=1,2 \| \kappa j\| L\infty (\Omega ). Taking the supremum over
\eta \in L\infty (\Omega ) with \| \eta \| L\infty (\Omega ) = 1 concludes the proof. \square 

Finally, we consider the proofs of Corollary 2.3 and Corollary 2.5.
Proof of Corollary 2.3. Postponing the proof of (2.12) till the end, clearly the

rest of Corollary 2.3 is equivalent to the difference log\Lambda (\sigma 2) - log\Lambda (\sigma 1) continuously
extending to a self-adjoint operator in L (L2

\diamond (\partial \Omega )) for any \sigma 1, \sigma 2 \in L\infty 
+ (\Omega ). For a

fixed \epsilon \in (0, 1
2 ] and \sigma 1, \sigma 2 \in L\infty 

+ (\Omega ), we define a function G, with the derivative
G\prime (t) := DG(t; 1), via

G : t \mapsto \rightarrow log\Lambda (\sigma 1 + t(\sigma 2  - \sigma 1)), [0, 1] \rightarrow L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )),

G\prime : t \mapsto \rightarrow Dlog\Lambda 
\bigl( 
\sigma 1 + t(\sigma 2  - \sigma 1);\sigma 2  - \sigma 1

\bigr) 
, [0, 1] \rightarrow L (H\epsilon 

\diamond (\partial \Omega ), H
 - \epsilon 
\diamond (\partial \Omega )).

In particular, G\prime is continuous as a mapping to L (L2
\diamond (\partial \Omega )) due to (4.9), and thus it

is also continuous with respect to the coarser topology of L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )). By

virtue of the fundamental theorem of calculus for Bochner integrals on the real line,
we thus have

(4.11) log\Lambda (\sigma 2) - log\Lambda (\sigma 1) = G(1) - G(0) =

\int 1

0

G\prime (t) dt
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as an operator in L (H\epsilon 
\diamond (\partial \Omega ), H

 - \epsilon 
\diamond (\partial \Omega )). Since t \mapsto \rightarrow \| G\prime (t)\| L (L2

\diamond (\partial \Omega )) is continuous
by (4.9) and G\prime (t) defines a self-adjoint operator in L (L2

\diamond (\partial \Omega )) for all t \in [0, 1], the
right-hand side of (4.11) extends continuously to a self-adjoint operator in L (L2

\diamond (\partial \Omega )),
providing the sought for extension.

Finally we prove (2.12), which is essentially equivalent to the difference H(\sigma ) :=
log\Lambda (\sigma ) - log\Lambda (\sigma 0) being locally Lipschitz continuous as a map L\infty 

+ (\Omega ) \ni \sigma \mapsto \rightarrow H(\sigma ) \in 
L (L2

\diamond (\partial \Omega )) for any fixed \sigma 0 \in L\infty 
+ (\Omega ). The proof of Theorem 2.2 indicates that

Dlog\Lambda = DF0 is the Fr\'echet derivative of H in the topology of L (L2
\diamond (\partial \Omega )). As in

(4.9), it thus follows by the mean-value theorem and Proposition 3.3 that

\| H(\sigma 2) - H(\sigma 1)\| L (L2
\diamond (\partial \Omega )) \leq C\| \sigma 2  - \sigma 1\| L\infty (\Omega ),

where C > 0 only depends on \Omega and scalars \varsigma + and \varsigma  - satisfying 0 < \varsigma  - \leq \sigma j \leq \varsigma + <
\infty almost everywhere in \Omega for j \in \{ 1, 2\} . Choosing \sigma j = e\kappa j , j = 1, 2, for arbitrary
\kappa 1, \kappa 2 \in L\infty (\Omega ) leads to (2.12) and completes the proof. \square 

Proof of Corollary 2.5. This result is a direct consequence of (4.10) and Propo-
sition 3.4 with \tau = 0. \square 

5. Concluding remarks. In order to prove the completely logarithmic forward
map of EIT really exhibits a low degree of nonlinearity, one should establish (favor-
able) norm bounds for its second derivative; consider (3.11) with \tau = 0, (A.8), and
the chain rule for Banach spaces. Such considerations are left for future studies.

Although this work only considered the conductivity equation motivated by the
observations in [16], we expect that similar differentiability results also hold for the
logarithms of ND maps defined by other linear elliptic equations over bounded Lip-
schitz domains.

Appendix A. Derivatives of the ND map.
The material presented in this appendix has intimate connections to [4] and [9,

Appendix B], where the analytic dependence of the DN and ND maps on the conduc-
tivity is considered.

As above, let \Omega \subset \BbbR d, d \geq 2, be a bounded Lipschitz domain. Throughout this
section we utilize the following norm equivalence that is a straightforward consequence
of the Poincar\'e inequality:

(A.1) \| \nabla u\| L2(\Omega ) \leq \| u\| H1(\Omega )/\BbbC := inf
c\in \BbbC 

\| u - c\| H1(\Omega ) \leq C(\Omega )\| \nabla u\| L2(\Omega ).

This also demonstrates that H1(\Omega )/\BbbC is a Hilbert space when equipped with the inner
product

(A.2) (u, v)\sigma :=

\int 
\Omega 

\sigma \nabla u \cdot \nabla v dx, u, v \in H1(\Omega )/\BbbC 

for any fixed \sigma \in L\infty 
+ (\Omega ).

Let us introduce two auxiliary operators, namely,

N(\sigma ) :

\Biggl\{ 
f \mapsto \rightarrow u,

H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H1(\Omega )/\BbbC ,

P (\sigma , \eta ) :

\Biggl\{ 
\~u \mapsto \rightarrow w,

H1(\Omega )/\BbbC \rightarrow H1(\Omega )/\BbbC ,

where u \in H1(\Omega )/\BbbC is the unique solution of (2.2) and w \in H1(\Omega )/\BbbC is the unique
solution of

(A.3)

\int 
\Omega 

\sigma \nabla w \cdot \nabla v dx =  - 
\int 
\Omega 

\eta \nabla \~u \cdot \nabla v dx for all v \in H1(\Omega )/\BbbC 
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214 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

for given \sigma \in L\infty 
+ (\Omega ), \eta \in L\infty (\Omega ), and \~u \in H1(\Omega )/\BbbC . The unique solvability of (A.3)

as well as the bound

(A.4) \| P (\sigma , \eta )\| L (H1(\Omega )/\BbbC ) \leq 
C(\Omega )

ess inf \sigma 
\| \eta \| L\infty (\Omega )

follow by combining (A.1) and (A.2) with the Lax--Milgram lemma. The boundedness
of N(\sigma ) is guaranteed by (2.4).

It turns out that all derivatives for the standard forward map \sigma \mapsto \rightarrow \Lambda (\sigma ) of EIT
can be explicitly represented with the help of N(\sigma ), P (\sigma , \eta ), and the ``nonstandard""
trace map

tr :

\Biggl\{ 
v \mapsto \rightarrow V,

H1(\Omega )/\BbbC \rightarrow H
1/2
\diamond (\partial \Omega ),

where, in the spirit of (2.3), V \in H
1/2
\diamond (\partial \Omega ) is the unique zero-mean representative of

the quotient equivalence class v| \partial \Omega \in H1/2(\partial \Omega )/\BbbC . It is straightforward to confirm

that tr : H1(\Omega )/\BbbC \rightarrow H
1/2
\diamond (\partial \Omega ) inherits boundedness from the standard trace map.

Indeed, by using the definition of quotient norms, it follows that

\| v| \partial \Omega \| H1/2(\partial \Omega )/\BbbC \leq C(\Omega )\| v\| H1(\Omega )/\BbbC for all v \in H1(\Omega )/\BbbC ,

and V \in H
1/2
\diamond (\partial \Omega ) is precisely the member of the equivalence class v| \partial \Omega \in H1/2(\partial \Omega )/\BbbC 

that realizes the quotient norm on the left-hand side.
We start with a simple lemma on the differentiability of P .

Lemma A.1. The map L\infty 
+ (\Omega ) \times L\infty (\Omega ) \ni (\sigma , \eta ) \mapsto \rightarrow P (\sigma , \eta ) \in L (H1(\Omega )/\BbbC ) is

continuous, and it is linear in the second variable. Furthermore, P is Fr\'echet differ-
entiable, and its partial derivative with respect to the first variable, D\sigma P (\sigma , \eta ; \cdot ) \in 
L (L\infty (\Omega ),L (H1(\Omega )/\BbbC )), admits the representation

D\sigma P (\sigma , \eta ; \xi ) = P (\sigma , \xi )P (\sigma , \eta )

for all \sigma \in L\infty 
+ (\Omega ) and \eta , \xi \in L\infty (\Omega ).

Proof. It is obvious from (A.3) and (A.4) that the map L\infty (\Omega ) \ni \eta \mapsto \rightarrow P (\sigma , \eta ) \in 
L (H1(\Omega )/\BbbC ) is linear and uniformly bounded over all \sigma in any subset of L\infty 

+ (\Omega ) that
is bounded uniformly away from zero. As a consequence, the continuity and Fr\'echet
differentiability of L\infty 

+ (\Omega ) \times L\infty (\Omega ) \ni (\sigma , \eta ) \mapsto \rightarrow P (\sigma , \eta ) \in L (H1(\Omega )/\BbbC ) follows from
that of L\infty 

+ (\Omega ) \ni \sigma \mapsto \rightarrow P (\sigma , \eta ) \in L (H1(\Omega )/\BbbC ) for an arbitrary but fixed \eta \in L\infty (\Omega ).
Due to the definition of P based on (A.3), the following identity holds for all

\~u, v \in H1(\Omega )/\BbbC , \sigma \in L\infty 
+ (\Omega ), and \xi \in L\infty (\Omega ) satisfying \sigma + \xi \in L\infty 

+ (\Omega ):\int 
\Omega 

(\sigma + \xi )\nabla P (\sigma + \xi , \eta )\~u \cdot \nabla v dx =  - 
\int 
\Omega 

\eta \nabla \~u \cdot \nabla v dx =

\int 
\Omega 

\sigma \nabla P (\sigma , \eta )\~u \cdot \nabla v dx.

Hence, \int 
\Omega 

\sigma \nabla 
\bigl( 
P (\sigma + \xi , \eta ) - P (\sigma , \eta )

\bigr) 
\~u \cdot \nabla v dx =  - 

\int 
\Omega 

\xi \nabla P (\sigma + \xi , \eta )\~u \cdot \nabla v dx,

which by (A.3) means that

(A.5) P (\sigma + \xi , \eta ) - P (\sigma , \eta ) = P (\sigma , \xi )P (\sigma + \xi , \eta ).
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REGULARITY OF THE LOGARITHMIC FORWARD MAP OF EIT 215

In particular, by virtue of (A.5) and (A.4),
(A.6)

\| P (\sigma + \xi , \eta ) - P (\sigma , \eta )\| L (H1(\Omega )/\BbbC ) \leq 
C(\Omega )

ess inf(\sigma ) ess inf(\sigma + \xi )
\| \xi \| L\infty (\Omega )\| \eta \| L\infty (\Omega ),

which proves the claim about continuity. Resorting to (A.5) for a second time yields

\| P (\sigma + \xi , \eta ) - P (\sigma , \eta ) - P (\sigma , \xi )P (\sigma , \eta )\| L (H1(\Omega )/\BbbC )

=
\bigm\| \bigm\| P (\sigma , \xi )

\bigl( 
P (\sigma + \xi , \eta ) - P (\sigma , \eta )

\bigr) \bigm\| \bigm\| 
L (H1(\Omega )/\BbbC )

\leq C(\Omega )

ess inf(\sigma 2) ess inf(\sigma + \xi )
\| \xi \| 2L\infty (\Omega )\| \eta \| L\infty (\Omega ),(A.7)

where the last step follows by combining (A.4) and (A.6). Since the right-hand side
of (A.7) is o(\| \xi \| L\infty (\Omega )), this completes the proof.

We next show that trP (\sigma , \cdot )N(\sigma ) \in L (L\infty (\Omega ),L (H
 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega ))) is

the Fr\'echet derivative of the standard forward map L\infty 
+ (\Omega ) \ni \sigma \mapsto \rightarrow \Lambda (\sigma ) = trN(\sigma ) \in 

L (H
 - 1/2
\diamond (\partial \Omega ), H

1/2
\diamond (\partial \Omega )). In fact, we introduce an explicit formula involving only tr,

P (\sigma , \cdot ), and N(\sigma ) for all derivatives of the standard forward map up to an arbitrary
order. To this end, let \rho k be the collection of all permutations of indices up to k \in \BbbN ,
i.e.,

\rho k = \{ (\alpha 1, . . . , \alpha k) | \alpha i \in \{ 1, . . . , k\} and \alpha i \not = \alpha j if i \not = j\} .

Theorem A.2. The standard forward map L\infty 
+ (\Omega ) \ni \sigma \mapsto \rightarrow \Lambda (\sigma ) \in L (H

 - 1/2
\diamond (\partial \Omega ),

H
1/2
\diamond (\partial \Omega )) is infinitely times continuously Fr\'echet differentiable and its derivatives are

defined by

(A.8) Dk\Lambda (\sigma ; \eta 1, . . . , \eta k) =
\sum 
\alpha \in \rho k

trP (\sigma , \eta \alpha 1) . . . P (\sigma , \eta \alpha k
)N(\sigma ), k \in \BbbN ,

for \eta 1, . . . , \eta k \in L\infty (\Omega ). The standard forward map is also analytic:

\Lambda (\sigma + \eta ) =

\infty \sum 
k=0

1

k!
Dk\Lambda (\sigma ; \eta , . . . , \eta ),

for all \sigma \in L\infty 
+ (\Omega ) and \eta \in L\infty (\Omega ) such that \sigma +\eta \in L\infty 

+ (\Omega ) and \| P (\sigma , \eta )\| L (H1(\Omega )/\BbbC ) <
1.

Proof. Since \Lambda (\sigma ) = trN(\sigma ) and the map tr : H1(\Omega )/\BbbC \rightarrow H
1/2
\diamond (\partial \Omega ) is linear,

bounded, and independent of \sigma \in L\infty (\Omega ), it suffices to prove that L\infty 
+ (\Omega ) \ni \sigma \mapsto \rightarrow 

N(\sigma ) \in L (H
 - 1/2
\diamond (\partial \Omega ), H1(\Omega )/\BbbC ) is analytic and its derivatives are given as

(A.9) DkN(\sigma ; \eta 1, . . . , \eta k) =
\sum 
\alpha \in \rho k

P (\sigma , \eta \alpha 1
) . . . P (\sigma , \eta \alpha k

)N(\sigma ), k \in \BbbN ,

for any \eta 1, . . . , \eta k \in L\infty (\Omega ). Observe that the formula (A.9) clearly defines

DkN(\sigma ; \cdot , . . . , \cdot ) as an element of L (L\infty (\Omega )k,L (H
 - 1/2
\diamond (\partial \Omega ), H1(\Omega )/\BbbC )) for any

\sigma \in L\infty 
+ (\Omega ) due to (2.4), (A.4), and the linearity of P in its second variable.

Let \sigma \in L\infty 
+ (\Omega ) be arbitrary and \eta \in L\infty (\Omega ) such that \sigma + \eta \in L\infty 

+ (\Omega ). To begin
with, note that by virtue of (2.2) and the definition of N(\sigma ),\int 

\Omega 

(\sigma + \eta )\nabla N(\sigma + \eta )f \cdot \nabla v dx =
\bigl\langle 
f, v| \partial \Omega 

\bigr\rangle 
=

\int 
\Omega 

\sigma \nabla N(\sigma )f \cdot \nabla v dx
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216 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

for all f \in H
 - 1/2
\diamond (\partial \Omega ) and v \in H1(\Omega )/\BbbC . It thus follows from the definition of P (\sigma , \eta )

that\int 
\Omega 

\sigma \nabla P (\sigma , \eta )N(\sigma + \eta )f \cdot \nabla v dx = - 
\int 
\Omega 

\eta \nabla N(\sigma + \eta )f \cdot \nabla v dx

=

\int 
\Omega 

(\sigma + \eta )\nabla N(\sigma + \eta )f \cdot \nabla v dx

 - 
\int 
\Omega 

\sigma \nabla N(\sigma )f \cdot \nabla v dx - 
\int 
\Omega 

\eta \nabla N(\sigma + \eta )f \cdot \nabla v dx

=

\int 
\Omega 

\sigma \nabla 
\bigl( 
N(\sigma + \eta ) - N(\sigma )

\bigr) 
f \cdot \nabla v dx

for all v \in H1(\Omega )/\BbbC and f \in H
 - 1/2
\diamond (\partial \Omega ). Hence, it must hold (cf. (A.2)) that

P (\sigma , \eta )N(\sigma + \eta ) = N(\sigma + \eta ) - N(\sigma ).

Rearranging this equality as (I  - P (\sigma , \eta ))N(\sigma + \eta ) = N(\sigma ) and requiring \| \eta \| L\infty (\Omega )

to be small enough to guarantee \| P (\sigma , \eta )\| L (H1(\Omega )/\BbbC ) < 1 (cf. (A.4)), we may employ
a Neumann series to write

N(\sigma + \eta ) =

\infty \sum 
k=0

P (\sigma , \eta )kN(\sigma ).

This proves the analyticity of \sigma \mapsto \rightarrow N(\sigma ) and, in particular, shows that P (\sigma , \cdot )N(\sigma )
is indeed its Fr\'echet derivative.

Using the product rule for Banach spaces and Lemma A.1, the second Fr\'echet
derivative of \sigma \mapsto \rightarrow N(\sigma ) can be written as

D2N(\sigma ; \eta , \xi ) = P (\sigma , \xi )P (\sigma , \eta )N(\sigma ) + P (\sigma , \eta )P (\sigma , \xi )N(\sigma )

for all \sigma \in L\infty 
+ (\Omega ) and \eta , \xi \in L\infty (\Omega ). The formula (A.9) for an arbitrary k \in \BbbN then

follows by recursively applying the product rule. The continuity of the derivatives is
an immediate consequence of their Fr\'echet differentiability.

As \Lambda (\sigma ) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega ) is symmetric with respect to the dual bracket,

the same also holds for all its derivatives Dk\Lambda (\sigma ; \eta 1, . . . , \eta k) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega )

for any k \in \BbbN and all \eta 1, . . . , \eta k \in L\infty (\Omega ). Indeed, it is easy to check by recur-
sively employing the definition of Fr\'echet differentiability that the symmetric part
1
2 (D

k\Lambda (\sigma ; \eta 1, . . . , \eta k)+Dk\Lambda (\sigma ; \eta 1, . . . , \eta k)
\ast ) also defines a kth derivative for \sigma \mapsto \rightarrow \Lambda (\sigma ).

Hence, any nonsymmetry of Dk\Lambda (\sigma ; \eta 1, . . . , \eta k) would contradict the uniqueness of
Fr\'echet derivatives.

We complete this appendix by presenting a corollary that covers (2.7) and (2.8)
as special cases.

Corollary A.3. For any \sigma \in L\infty 
+ (\Omega ), it holds

\| Dk\Lambda (\sigma ; \cdot , . . . , \cdot )\| 
L (L\infty (\Omega )k,L (H

 - 1/2
\diamond (\partial \Omega ),H

1/2
\diamond (\partial \Omega )))

\leq C

ess inf \sigma k+1
,

where C = C(\Omega , k) > 0 is independent of \sigma .

Proof. The claim is an immediate consequence of (A.8), (2.4), (A.4), and the

boundedness of the nonstandard trace map tr : H1(\Omega )/\BbbC \rightarrow H
1/2
\diamond (\partial \Omega ).
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Appendix B. On equivalent norms for \bfitH \bfitr 
\diamond (\bfpartial \Omega ). Let \{ \lambda k(\sigma ), \phi k(\sigma )\} k\in \BbbN 

be a normalized eigensystem for the ND operator \Lambda (\sigma ) : H
 - 1/2
\diamond (\partial \Omega ) \rightarrow H

1/2
\diamond (\partial \Omega ),

with \sigma \in L\infty 
+ (\Omega ) and a bounded Lipschitz domain \Omega . Consult section 2.1 for more

detailed definitions of these entities. Let us start by introducing the (unbounded for
r < 0) powers of \Lambda (\sigma ) : L2

\diamond (\partial \Omega ) \rightarrow L2
\diamond (\partial \Omega ) defined via

(B.1) \Lambda 2r(\sigma ) : f \mapsto \rightarrow 
\infty \sum 
k=1

\lambda 2r
k (\sigma ) \langle f, \phi k(\sigma )\rangle \phi k(\sigma )

for  - 1
2 \leq r \leq 1

2 .

Proposition B.1. The operator \Lambda 2r(\sigma ) defined by (B.1) can be interpreted as a
symmetric isomorphism from H - r

\diamond (\partial \Omega ) to Hr
\diamond (\partial \Omega ) for any  - 1

2 \leq r \leq 1
2 .

Proof. As indicated, e.g., in the proof of [16, Lemma 1, Appendix A], the operator
\Lambda r(\sigma ), 0 \leq r \leq 1

2 , is an isomorphism from L2
\diamond (\partial \Omega ) to Hr

\diamond (\partial \Omega ) with the inverse
\Lambda  - r(\sigma ). It is straightforward to check that the isomorphic dual operator (\Lambda r(\sigma ))\ast :
H - r

\diamond (\partial \Omega ) \rightarrow L2
\diamond (\partial \Omega ) is also defined by (B.1) and, in particular, coincides with \Lambda r(\sigma )

on L2
\diamond (\partial \Omega ). Hence,

\Lambda r(\sigma )(\Lambda r(\sigma ))\ast : f \mapsto \rightarrow 
\infty \sum 
k=1

\lambda 2r
k (\sigma ) \langle f, \phi k(\sigma )\rangle \phi k(\sigma )

is an isomorphism between H - r
\diamond (\partial \Omega ) and Hr

\diamond (\partial \Omega ) for any 0 \leq r \leq 1
2 , and it also

obviously coincides with \Lambda 2r(\sigma ) on L2
\diamond (\partial \Omega ), thus providing the sought for extension.

To complete the proof, the claim for  - 1
2 \leq r \leq 0 follows by simply considering

the inverse of the isomorphic extension \Lambda  - 2r(\sigma ) := \Lambda  - r(\sigma )(\Lambda  - r(\sigma ))\ast : Hr
\diamond (\partial \Omega ) \rightarrow 

H - r
\diamond (\partial \Omega ) constructed above.

In the following, we drop the ``dual star notation"" and write any power of the ND
map as \Lambda r(\sigma ) independently of its domain of definition that should be clear from the
context. In particular, note that all of these powers are defined by (B.1).

According to [16, Lemma 1, Appendix A] and the remark preceding it, there exist
constants c, C > 0, depending only on \sigma , \Omega , and  - 1/2 \leq r \leq 1/2, such that

(B.2) c\| f\| r,\sigma \leq \| f\| Hr(\partial \Omega ) \leq C\| f\| r,\sigma for all f \in Hr
\diamond (\partial \Omega ),

where the equivalent norm for the mean-free Sobolev space Hr
\diamond (\partial \Omega ) is defined via

(B.3) \| f\| 2r,\sigma :=

\infty \sum 
k=1

\lambda  - 2r
k (\sigma )| \langle f, \phi k(\sigma )\rangle | 2,  - 1/2 \leq r \leq 1/2.

The main result of this appendix essentially states that the constants in (B.2) can be
chosen to only depend on ess inf \sigma and ess sup\sigma , not on \sigma itself.

Theorem B.2. Let  - 1/2 \leq r \leq 1/2 and 0 < \varsigma  - \leq \varsigma + < \infty be fixed. Then all
norms \| \cdot \| r,\sigma : Hr

\diamond (\partial \Omega ) \rightarrow \BbbR + defined by (B.3) with some \sigma \in L\infty 
+ (\Omega ) satisfying

\varsigma  - \leq \sigma \leq \varsigma + almost everywhere in \Omega 

are jointly equivalent in the sense that (B.2) holds with constants c = c(\Omega , r, \varsigma  - , \varsigma +) >
0 and C = C(\Omega , r, \varsigma  - , \varsigma +) > 0 independent of the actual conductivity \sigma .
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218 HENRIK GARDE, NUUTTI HYV\"ONEN, AND TOPI KUUTELA

Proof. To summarize, the assertion is a consequence of two results, with the
first being the L\"owner--Heinz inequality [13, Satz 3, p. 426] stating that t \mapsto \rightarrow t\alpha is
operator monotone for \alpha \in [0, 1]; see [20] for a short proof. The second result is the
monotonicity relation [17, 18]:

(B.4) \langle f,\Lambda (\sigma 2)f\rangle \leq \langle f,\Lambda (\sigma 1)f\rangle for all f \in H
 - 1/2
\diamond (\partial \Omega )

if \sigma 1 \leq \sigma 2 almost everywhere in \Omega .
Let us first consider the case  - 1/2 \leq r \leq 0. By applying the L\"owner--Heinz in-

equality with the power 0 \leq  - 2r \leq 1 to the self-adjoint operators \Lambda (\varsigma +),\Lambda (\sigma ),\Lambda (\varsigma  - ) :
L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ), we get

\langle f,\Lambda  - 2r(\varsigma +)f\rangle \leq \langle f,\Lambda  - 2r(\sigma )f\rangle \leq \langle f,\Lambda  - 2r(\varsigma  - )f\rangle for all f \in L2
\diamond (\partial \Omega ).(B.5)

By the density of the continuous embedding L2
\diamond (\partial \Omega ) \lhook \rightarrow Hr

\diamond (\partial \Omega ) and the boundedness
of \Lambda  - 2r(\varsigma +), \Lambda 

 - 2r(\sigma ), \Lambda  - 2r(\varsigma  - ) : H
r
\diamond (\partial \Omega ) \rightarrow H - r

\diamond (\partial \Omega ) guaranteed by Proposition B.1,
the inequality (B.5) holds, in fact, for all f \in Hr

\diamond (\partial \Omega ). In particular, (B.5) is just
another way of writing

\| f\| 2r,\varsigma + \leq \| f\| 2r,\sigma \leq \| f\| 2r,\varsigma  - for all f \in Hr
\diamond (\partial \Omega ).

Hence, for all f \in Hr
\diamond (\partial \Omega ),

(B.6) c(\varsigma  - )\| f\| r,\sigma \leq c(\varsigma  - )\| f\| r,\varsigma  - \leq \| f\| Hr(\partial \Omega ) \leq C(\varsigma +)\| f\| r,\varsigma + \leq C(\varsigma +)\| f\| r,\sigma ,

where the constants c(\varsigma  - ) = c(\Omega , \varsigma  - , r) > 0 and C(\varsigma +) = C(\Omega , \varsigma +, r) correspond to
the homogeneous conductivities \varsigma  - and \varsigma + in (B.2), respectively. This completes the
proof for  - 1/2 \leq r \leq 0.

Observe that (B.5) induces the ``inverse estimate""

(B.7) \langle \Lambda  - 2r(\varsigma  - )f, f\rangle \leq \langle \Lambda  - 2r(\sigma )f, f\rangle \leq \langle \Lambda  - 2r(\varsigma +)f, f\rangle for all f \in Hr
\diamond (\partial \Omega )

and 0 \leq r \leq 1/2; the proof of this fact is included for completeness as Lemma B.3
below. In other words,

\| f\| 2r,\varsigma  - \leq \| f\| 2r,\sigma \leq \| f\| 2r,\varsigma + for all f \in Hr
\diamond (\partial \Omega ),

and thus the proof for 0 \leq r \leq 1/2 can straightforwardly be completed by exchanging
the roles of \varsigma  - and \varsigma + in (B.6).

We complete this appendix and the whole paper by presenting a lemma proving
(B.7). This result could also be proved by directly employing monotonicity properties
of the DN operator and applying the L\"owner--Heinz inequality that remains valid
for unbounded self-adjoint operators. Moreover, one could consider a map operating
over a general Gelfand triple in place of \Lambda 2r(\sigma ) and the Sobolev spaces Hr

\diamond (\partial \Omega ) \lhook \rightarrow 
L2
\diamond (\partial \Omega ) \lhook \rightarrow H - r

\diamond (\partial \Omega ).

Lemma B.3. Let \sigma 1, \sigma 2 \in L\infty 
+ (\Omega ) be such that \sigma 1 \leq \sigma 2 almost everywhere in \Omega .

Then

(B.8) \langle \Lambda  - 2r(\sigma 1)f, f\rangle \leq \langle \Lambda  - 2r(\sigma 2)f, f\rangle 

for all 0 \leq r \leq 1
2 and f \in Hr

\diamond (\partial \Omega ).
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Proof. Due to (B.4) and the L\"owner--Heinz inequality,

(B.9) \langle g,\Lambda 2r(\sigma 1)g\rangle \geq \langle g,\Lambda 2r(\sigma 2)g\rangle for all g \in H - r
\diamond (\partial \Omega ).

Since \Lambda  - r(\sigma 2) : L2
\diamond (\partial \Omega ) \rightarrow H - r

\diamond (\partial \Omega ) is an isomorphism and coincides with its dual
on Hr

\diamond (\partial \Omega ), via the substitution g = \Lambda  - r(\sigma 2)w for w \in L2
\diamond (\partial \Omega ), it follows that (B.9)

is equivalent to

(B.10)
\bigl\langle 
w,\Lambda  - r(\sigma 2)\Lambda 

2r(\sigma 1)\Lambda 
 - r(\sigma 2)w

\bigr\rangle 
\geq \| w\| 2L2(\partial \Omega ) for all w \in L2

\diamond (\partial \Omega ).

In particular, \Lambda  - r(\sigma 2)\Lambda 
2r(\sigma 1)\Lambda 

 - r(\sigma 2) : L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ) is a positive self-adjoint
isomorphism, and thus it has a positive self-adjoint isomorphic square root R :
L2
\diamond (\partial \Omega ) \rightarrow L2

\diamond (\partial \Omega ).
For any v \in L2

\diamond (\partial \Omega ), we may write\bigl\langle 
\Lambda r(\sigma 2)\Lambda 

 - 2r(\sigma 1)\Lambda 
r(\sigma 2)v, v

\bigr\rangle 
= \| R - 1v\| 2L2(\partial \Omega ) \leq \langle R - 1v,R2R - 1v\rangle = \| v\| 2L2(\partial \Omega ),

where the second step follows from (B.10). Employing the substitution v = \Lambda  - r(\sigma 2)f
for f \in Hr

\diamond (\partial \Omega ), this is equivalent to (B.8) and the proof is complete.
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