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Crown level clumping in Norway spruce from terrestrial laser 
scanning measurements 
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A B S T R A C T   

The clumping of coniferous needles into shoots is widely acknowledged as a structural feature that cannot be 
ignored in radiation regime models of coniferous forests. However, higher level clumping, i.e. the aggregation of 
leaves and shoots in tree crowns and forest stands, is still rarely accounted for in the models. Clumping reduces 
the light interception of and increases the light penetration depth in a plant stand. To improve forest radiation 
regime models with respect to this forest structural parameter, we propose a method that can quantify clumping 
at different hierarchical levels by estimating the silhouette to total area ratio from point clouds acquired by laser 
scanners. Our method is based on estimating attenuation coefficients in a voxel grid, and subsequently 
computing the total leaf area and spherically averaged silhouette area of a tree crown or forest stand. We tested 
our method with empirical data in young Norway spruce trees, where we compared leaf area and silhouette area 
to destructive and photogrammetric reference measurements. The accuracy of leaf area estimates depended 
strongly on the voxel size, with voxel sizes below 10 cm side length exhibiting up to 100% higher estimates than 
the reference leaf area, and large voxels with 90 cm side length being closest to the reference measurements due 
to crown clumping. The silhouette area estimates varied less with voxel size and were slightly higher than the 
reference estimates. We analyzed possible error sources and point out ways to improve the measurements of leaf 
and silhouette area for conifer trees using laser scanning data.   

1. Introduction 

The structure of a forest canopy influences the absorption and scat
tering of solar irradiation, and thus plays a key role in determining 
primary production, and hence in forest growth and carbon sequestra
tion. Forest canopy structure is typically described through the density, 
orientation and positions of leaves within the canopy. Typically, these 
three aspects of forest canopy structure are parameterized by the total 
leaf area of a stand, the leaf angle distribution, and the spatial dispersion 
patterns of leaves. The total leaf area is often expressed as a relative 
measure, either as leaf area index at the stand level, or as a leaf area 
density in reference volumes. The spatial dispersion pattern is mostly 
called clumping due to the typically aggregated patterns that have been 
found in forest canopies. Theories as well as measurement methods have 
been built on these three structural characteristics of foliage, usually 
linking foliage structure to the radiation regime. Early measurement 
methods focused principally on agricultural crops, of which one of the 
best known is the point quadrat method (Wilson, 1960), which estimates 

the leaf area index and the radiation extinction coefficient in plant 
stands. The extinction coefficient originates from the Beer-Lambert law, 
which was adapted to plant stands by adding a term that considers the 
orientation of scattering elements, which is more suitable to describe 
leaves (Ross, 1981). Nilson (1971) built the foundation of many 
following measurement techniques by developing a theoretical frame
work which enables the retrieval of leaf area index from measurements 
of angular gaps in canopies. Gap-based methods have since become the 
standard for indirect measurements of leaf area index in forest stands. A 
variety of techniques is available, ranging from hemispheric photog
raphy to specialized instruments such as the LAI-2200 Plant Canopy 
Analyzer (Fournier and Hall, 2017). 

In the past decades, advances in Light Detection And Ranging 
(LiDAR) technology and methodology have enabled us to collect three- 
dimensional data at an unprecedented rate and resolution. The different 
LiDAR scanning platforms offer different relative advantages, which, 
besides different viewing geometry are associated with occlusion, or the 
penetration depth of LiDAR beams into canopies (Morsdorf et al., 2018). 
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In a nutshell, choosing LiDAR platforms faces a trade-off between high 
resolution (best achieved with terrestrial platforms) and large area 
coverage (airborne platforms). Mobile and UAV platforms offer a 
compromise between resolution and large area coverage. The resulting 
point cloud data contains detailed geometric information about forest 
canopies, with the main disadvantage being the lack of topological in
formation. That is, a point cloud is an unordered list of coordinates that 
does not contain information on the objects present in a scene. Never
theless, a plethora of methods for processing forest point clouds has been 
established that either aim at reconstructing topology information (e.g. 
Atkins et al., 2018; Hackenberg et al., 2015; Raumonen et al., 2013) or 
directly use point clouds to estimate forest structural characteristics. All 
three foliage characteristics, i.e. leaf area, leaf angle distribution, and 
clumping, have been studied with various methods. Leaf area has been 
estimated using either gap-based methods (e.g. Zhao et al., 2015) or 
voxel-based methods (e.g. Béland et al., 2014; Pimont et al., 2018). Leaf 
angle distribution can be estimated simultaneously with leaf area for 
entire stands by simultaneous retrieval of the orientation parameter G 
and the leaf area of tree crowns (Zhao et al., 2015), or, if leaves are 
resolved in the point cloud, by manual angle measurements of individ
ual leaves from the point cloud (Béland et al., 2011; Zhu et al., 2018). 

Clumping has recently received increased attention in the terrestrial 
laser scanning (TLS) modeling community. Currently, two approaches 
have been applied to quantify clumping from laser scanning data, the 
gap size distribution (Li et al., 2017; Zhu et al., 2018) and the path 
length distribution (Chen et al., 2018). Both approaches share the basic 
principle of analyzing gap size realizations and compare them to the gap 
size distribution of a Poisson canopy. The aim of clumping quantifica
tion in this sense has been to produce a clumping index, i.e. a correction 
factor used to convert the true leaf area index to an effective leaf area 
index with random foliage dispersion that is used in the modified 
Beer-Lambert law. 

However, clumping is more than a correction factor, as it is an 
important forest structural characteristic which influences the fraction 
of absorbed and scattered shortwave radiation of forests, the penetration 
depth of solar irradiation into a stand and thus the light availability to 
both the lower parts of tree crowns and the understory vegetation (Kim 
et al., 2011). It has become commonplace to correct for shoot clumping 
in conifer forests. Shoot clumping was originally quantified by Oker-
Blom and Smolander (1988) using the spherically averaged silhouette to 
total area ratio (STAR). Subsequently, shoots were considered as the 
basic scattering elements in coniferous forests, and gap- or 
transmission-based estimates of leaf area were corrected by the clump
ing index 4STAR. Forest radiation regime models, based on e.g., the 
spectral invariants theory (Knyazikhin et al., 1998), can distinguish 
between wavelength-independent (i.e., forest structural) parameters 
and wavelength-dependent (i.e., spectral) parameters. The influence of 
forest structure on its radiation regime can be described by a single 
parameter, the photon recollision probability (Smolander and Stenberg, 
2005). The concept of photon recollision probability has been linked to 
shoot STAR, indicating the hierarchical nature of scattering in conifer 
canopies (Smolander and Stenberg, 2003). The photon recollision 
probability was also used to create the PARAS reflectance model (Rau
tiainen and Stenberg, 2005). Inversion studies of PARAS, however, 
showed a tendency to overestimate leaf area index (Heiskanen et al., 
2011; Varvia et al., 2018). Both studies used inversion models that did 
not consider clumping, which likely caused PARAS to overestimate 
reflectance, and therefore, in the inversion, lead to an overestimate of 
leaf area index. Schraik et al. (2019) showed that particularly for forest 
stands with low leaf area index, the clumping index can reach levels 
lower than what has been observed for shoot clumping alone. Simula
tions on Scots pine trees indicate that there may be a strong effect of 
foliage clumping at hierarchical levels above shoot scale (Stenberg et al., 
2014). However, this effect of higher level clumping has not yet been 
empirically validated. If clumping at higher levels than the shoot can be 
shown to be non-random, its incorporation in forest radiation regime 

models will likely improve the models’ ability to accurately describe the 
relationship between forest structure, biochemical properties, and op
tical properties of vegetation elements and forest stands. In addition, 
knowledge on higher level clumping may help to improve estimates of 
leaf area by relaxing the assumption of random distribution of leaves in a 
canopy. 

In this article, we set out to develop a method for estimating 
clumping using LiDAR point cloud data. We study the effects of 
clumping within individual tree crowns using empirical TLS point 
clouds. The method we propose is based on estimating the two com
ponents of STAR, i.e., the total leaf area and the spherically averaged 
silhouette area. To validate our method, we compare our TLS-based 
method for estimating tree crown silhouette and total leaf area to 
photographic and destructive measurements. Secondly, we analyze how 
technical aspects, such as voxel size and scan resolution, influence the 
prediction accuracy of silhouette and total areas. Finally, we use our 
method to demonstrate how STAR of individual tree crowns varies in 
young Norway spruces. 

2. Theory 

2.1. STAR as a clumping descriptor 

According to one of Cauchy’s theorems, the spherically averaged 
silhouette to total (surface) area ratio of a convex body is 1/4 (Lang, 
1991). STAR of a shoot is typically smaller than 1/4, indicating mutual 
shading of needles within a shoot. Shoot STAR is the ratio of the shoot’s 
average silhouette area SA to the total surface area TA of all needles 
within the shoot (Oker-Blom and Smolander, 1988). Since the needles 
are assumed convex, their spherically averaged projection area is TA/4. 
Consequently, 4STARn = SA/(TA /4) is the ratio of shoot to needle 
silhouette area, thus quantifying needle clumping in shoots (Nilson 
et al., 1999; Smolander and Stenberg, 2003; Stenberg et al., 1994). 

STAR can be applied to higher hierarchical levels using porous en
velopes to describe the individual elements (Silva et al., 2008). Stenberg 
et al. (2014) used this multiscale approach to decompose the total 
clumping index Γ into several hierarchical levels: clumping of needles in 
shoots Γn, of shoots in crowns Γs, and of crowns in stands Γstand. The 
product of these clumping indices yields the total clumping index 

Γ = ΓstandΓsΓn. (1)  

Stenberg et al. (2014) showed that the clumping of needles into crowns 
can be formulated as Γcrown = ΓsΓn = 4STARcrown, where STARcrown is 
defined as spherically averaged crown silhouette area to total needle 
area in a crown. In this study, we will use STARcrown to quantify 
crown-level clumping. 

2.2. Proposed method to estimate STAR from LiDAR data 

2.2.1. Overview of the method 
In previous studies, measurements of STARshoot were aimed at 

measuring its two characteristics, the silhouette area and the total 
needle area, using photogrammetric and destructive methods, respec
tively. A measurement of STARcrown can be made in a similar fashion, i.e. 
measuring or estimating the crown silhouette area and the total needle 
area of a crown. This approach is independent of data collection 
frameworks, which can be done from three-dimensional models or from 
TLS point clouds. The former framework appears more attractive due to 
the topology information associated with the three-dimensional struc
ture of tree crowns. However, three-dimensional reconstruction 
methods have mostly focused on the woody structures of trees, while 
reconstruction of leaves remains difficult (e.g. Åkerblom et al., 2018; 
Hackenberg et al., 2015; Raumonen et al., 2013). Therefore, we see the 
applicability of three-dimensional models currently limited to simulated 
data. 
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TLS point clouds, on the other hand, provide no topology informa
tion, and are thus not able to distinguish between different hierarchical 
levels of clumping without preprocessing the data to segment individual 
elements such as tree crowns in stand level data. Despite the lack of 
topology information, TLS point clouds appear to be, at the time of 
writing this article, the most suitable basis for estimating the silhouette 
and total area of tree crowns. 

The method we propose is based on the spatially explicit estimation 
of attenuation coefficients in a voxel grid that covers the entire point 
cloud. Using the attenuation coefficient, it is possible to estimate the leaf 
area density as well as the projection area within the same theoretical 
framework. This physical modeling framework enables comprehensive 
analysis of the point cloud data with respect to the measurement prin
ciples of TLS, and allows the assumption that modeling errors are shared 
between the two components of STAR as far as their common foundation 
is concerned, i.e. the attenuation coefficient. 

2.2.2. Estimating total leaf area 
Pimont et al. (2018) showed that the modified contact frequency 

(MCF) is the best predictor for the attenuation coefficient, given the 
assumptions of random leaf distribution inside the voxels and an infin
itesimal TLS beam footprint. The MCF is based on the point quadrats 
method (Wilson, 1960), which assumes a plant stand is probed an 
infinite number of times and the number of leaf contacts for each probe 
is recorded. Based on this contact frequency, one gets the attenuation 
coefficient λ as 

λ =

∑N
j=1Cj

Nδ
, (2)  

with the number of contacts C for probe j over the number of probings N 
with probe length δ. To apply this method to TLS point clouds, the dif
ferences in measurement principles have to be accounted for. The main 
differences are that in TLS, the ”probe” decays after the first contact (for 
single return instruments), the length of the probe is variable, the 
vegetation elements have a finite size, and the number of probings can 
be low for some voxels due to occlusion or small voxel size, for example. 

Béland et al. (2011) introduced the MCF to account for the decay 
after the first contact by including the length of the path that was 

actually explored by the TLS beam, i.e. the free path z, as 

λ =

∑N
j=11zj<δj

∑N
j=1zj

, (3)  

which models the contact frequency as an indicator function that has the 
value one if the beam is intercepted in a voxel, i.e. the free path z is 
shorter than the theoretical path length δ of the ray through the voxel. 
This modification accounts for unequal path lengths and the decay of the 
probe after the first contact. Béland et al. (2014) modified the estimator 
of λ to consider the finite size of vegetation elements with respect to the 
voxel cross section size. The MCF was further corrected in Pimont et al. 
(2018) for theoretical biases due to a finite number of beams that enter 
each voxel. Based on these corrections, we calculated the attenuation 
coefficient per voxel as 

λ =
I
ze

−
1zj<δj

Nze
2 , (4)  

with the ratio of intercepted to transmitted beams I, the mean element 
size-corrected free path length ze, and the element-size corrected frac
tion of intercepted beams 1zj<δj . The first term of the right handside 
corresponds to the modified contact frequency, and the second term is a 
correction term that becomes negligible with increased exploration of 
the voxel volume. The approach we used to obtain attenuation coeffi
cient is described in more detail in Fig. 12 of Pimont et al. (2018). 

The leaf area density for each voxel can be estimated if the average 
projection area of unit foliage area is known, which is defined in the G- 
function (Ross, 1981). The G-function quantifies the average projection 
area of a unit leaf area in a zenith angle θ. In TLS-based studies of leaf 
area density, the value of G is often assumed constant (independent of 
zenith angle) at G = 0.5, corresponding to its spherical average in flat 
leaves (Miller, 1967). The effective one-sided (i.e. half of total) leaf area 
density is calculated as LADe = λ/G. Provided that the voxel size is 
chosen so that the spatial distribution of leaf elements within voxel is 
random, LADe equals LAD. For conifers, however, the clumping of 
needles in a shoot poses a challenge, because it is practically impossible 
to make the voxel size small enough to ensure random distribution of 
needles within a voxel. Additionally, due to the non-zero footprint size, 

Fig. 1. Binary images illustrating the sample trees, including the height (h) and fresh biomass without stem (m). Some trees were cropped at the bottom to avoid 
inclusion of additional material from the ground in the images. 
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the smallest unit that is resolved in the point cloud is the individual 
shoot (Ma et al., 2018). One can therefore consider LADe as an effective 
shoot silhouette area density, which corresponds to the hemisurface 
needle area LAD as 

LAD =
β

4STARshoot
LADe = αLADe, (5)  

with the factor β quantifying the effect of the effective beam footprint 
(Soma et al., 2018), and 4STARshoot accounting for clumping of needles 
into shoots. Our purpose in the current pilot study is to compare LADe to 
reference measurements of LAD, i.e. we do not apply correction factor α 
to our results. This is in order to maintain comparability with existing 
studies. In practice, LAD could be estimated if STARshoot and β are 
known. STARshoot can be estimated with photogrammetric and 
destructive methods, and values for different species have been pub
lished in literature (Thérézien et al., 2007). Determination of β and its 
dependence on scan settings is a subject of a separate follow-up study. 
Finally, the one-sided (half of total) leaf area (LA) can be obtained by 
summing the leaf area density over the voxel grid. 

2.2.3. Estimating silhouette area 
The directional projection area of a voxel grid can be estimated by 

casting rays through the voxel grid and calculating the absorbed energy 
using the Beer-Lambert law. The parallel rays are equally spaced and 
form a synthetic image with a defined pixel size, and the pixel value 
corresponding to the fraction of absorbed energy along the ray, or a 
shadow fraction of the pixel area. The spherically averaged silhouette 
area SA is estimated as the projection area P of the voxel grid, which 
depends on λ, averaged over the spherical directions (ϕ, θ) as 

SA =
1

2π

∫ 2π

0

∫ π/2

0
P(λ, θ, ϕ)sinθdθdϕ. (6)  

Finally, the silhouette to total area ratio at crown level is calculated as 
STARcrown = SA/(2LA). 

3. Materials and methods 

We collected 15 young Norway spruce (Picea abies L.) trees with 
height below 4 m to test our method for estimating STARcrown and to 
compare the estimates for total leaf area and directional projection area 
to results from destructive leaf area measurements and photogram
metric measurements, respectively. The trees were taken from a 
managed forest area in Southern Finland (near 60◦23′N, 24◦37′E). We 
selected 5 trees from a plantation area (tree numbers 1–5), and 10 trees 
from the understory of mature stands (tree numbers 6–15). The trees are 
illustrated in Fig. 1, along with data on tree height and branch (fresh) 
biomass. 

All trees were obtained from a small forest area (within about 150 m 
from each other), hence the growing conditions, except for light avail
ability, were equal for all trees. The trees were manually harvested and 
brought to an outdoor measurement facility at Aalto University’s Ota
niemi campus. We tied water-soaked paper towels to the cutting area of 
the trees to avoid drying of plant tissue during transport and storage. 
The trees first underwent outdoor measurements, where we collected 
TLS data and photographed the trees. Subsequently, the trees were 
clipped into branches, and measured in the laboratory to determine leaf 
area and biomass. We ensured that the branches were scanned and 
clipped within 30 hours of harvesting, and then stored in a refrigerator 
for less than 48 hours. 

3.1. Measurement layout for terrestrial laser scanning and photographs 

We used the TLS device Leica P40 Scan Station to scan the trees from 
six directions, and took simultaneous photographs. The laser has a 
wavelength of 1550 nm with a beam divergence of 0.23 mrad and a 

beam size of 3.5 mm upon exiting the instrument. The P40 Scan Station 
records a single-return point cloud based on waveform digitization. 

Each sample tree was fixed between two metal bars that were driven 
into the ground to keep it stable for the duration of the measurements. 
We scanned each tree from six directions at 10 m distance, with a 
spacing of 60◦ between scan locations (Fig. 2). We scanned at two res
olutions, 3.1 mm at 10 m (0.018◦) and 1.6 mm at 10 m (0.009◦). For co- 
registration of the lidar scans, five circular black and white targets (Leica 
4.5′′ B&W targets) were placed evenly throughout all directions 
(centered around the tree mount) at about 15 m distance. The co- 
registration of lidar scans, and a manual deletion of points on the 
ground or the metal mount were carried out in Leica Cyclone (version 
9.4.0). Besides the manual cleaning of the tree mount and ground points 
we did not manipulate the point cloud any further, i.e. no filters were 
applied. 

The TLS point clouds, as exported by Leica Cyclone in the e57 format, 
contain information on return pulses, and the origin of the points. Since 
Cyclone version 9.4, pulses which do not trigger a return (hereafter 
called empty pulses) are no longer included in exported point clouds. 
Empty pulses contain important information that is needed for esti
mating voxel-based attenuation (e.g. Soma et al., 2018). We recovered 
the empty pulses by converting the point cloud into spherical co
ordinates and inserting empty pulses with dummy range value (1000 m) 
into the point cloud (see Appendix A for details). 

Photographs were taken concurrently with the scans by holding the 
camera with the lens positioned just above the scanner’s oscillating 
mirror, thus reaching a quasi-coincident viewing geometry. Before the 
photographs were taken we set up a white background frame (a wooden 
frame with attached white fabric spanning approximately 2.4 x 2.8 m) to 
enable separation of the tree from its background. We used a Sony A7R 
camera with a 28 mm lens. 

3.2. Destructive measurements of leaf area 

We measured 20 shoots per tree, which we randomly picked from the 
bulk of branches that consisted of all shoots with twig diameter less than 
2 cm. This was done by setting a random timer that went off between 5 
and 30 seconds while selecting one shoot after another in rapid suc
cession. The shoot that was selected when the timer went off was added 
to the sample. This process was repeated for all shoots. We weighed each 
shoot, plucked its needles and scanned them on a flatbed scanner, then 
weighed the needles separately. The twigs were weighed and scanned in 

Fig. 2. A schematic of TLS measurement layout.  
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the same manner. The needle shape was approximated by a parallele
piped (Homolová et al., 2012). Therefore we measured the major and 
minor axis diameter of two needles per shoot with a caliper. The flatbed 
scan images were processed with Python and Scikit-Image (van der Walt 
et al., 2014) to extract the number and average length of needles. 

The resulting data comprised for each shoot its total mass, needle and 
twig mass, needle major and minor axis diameters, the average needle 
length, the number of needles, and the projected area of needles in a 
shoot. In addition to these shoot level data, the mass of all shoots with 
twig diameter less than 2 cm was recorded at tree level. We calculated 
the average shoot mass to total leaf surface area ratio and upscaled to the 
tree level using the mass of all shoots, thus arriving at the total (two- 
sided) leaf surface area per tree. Hereafter, we will use the one-sided (i.e. 
half of total) leaf surface area for easier comparison with results pub
lished in other articles, except for the calculation of STAR, which by 
definition requires the two-sided (i.e. total) leaf area. 

3.3. Photogrammetric projection area estimates 

The photographs of trees were processed to reference estimates of 
projection area in six horizontal directions per tree. We manually 
cropped the photographs at the edges of the background frame, allowing 
some extra space at the lateral and top edges, but not at the bottom edge. 
The RGB images were converted to greyscale and thresholded using 
Otsu’s method (Otsu, 1979). In about 10% of the images, where photos 
were taken in direction of the sun, there were shadows from the back
ground frame that were thresholded along with the tree. In these cases, 
we reduced the threshold value from Otsu’s method by 20% to avoid 
these shadows. To remove any other object from the image, we masked 
out any thresholded regions that were connected to the lateral and top 
edges. We determined the projected pixel size using the camera’s sensor 
size and resolution, and the focal length from the specifications of the 
camera and lens, respectively. In the calculation of the projection area, 
we assumed the photographs to be taken spatially coinicident with the 
TLS scans, i.e. the distance between the image and the midpoint of the 
tree was about 10 m. We further assumed the lens distortion was 
negligible because the trees were centered in the image and were within 
a narrow fraction of the field of view of the camera. 

3.4. Estimates for leaf and projection area from TLS data and comparison 
to reference estimates 

We estimated the attenuation coefficient in a voxel grid for each tree 
using the modified contact frequency as presented in Pimont et al. 
(2018, Fig. 12 therein) and reviewed in Section 2.2.2 of our study (Eq. 
4), using the ray tracing algorithm by Amanatides and Woo (1987). 
From the attenuation coefficient we calculated the leaf area density per 
voxel as 

LAD = λ

/

G =

(
I
ze

−
1zj<δj

Nze
2

)/

0.574, (7)  

and then arrived at the one-sided (half of total) leaf area per tree by 
summing over the voxel grid 

LA =
∑i ∑j ∑k

LADi,j,k. (8)  

The value G = 0.574 is derived from Stenberg (2006), as in our point 
cloud data the shoot is the smallest resolved element. This higher G 
value accounts for the fact that a shoot is better resembled by a cylinder 
than a flat object, and hence the average projection area per unit leaf 
area is slightly increased. 

The projection area was estimated by generating synthetic images as 
explained in Section 2.2.3, in six equally spaced horizontal directions 
that corresponded to the directions from which the TLS scans and 
photographs were taken. The resolution of the synthetic images was 2 
cm, less than half of the smallest voxel size, to avoid potential aliasing 
effects while maintaining computational efficiency. For comparison 
with the photogrammetric data, we calculated the mean of the projec
tion area for each tree from both TLS-based and photogrammetric 
measurements. 

For each tree, we estimated leaf area and average projection area for 
voxel sizes between 5 and 40 cm in increments of 5 cm, and for 50 to 90 
cm in increments of 10 cm, i.e. 12 different voxel sizes were tested, 
corresponding to the voxel sizes used in Soma et al. (2018). We scanned 
each tree at two scan resolutions, at 3.1 mm at 10 m, and at 1.6 mm at 
10 m. Point clouds of each resolution (0.018◦ and 0.009◦) data were 
used separately, and in addition we downsampled each point cloud to 
half resolution. Thus, 4x12 sets of results were generated (one for each 
scan resolution and one for each voxel size). 

For each voxel size and scan resolution, we compared the leaf area 
from our proposed method with the destructive measurement data, and 
the horizontally averaged projection area with the photogrammetric 
data. In the comparison of photogrammetric data, we had to exclude tree 
number 13 because its size was too large for the background frame, 
hence it was not possible to estimate the tree’s projection area from the 
photographs. To quantify differences between point cloud estimates and 
reference measurements, we used the relative mean deviation or bias 

Bias =

∑n
i=1yi − ŷi

ny
× 100, (9)  

and the relative root mean square error 

Table 1 
Relative difference between TLS and reference estimates for total leaf area, in percent, for all voxel sizes and scan resolutions. The shorthand DS in the resolutions refers 
to ”downsampled”.  

Leaf area High (0.009◦) Low (0.018◦) High DS (0.018◦) Low DS (0.036◦) 

Voxel size [m] Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

0.05 –86.4 116.8 –91.4 123.9 –97.4 130.5 –134.8 178.4 
0.1 –66.8 90.0 –62.3 85.4 –68.4 91.9 –68.9 93.4 
0.15 –55.4 75.2 –50.1 69.6 –56.0 75.9 –52.4 72.2 
0.2 –46.8 64.5 –41.4 58.9 –47.0 64.7 –42.4 60.0 
0.25 –40.0 56.2 –34.6 50.8 –40.1 56.4 –35.3 51.5 
0.3 –35.4 51.8 –30.2 46.6 –35.5 51.9 –30.6 47.0 
0.35 –30.5 47.1 –25.4 42.4 –30.5 47.1 –25.7 42.6 
0.4 –25.8 42.3 –20.9 37.7 –25.8 42.3 –21.1 37.9 
0.5 –20.1 34.2 –15.7 30.4 –20.2 34.2 –15.9 30.4 
0.6 –15.5 28.8 –11.4 25.6 –15.6 28.8 –11.5 25.6 
0.7 –10.4 24.3 –6.5 22.2 –10.4 24.3 –6.5 22.2 
0.8 –4.9 21.4 –1.1 20.6 –5.0 21.5 –1.2 20.6 
0.9 –1.3 21.4 2.3 21.5 –1.4 21.5 2.2 21.5  
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RMSE =
100

y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1

(

yi − ŷi

)2

n

√
√
√
√
√

, (10)  

with the reference measurements yi for tree number i, and their mean y, 
the estimates from point cloud data ŷi, and the number of trees n. 

3.5. Estimates of STARcrown 

Finally, STARcrown was computed for each tree, using the leaf area 
and spherically averaged silhouette area estimates from TLS data. For 
the estimation of spherically averaged silhouette area, we computed 
synthetic images as explained above, but now for 72 directions that 
corresponded to nodes of product Gaussian quadrature (Atkinson, 
1982). This allowed computation of spherically averaged silhouette area 
using numerical integration. Total leaf area was computed from the 
estimated one-sided leaf area by multiplying with 2. Similarly as leaf and 
silhouette areas, also STAR was estimated separately for 12 different 
voxels sizes and 4 scan resolutions. 

4. Results and discussion 

4.1. Leaf area estimation 

Overall, the leaf area estimates produced by the modified contact 
frequency were higher than the destructive reference estimates (Table 1, 
Fig. 3). The degree of overestimation by MCF depended strongly on the 
voxel size, and only marginally on the scan resolution except for the 
smallest (5 cm) voxel size, for which using the lowest scan resolution 
deteriorated the accuracy (Table 1) due to insufficient exploration of the 
voxel volume. The effect of scan resolution has been described in 
Pimont et al. (2018), who showed that a low beam number per voxel can 
exhibit a strong positive error on the attenuation coefficient. For the 
highest resolution, we observed an overestimation of leaf area between 
86% in the smallest, and 1% in the largest voxels (Fig. 3). 

The deviations between MCF and reference leaf area estimates are 
likely due to convolution of several error sources, which cannot be 
separated from each other using the material and methods used in this 
study. The error sources are caused mainly by the finite footprint size of 
the TLS instrument, and within-voxel clumping. We further distinguish 
within-voxel clumping into clumping of needles in shoots, and clumping 

of shoots in a voxel i.e. nonrandom distribution of shoots inside a voxel. 
The finite size of the laser footprint causes an overestimation of atten
uation, as a pulse needs not be centered on a leaf to produce a return. 
The gaps within conifer shoots are often smaller than the beam footprint, 
causing the within-shoot gaps to be underestimated for parts of the shoot 
above the return threshold, and therefore the shoot silhouette area, and 
thus the attenuation coefficient, is overestimated. Visual examination of 
point clouds supported this hypothesis, because the Norway spruce 
shoots were resolved as almost fully opaque cylinder-like shapes in the 
point clouds. On the other hand, using attenuation coefficient for co
nifers without correcting for shoot clumping leads to an underestimate 
of leaf area. Therefore, there are two errors with mutually opposite ef
fects appearing at the scale of the individual vegetation element, and 
thus are present for all voxel sizes. 

With increasing voxel size we observed a decreasing bias of leaf area, 
which can be attributed mainly to clumping of shoots within voxels by 
incorporation of empty voxels between branches. In addition, larger 
voxel size, depending on the origin of the voxel grid, increases clumping 
in voxels at the outer crown boundary by including empty space outside 
the crown. Therefore, we argue that the low bias for the largest voxel 
size did not produce the best estimation accuracy but rather indicated 
that the clumping of shoots in voxels compensated for the over
estimation caused by finite footprint size. 

There are other possible error sources which may have played a role 
in our analysis. Namely, we did not separate wood and leaf returns in the 
point clouds, and we did not explicitly account for the multi-view ge
ometry in our measurement setup (Pimont et al., 2019). A wood-leaf 
separation may have slightly improved our results, because our refer
ence estimates did not include wood areas. However, the trees in our 
sample were small and woody elements were only clearly visible at the 
base of the stem. The trees were mounted so that the crown base was 
almost immediately above the tree stand, which was manually removed 
from the point clouds, and therefore only a very small portion of the 
stem was visible. Accounting for the multi-view geometry can be done 
by assigning a direction-dependent value for the G-function (Pimont 
et al., 2019). In our data, all scans varied only in azimuthal direction, for 
which the G-function is commonly assumed invariant, and also esti
mating a leaf angle distribution from conifer shoots is uncertain due to 
lacking resolution of needles by the TLS instrument. The G-function, 
besides sub-voxel clumping and beam size effects, is one of the most 
important factors in measuring leaf area density of trees, and 

Fig. 3. Comparison of destructive and TLS-based estimates of total leaf area (LA) at high resolution. A shows the entire range of trees, and B is a detailed view on 
trees with small leaf area. The color and size of each square indicate the voxel size, and the grey vertical lines connect squares of a tree for easier viewing. The tree 
numbers are indicated in the markers for the largest voxel size of each tree. 
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subsequently STAR. However, the value for G cannot be directly esti
mated from our data, because it is multiplied with biases from sub-voxel 
clumping and beam size, among others. Resolving these biases is the 
focus of future work. 

The tendency of the modified contact frequency (in the form pro
posed by Pimont et al. (2018)) to overestimate attenuation and thus leaf 
area has already been demonstrated in Soma et al. (2018). Soma et al. 
(2018) aimed at introducing empirical correction factors to account for 
effective beam size. The correction factors were calculated from the 
ratio of destructive to TLS-based leaf area α = LAref /LATLS. They re
ported values for α ranging from about 0.5 at 9 cm voxel size, to about 
2.0 at 70 cm voxels. We noticed a similar relationship between the ratio 
α and voxel size, but in our data α ranged from 0.56 for 5 cm to 1.05 for 
90 cm voxel size. Our results for the range of α are likely due to species 
differences, and differences in instruments and measurement setups. 

Finally, we will discuss the two extremes, tree 5 and tree 6, which 
appeared as outliers in Fig. 3B. These extreme cases highlight practical 
examples of the above discussed errors in estimating leaf area through a 
voxel-based approach, and demonstrate how a potential violation of the 
assumption that LiDAR beams have an infinitesimal footprint can lead to 
both under- and overestimation of leaf area density. For most trees, the 
90 cm voxel size came closest to the reference estimates, and only in one 
tree it was the smallest voxel size (5 cm) which was closest to the 
destructive leaf area estimate. The latter tree was tree 5, which was 

among the smallest trees in our sample, but at the same time it had a 
relatively high biomass of 1.42 kg compared to the similarly sized trees 2 
and 9, which had 0.43 and 0.48 kg, respectively (Fig. 1). 

Tree 5 had one of the densest crowns, which likely caused occlusion 
of TLS beams towards the inner parts of the crown. Due to this limited 
exploration of the inner crown volume, the attenuation of the entire tree 
(i.e. for voxel sizes where the entire crown is contained in a single voxel) 
may appear similar to trees 2 and 9, despite the much higher density. For 
smaller voxel sizes, the inner parts of the crown were not explored, 
which likely led to an underestimation of insufficiently explored voxels. 
Such an error can be partly compensated by classifying insufficiently 
explored voxels and using neighboring voxels to estimate their leaf area 
density, however, unexplored voxels were very few in our study and we 
did not investigate such a correction further. 

On the other extreme is tree 6, which was most overestimated by the 
TLS-based leaf area. Tree 6 had a biomass of about 0.7 kg, but occupied a 
relatively large volume (Fig. 1). With this relatively low biomass spread 
over a large volume, the leaf area density per voxel was still high enough 
to produce LiDAR returns at a similar rate as a very dense tree. In this 
case, the leaf area was more evenly spread out over the voxel volumes, 
and appeared to be indistinguishable from an actually dense tree 
because the leaf area density was high enough to trigger TLS returns, 
thus exhibiting an extreme example of error caused by the violation of 
the assumption of infinitesimal beam size in the MCF. 

4.2. Silhouette area estimation 

Similarly to the leaf area, the silhouette area predicted by the TLS- 
based method was higher than the photogrammetric reference mea
surements. Compared to the leaf area estimates, the magnitude of 
overestimation of silhouette area was smaller and did not depend as 
strongly on the voxel size. The relative bias ranged from -22% at 5 cm 
voxel size, to -28% 90 cm voxel size (Fig. 4, Table 2). Similar to the leaf 
area, the smallest voxel size had an increased bias at resolutions of 
0.018◦ and higher. 

We expected that our proposed method would overestimate silhou
ette area to some extent, as the underlying attenuation coefficient was 
also overestimated. In addition, silhouette area is generally over
estimated by TLS methods if no correction for the effective beam size is 
considered. Such a correction can be either done on the attenuation 
coefficient, as demonstrated in Soma et al. (2018), or by using the in
tensity of each pulse to empirically estimate the relative gap fraction of 
each beam (Hancock et al., 2014). For practical purposes, the former 
approach would require more empirical study to produce reliable 
correction factors that take into account potential differences between 
tree species, measurement setups, and instrument specifications. The 
latter approach has not yet been adapted to the framework of the 
modified contact frequency, but would have the advantage of not 

Fig. 4. Horizontally averaged silhouette area from photogrammetric mea
surements and TLS-based estimates. The relative bias and RMSE shown are 
averaged over all voxel sizes. The color gradient indicates different voxel sizes, 
with the size of each point decreasing with increasing voxel size. 

Table 2 
Relative difference between TLS and reference estimates for silhouette area (SA), in percent, for all voxel sizes and scan resolutions. The shorthand DS in the resolutions 
refers to ”downsampled”.  

Silhouette area High (0.009◦) Low (0.018◦) High DS (0.018◦) Low DS (0.036◦) 
Voxel size [m] Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
0.05 –22.2 24.9 –31.4 35.6 –34.1 38.4 –74.9 88.0 
0.1 –21.9 24.6 –20.9 23.5 –23.9 26.6 –28.6 32.0 
0.15 –23.1 25.6 –20.6 23.2 –23.8 26.4 –23.5 26.2 
0.2 –23.7 26.3 –20.8 23.3 –24.1 26.7 –22.3 24.8 
0.25 –24.6 27.3 –21.5 24.1 –24.8 27.5 –22.4 25.0 
0.3 –25.1 27.8 –21.9 24.5 –25.2 27.9 –22.5 25.0 
0.35 –25.7 28.3 –22.3 24.9 –25.8 28.4 –22.7 25.3 
0.4 –26.2 28.9 –22.7 25.3 –26.2 29.0 –23.0 25.7 
0.5 –27.3 30.2 –23.8 26.6 –27.4 30.3 –24.0 26.8 
0.6 –27.9 31.0 –24.2 27.2 –27.9 31.0 –24.3 27.3 
0.7 –28.0 31.1 –24.2 27.1 –28.0 31.1 –24.4 27.3 
0.8 –28.1 31.3 –24.2 27.3 –28.1 31.3 –24.3 27.4 
0.9 –27.9 31.1 –24.0 27.0 –28.0 31.1 –24.1 27.1  
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requiring any calibration to species but only to instrument 
specifications. 

Besides the overall bias of the attenuation coefficient, we found that 
the dependence of silhouette area estimates on voxel size was not as 
straightforward as with leaf area index. In our results, there was a 
generally increasing trend of silhouette area with increasing voxel size. 
The largest deviation between trees appeared at the smallest voxel size, 
where for larger trees the silhouette area showed a decreasing trend 
between 5 and 15 cm voxel size, followed by a small but increasing trend 
(Fig. 5). The smallest trees, on the other hand, had an increasing trend 
throughout the voxel size range, except for a premature peak around 30 
to 50 cm voxel size. This premature peak for small trees was likely 
caused by a processing artifact due to the placement of the voxel grid 
relative to the crown position. At voxel sizes of 30–50 cm there was a 

large fraction of voxels that were located at the crown boundaries, and 
thus overlapping only partly with the crown, which caused over
estimation of silhouette area. At larger voxel sizes the fraction of these 
”boundary voxels” was lower, due to crown dimensions matching the 
multiple of voxel side length (Fig. 5). 

The potential sources of bias in estimation of the attenuation coef
ficient have already been discussed in Section 4.1. In addition to the 
biases present in the attenuation coefficient, the silhouette areas were 
estimated through a second ray tracing step which used the Beer- 
Lambert law to estimate the absorbed energy (relative to unity) along 
the paths through the voxel grid. This second ray tracing step propa
gated, and possibly amplified errors present in the attenuation co
efficients. An amplification of errors could have occured particularly in 
voxels located at the crown boundaries. In such boundary voxels, all the 

Fig. 5. The relationship between voxel size and leaf and silhouette area. A and B show the dependency of leaf area and silhouette area, respectively, relative to their 
mean values. C illustrates the attenuation in the voxel grid of tree 1 over different voxel sizes. 

Fig. 6. Silhouette to total area ratio estimated with our proposed method per tree.  
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Data: Point cloud per scan position with associated transformation parameters from the coregistration
Result: Rays depicting origin and end for each point in the point cloud and for empty pulses
for each scan position do

Transform points into spherical coordinates φ, α, r;
for ζ ∈ {φ, α} do

Sort ζ ascendingly;
Calculate the difference ∆ζ = {ζi − ζi+1|i ∈ [1,N − 1]};
k = 0;
Set angular error εa of the scanner;
for i ∈ [2,N] do

if ∆ζi−1 > εa then
k = k + 1;

end
Assign index k to ζi;

end
Calculate the mean for each index;
The median of gradients of the means is the angular resolution δζ;
The mean of index 0 is the starting point ζ0;

end
Construct a grid of the size of the maximum index values from φ and α angles;
Based on the grid index (u, v), calculate the nominal direction as φnom = φ0 + uδφ (αnom is calculated analogously with α
and v);
Assign measured angles to the grid based on their indices;
Rearrange the grid to get a collection of vectors [φ, α]T ;
Append range values of measured points;
For empty points, append a dummy range value (e.g. 1000 m);
Transform the vector [φ, α, r] back to Cartesian coordinates;
Transform to the global point cloud coordinate system;
Assign the origin of each point, i.e. the scanner position;

end

Algorithm 1. Recovery of empty pulses from a return-only point cloud  
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crown volume is concentrated on one side of the voxel, therefore being 
highly clumped. By an overestimated attenuation coefficient for such 
boundary voxels, the empty space outside the crown but within the 
voxel contributes to the silhouette area, thus possibly causing the 
slightly increasing trend in silhouette area with increasing voxel size. 
However, the variation in silhouette area between the extreme voxel 
sizes was small (6%%points) relative to the leaf area (85%%points), 
which leads us to the conclusion that the silhouette area estimates are 
relatively robust against changes in voxel size. 

4.3. Silhouette to total area estimates 

We observed STARcrown ranging between 0.075 and 0.25 (Fig. 6), 
however, due to the above mentioned limitations in estimating silhou
ette and total area, we interpreted the results only in relative terms 
between the individual trees. Overall there was a positive relationship 
between STAR and voxel size caused by the assumption of random 
distribution of elements within voxels by the MCF. As explained in 
Section 4.1, increasing voxel size likely resulted in increased clumping 
to occur within voxels, and the assumption of random distribution of 
elements within voxels was thus violated. In addition, small trees (trees 
2–5 and 9) exhibited a distinct peak at moderate voxel sizes, similar to 
what we observed for silhouette areas. It was likely caused by processing 
artifact introduced by the voxel grid on the small crown volume, as 
discussed in Section 4.2. 

The relative level of STARcrown differed strongly between trees, 
which is most notable at the smallest voxel size (5 cm). Sparse trees, such 
as trees 4 and 9, exhibited the highest STAR values and were thus the 
least clumped trees. On the other hand, trees with crown parts of very 
high leaf area density (e.g. trees 3, 5, 12, 13) form the opposite extreme, 
as they were the most clumped. Visually, these two extremes can be 
observed intuitively from Fig. 1, where the dense and more clumped 
trees had a distinct volume in the lower part of the crown with an 
extremely high density relative to the other parts of the crown (cf. the 
lower third of the crown of tree 3). 

Despite the possibility to visually interpret clumping of vegetation 
elements, it is vital to study their spatial distribution explicitly. That is, 
without a spatially explicit measure of the crown or stand silhouette to 
needle silhouette area (i.e. the clumping index 4STAR), a potentially 
considerable amount of uncertainty and bias is introduced by predicting 
light interception in canopies using the Lambert-Beer law. LiDAR tech
nologies are currently the only viable option for studying the three- 
dimensional patterns of vegetation elements explicitly. However, 
LiDAR methods have the above mentioned limitation of the theoretical 
methods diverging somewhat from the actual measurement process, 
namely by the effective beam footprint effect, and the lack of a robust 
method to determine a suitable voxel size for estimating attenuation 
coefficient from point clouds. Overcoming these limitations would allow 
the exact analysis of absolute level and variation of STAR for individual 
tree crowns and entire forest stands. Ultimately, such an improved 
knowledge about STAR would enable modelers to partly or fully aban
don the concept of a Poisson canopy and replace it with more realistic 
spatial probability distributions, or at the least, justify the use of Poisson 
canopy for some tree species or stand compositions. 

5. Conclusions 

We developed a method to estimate the silhouette to total area ratio 
from multiple view TLS point clouds, and compared our method with 
reference measurements in young spruce trees. Our method to estimate 
STAR at tree scale is based on estimating the spatially explicit attenua
tion coefficient on a voxel grid, which is further processed to calculate 
total leaf area, and tree silhouette area in all directions of a sphere. The 
method we used for estimating the attenuation coefficient showed a 
tendency to overestimate both leaf and silhouette area relative to 
reference measurements, with a strong dependence on the spatial scale 

(i.e. the voxel size). We analyzed our results with regard to the influence 
of voxel size, and pointed out important error sources that influence the 
estimation accuracy for attenuation coefficient. 

The STAR we observed in young spruce trees shows a significant 
level of clumping at small scales between 10 and 25 cm, which indicates 
that the spatial distribution of shoots in a tree crown is not random. In 
future work, we plan to apply our proposed method to larger trees and 
forest stands to empirically analyse the degree of clumping in tree 
crowns and stands. Furthermore, additional research is required to 
improve the estimation of attenuation coefficient in voxel grids, 
particularly for the influence of the effective beam size and the conse
quent lack of resolution of conifer needles. 

Finally, a potential bias source we analyzed in this study is clumping. 
We showed that for large voxel sizes, within-voxel clumping plays an 
increasingly important role as error source in estimating attenuation 
coefficient. Therefore, we recommend to keep the voxel size for esti
mating attenuation coefficient and leaf area as small as possible to avoid 
the introduction of additional errors that may partly or wholly cancel 
out other errors inherent to the modified contact frequency or the TLS 
measurements. 
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Appendix A. Recovery of empty pulses 

We stored our point clouds in the e57 format, where each individual 
scan has an associated transformation matrix, and the points from that 
scan can be read in a local coordinate system where the scan position is 
the origin. To recover the empty pulses, we used the Algorithm 1 below. 
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