
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Buzhinsky, Igor; Pakonen, Antti
Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2019.2951938

Published: 01/01/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Buzhinsky, I., & Pakonen, A. (2019). Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety
Functions. IEEE Access, 7, 162139-162156. Article 8892461. https://doi.org/10.1109/ACCESS.2019.2951938

https://doi.org/10.1109/ACCESS.2019.2951938
https://doi.org/10.1109/ACCESS.2019.2951938

Received September 17, 2019, accepted October 18, 2019, date of publication November 6, 2019,
date of current version November 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951938

Model-Checking Detailed Fault-Tolerant Nuclear
Power Plant Safety Functions
IGOR BUZHINSKY 1,2 AND ANTTI PAKONEN 3
1Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
2Computer Technologies Laboratory, ITMO University, 197101 St. Petersburg, Russia
3VTT Technical Research Centre of Finland, 02044 Espoo, Finland

Corresponding author: Igor Buzhinsky (igor.buzhinskii@aalto.fi)

This work was supported in part by the Finnish Research Programme on Nuclear Power Plant Safety 2018-2022 (SAFIR 2022), in part by
the Russian Ministry of Science and Higher Education by the State Task 2.8866.2017/8.9, and in part by the Government of the Russian
Federation under Grant 08-08.

ABSTRACT Model checking has been successfully used for detailed formal verification of instrumentation
and control (I&C) systems, as long as the focus has been on the application logic alone. In safety-critical
applications, fault tolerance is also an important aspect, but introducing I&C hardware failure modes to the
formal models comes at a significant computational cost. Previous attempts have led to state space explosion
and prohibitively long processing times. In this paper, we present an approach to model and formally verify
protection functions allocated to one or several I&C systems, accounting for hardware component failures
and delays in communication within and between the systems. Formal verification is done with model
checking, whose feasibility on such complex systems is achieved by utilizing the symmetry of I&C systems:
the components of the overall model that do not influence the checked requirements are eliminated, and the
failing components are fixed. Generation of such abstracted models, as well as subsequent verification of
their requirements and symmetry with the NuSMV symbolic model checker, is handled by a software tool.
In addition, we explore how to specify formal requirements for systems of the considered class. Based on a
case study built around a semi-fictitious nuclear power plant protection system that achieves reliability by
means of redundancy, we demonstrate how failure tolerance of even detailed system designs can be formally
verified.

INDEX TERMS Formal verification, model checking, nuclear I&C systems, fault tolerance.

I. INTRODUCTION
Safety-critical systems, such as transport, spacecrafts and
power plants, demand comprehensive efforts to ensure their
reliability. Traditional verification and validation (V&V)
approaches, such as testing and simulation, may not be suffi-
cient due to their inability to cover all possible behavior sce-
narios. In contrast, formal methods such as static analysis [1],
automated theorem proving [2], [3] and model checking
[4], [5] are exhaustive. In model checking, which is largely
used in this paper due to its focus on state space pro-
cessing, this analysis is performed for all possible state
sequences of the formal model of the system under verifica-
tion. In Finland,model checking is used to verify the design of

The associate editor coordinating the review of this manuscript and

approving it for publication was Junjian Qi .

instrumentation and control (I&C) systems of nuclear power
plants (NPPs) [6], [7].

Single failure tolerance is often a requirement for safety-
critical I&C systems—the failure of any individual com-
ponent shall not prevent the system from performing its
function. Tolerance to single failures can be achieved with
redundancy. Redundant subsystems, together capable of per-
forming the desired tasks even if one of them fails, are
used in application domains such as nuclear energy [8],
aviation [9], [10], aerospace [11], [12], railway [13], and
automotive [14] industries.

Verifying that the failure tolerance mechanisms actually
work calls for the modeling of both the application logic
and the different failure modes of the underlying hardware.
Furthermore, distributing the logic between redundant,
separated systems introduces communication delays and

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 162139

https://orcid.org/0000-0003-3713-6051
https://orcid.org/0000-0002-6803-2303
https://orcid.org/0000-0002-4043-9427

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

asynchrony, which should also be addressed in the analyses.
Previous attempts (e.g., [15], [16]) at usingmodel checking to
evaluate these aspects in one model have run into scalability
issues, while logic-only models of similar complexity are not
an issue for model checkers.

In this paper, we present a method for verifying the
fault tolerance of I&C systems based on model checking.
In addition to modeling the application logic, we account
for the failure modes of the underlying I&C system hard-
ware components, and the communication delay between
distributed computers. As the case example, we use the
reactor protection system of the proposed U.S. version of
the European Pressurized Water Reactor (EPR) NPP [8].
We simplify the failure model by focusing strictly on the
verification of single failure, as required by the Finnish
regulatory guides on nuclear safety,1 and demonstrate our
approach using the symbolic model checker NuSMV. As
verification of previously intractable formal requirements
becomes possible, our results enhance the state-of-the-art of
nuclear I&C verification. Theymay also be insightful in other
aforementioned domains where fault tolerance is achieved
with redundant architectures.

This paper is an extended version of the work [19].
Compared to [19], we supplement our verification approach
with the ability to handle multiple interconnected I&C sys-
tems and evaluate it on a more complex case study—
composed of two four-redundant systems, and a third two-
redundant system, performing two different safety functions
for reactor shutdown. In addition, we study different ways
of expressing temporal requirements to be verified for such
systems, and also perform formal checks of symmetry of
function units with respect to their input variables, which is
used as the basis for failure model simplification.

The rest of the paper is structured as follows. Section II
introduces a running example and overviews used concepts
and notations. Section III describes the proposed approach
of hardware and software modeling and model checking.
In Section IV, the proposed approach is evaluated on a
case study. Finally, Section V analyzes related work and
Section VI concludes the paper.

II. PRELIMINARIES
A. RUNNING EXAMPLE: REACTOR PROTECTION
SYSTEM (PS)
To illustrate the concepts introduced in this section, we start
with the fault-tolerant reactor protection system (PS) case

1To be exact, in Finland, the reactor protection system needs to fulfill
the ‘‘N+2’’ requirement: in addition to single failure, the system still needs
to perform its function even if any component of a redundant system is
simultaneously out of operation for maintenance [17]. We assume that a
‘‘maintenance bypass’’ logic is built into the I&C system [18], meaning
that requirements dealing with maintenance can be formulated and checked
without the need to add more elements to the model, and a device that is
placed out of operation will only issue actuation orders if it fails.

study, which will be used as a running example. The PS is
a safety I&C system responsible for reactor trip (i.e., shut-
down). In Section IV, this case study will be extended by
adding more systems and safety functions.

The PS with which we work in this paper is inspired by
the design of the U.S. EPR NPP [8],2 but partly based on our
own invention. Based on Areva NP’s TELEPERM XS tech-
nology, the PS is organized into four redundant, independent
divisions, located in separate buildings [18] (see Fig. 1).

FIGURE 1. Architecture of the PS.

Two function units are located in each division [18]:
1) Acquisition and Processing Units (APUs) acquire sig-

nals from the process sensors and monitoring systems
via the Signal Conditioning and Distribution System
(SCDS, not modeled in this paper) using a hardwired
connection, perform calculations and setpoint compar-
isons, and distribute the results to the ALUs for voting.

2) Actuation Logic Units (ALUs) perform voting over
processing results and issue actuating results, taking
into account operator control actions from the Safety
Information and Control System (SICS, not modeled in
this paper) user interface. The actuation orders are sent
to the Priority and Actuator Control System (PACS,
will be introduced in Section IV-B) via a hardwired
connection.

Thus, all the divisions are redundant and have an identi-
cal structure. The communication between the divisions is
relayed via a Profibus network, using fiber-optic cabling to
achieve electrical isolation. [8] The safety function process-
ing logic for the APUs and ALUs is shown in Fig. 2.

Within the PS, tolerance against a single failure (of an
input sensor, a unit of the PS, or an actuator device) is

2No project is underway to construct an EPR in the U.S., but the U.S.
Nuclear Regulator NRC has published parts of the plant supplier Areva NP’s
2013 Final Safety Analysis Report (FSAR) for a suggested U.S. variant.

162140 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

FIGURE 2. The processing logic for each of the four redundant PS APUs
(top) and ALUs (bottom). Function block notations: a circle is a negation,
min and max are ‘‘<’’ and ‘‘>’’ comparisons respectively, t..0 blocks are
on-delay (TON) timers, S R blocks are one-bit memory elements

similar to flip-flops, SFV are faulty value substitution blocks, 1 is the
identity function.

based on the four-division structure, and selection and voting
functions in the APUs and ALUs. Each signal in the PS logic,
in addition to its value, has a status, which can be set to
‘‘fault’’ by failures detected by input modules or function
processors. The status is then used to exclude invalid signals
in selection (e.g., second-maximum,3 second-minimum) and

3A block selecting the remaining maximum number in a set, after exclud-
ing the maximum number.

voting (n-out-of-m) blocks. Even if a single failure disables
an ALU logic performing the vote, the redundant ALUs can
still actuate the reactor trip function. [8]

The PS case study approaches the complexity of detailed
design, implementing signal status processing (partly based
on publicly available information, partly on invention) within
elementary blocks, and also in the shape of special blocks for
fault status filtering. For the ALU logic, we added a block
type of our own invention (SFV) to substitute the value of
faulty control signals from the operator’s interface with a
default ‘‘false’’.

To avoid confusion, we note that the PS described above
has the same structure as the one from [19], and its complexity
is comparable, but its inputs, outputs and implementation
(APUs and ALUs) are different as the PS used here is respon-
sible for reactor trip rather than emergency core cooling.

B. MODEL CHECKING
Model checking [4], [5] is a verification technique that ana-
lyzes the system under verification by exploring its set of pos-
sible states. More precisely, it works with its formal model—
the mathematical model of the system’s behavior specified
as states and state transitions. For this analysis, statements
on the sequences of visited states, called temporal properties
(also referred to as temporal requirements), may be specified
for checking. They allow the analyst to formulate the require-
ments for the behavior of the system in time. For example,
the linear temporal logic (LTL) is a language to specify a
requirement to be satisfied for all reachable behaviors of the
model. This is a discrete-time temporal logic, meaning that
time is modeled as a sequence of discrete steps, or cycles,
of the model. LTL extends the Boolean propositional logic
with temporal operators, such asX (in the next state),G (now
and always in the future), and F (now or at some point in the
future). An extended version of LTL has past time operators,
such as O (now or at some point in the past).
For example, suppose that the logic of the APU from

Fig. 2 is represented with a formal model, where HLEG_T
is an integer variable specifying the hot leg temperature, and
HLT_long is the corresponding Boolean signal arriving to
the AND block. Due to min threshold blocks and on-delay
timers (t..0 blocks), the following LTL property will be
satisfied:

G((HLEG_T<150) ∧ (X(HLEG_T<150))→ XHLT_long),

meaning that any occurrence of the condition HLEG_T < 150
lasting for two consequent cycles will lead to HLT_long
being true on the second of these cycles.

In computation tree logic (CTL), temporal operators are
prefixed with path quantifiersA (‘‘for all’’) andE (‘‘exists’’).
This permits properties expressing reachability. For example,
CTL propertyAGEFHLT_long specifies that in any reach-
able state of the model the aforementioned signal HLT_long

VOLUME 7, 2019 162141

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

can be true in the future. Finally, property specification lan-
guage (PSL) is a notation with syntax inspired by regular
expressions and LTL semantics.

C. MODEL CHECKERS AND NUSMV
A model checker is a tool to perform model check-
ing automatically. In addition to verification outcomes
(true/false), if requested, model checkers generate counterex-
amples, or error traces, for violated temporal properties.
NuSMV [20] is a model checker with its own textual

language to specify formal models and temporal properties.
NuSMV implements symbolic model checking [21], whose
idea is to process the state space of the formal model implic-
itly, mitigating the state space explosion problem of explicit
model checking algorithms: the state space of the model may
grow too quickly with the growth of themodel’s textual repre-
sentation. Conventional symbolic model checking is done by
working with binary decision diagrams (BDDs). For LTL and
PSL, boundedmodel checking (BMC) is also available, which
is an imprecise yet often faster technique that only considers
counterexamples whose length is bounded by k + 1 cycles,
where k ≥ 0 is chosen by the user.

A NuSMV model is a nested arrangement of syn-
chronously executedmodules that roots from the mainmod-
ule. An example of a NuSMVmodule TON that represents an
on-delay timer within the APU logic in Fig. 2 (t..0 blocks)
is given below:4

1 MODULE TON(BIN_IN)
2 VAR
3 ticks: 0..2;
4 ASSIGN
5 init(ticks) := BIN_IN ? 1 : 0;
6 next(ticks) := case
7 !next(BIN_IN): 0;
8 ticks = 2: 2;
9 TRUE: ticks + 1;

10 esac;
11 DEFINE
12 BIN_OUT := ticks = 2;

The state of this module is defined by the value of a
single bounded integer variable ticks defined on line 3.
Then, on lines 5–10, the evolution of its value is described: it
increases by 1 (but never exceeds 2) if the BIN_IN input is
true and resets otherwise. The output of the timer is defined on
line 12. Note that the actual modules with which I&C systems
are modeled in this paper also operate with fault statuses in

4In this paper, a single cycle does not correspond to a predetermined
physical duration. This is done for computational efficiency and at the
same time is a limitation of the approach. For example, from the given
implementation of TON it may appear that a cycle corresponds to one second,
but blocks with larger delays may have lower execution frequencies, while
in reality all blocks execute with much higher frequency.

addition to regular input/output data (Section II-G); they are
omitted here for simplicity.

D. MODEL CHECKING OF NUCLEAR I&C SYSTEMS
Model checking I&C application logics based on function
block diagrams has been an active research topic for several
years, with different areas of application [22]. It has been
proven applicable for ensuring the correctness of industry-
sized PLC programs [7], [23], but, nevertheless, is not yet a
wide-spread industry practice in any application area.

I&C logics can be verified using either open-loop or closed-
loop modeling. Open-loop model checking only considers
the model of the ‘‘controller’’ logic, while in the closed-
loop model feedback from the controlled plant is taken into
account [24]. Closing the loop can help limit the state space
of the model [24], but analysis times can actually increase
when symbolic model checking is used [25], [26]. What is
more, generating a realistic plant model can be a challenge,
and limiting model behavior might accidentally filter out
scenarios relevant to safety.

Since 2008, VTT has successfully used model checking to
verify both early (functional) and detailed design of safety
I&C systems for Finnish NPPs [7]. A graphical tool called
MODCHK [27], [28] is used to manually define a collection
of vendor-specific elementary function blocks, model the
function block diagrams with a graphical editor, specify the
properties with a text editor, generate the necessary input
files for NuSMV, and visualize counterexamples produced
by NuSMV with an animated view of the function block
diagram. A screenshot of MODCHK with the diagram of PS
ALU (Fig. 2) is shown in Fig. 3.

FIGURE 3. Screenshot of PS ALU logic in MODCHK.

162142 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

E. BASIC BLOCKS AND BLOCK DIAGRAMS
In this subsection, we formalize the structure and behavior
of systems like the PS, starting from basic elements and
proceeding with modular structures.

1) FINITE-STATE MACHINES
A finite-state machine (FSM) is a tuple (S, S0, I ,O,D,T ,3),
where:

1) S is a finite, non-empty set of states;
2) S0 ⊆ S is a non-empty set of initial states;
3) I and O are finite sets of input and output variables

respectively;
4) D : I ∪ O → 2Z ∪ {false, true} is a domain function

that returns the set of possible values—either a finite
set of integers or the set of Booleans—for the given
input or output variable;

5) T ⊆ S × VI ,D × S is a transition relation, where
VI ,D = ×v∈ID(v) is the set of all combinations of val-
ues of input variables (assuming their fixed ordering);

6) 3 ⊆ S × VI ,D × VO,D is an output relation, where
VO,D = ×v∈OD(v) is the set of all combinations
of values of output variables (assuming their fixed
ordering).

An FSM is deterministic if |S0| = 1 and for all s ∈ S,
ι ∈ VI ,D there exist unique s′ ∈ S and ω ∈ VO,D such
that (s, ι, s′) ∈ T and (s, ι, ω) ∈ 3, i.e., the initial state is
unique and exactly one transition and combination of output
values exist for each state and combination of input values.
A deterministic FSM is thus a Mealy machine [29].

2) TRACES
FSMs have a notion of execution, during which traces are
produced. A full trace of an FSM (S, S0, I ,O,D,T ,3) is a
finite or infinite sequence τ = ((s0, ι0, ω0), (s1, ι1, ω1), . . .)
such that:

1) s0 ∈ S0;
2) each element of τ belongs to 3;
3) for each pair of consequent elements (si, ιi, ωi),

(si+1, ιi+1, ωi+1) of τ , (si, ιi, si+1) ∈ T .
Each full trace t has a corresponding input-output trace (IO

trace) obtained from t by removing the first element (i.e.,
state information) from each tuple. Note that multiple full
traces may correspond to a single IO trace. The set of all input
traces of an FSM M will be denoted as τIO(M).

3) BASIC BLOCKS AND BLOCK DIAGRAMS
Formally, we will speak of basic blocks as of just FSMs,
but by using this term we will emphasize that these are
elementary parts of the formal model, not having any inter-
nal structure. In our case studies, a basic block will always
correspond to some NuSMVmodule. For example, on Fig. 2,
all rectangular shapes correspond to basic blocks, and among
them is TON, whose NuSMV code was given in Section II-C.

For convenience, when models are developed in MODCHK,
basic blocks are defined once and reused possibly multiple
times, with each block having its own state and behavior, e.g.,
like the two TON blocks in Fig. 2 (top).

Interconnected arrangements of FSMs, like the APU and
the ALU from Fig. 2, form block diagrams. Formally, a block
diagram is a tuple N = (I ,O,E,C), where I and O are
defined as in the case of an FSM, E is a finite set of elements
of N , where each e ∈ E is an FSM, and C is a set of
connections of three kinds:

1) input variables of N are connected to input variables of
elements;

2) output variables of elements are connected to input
variables of other elements;

3) output variables of elements are connected to output
variables of N .

C is assumed to be constrained such that each input vari-
able of an element and each output variable of N has exactly
one corresponding connection from some other variable.
In practice, missing incoming connections are handy, but the
definition above already covers them as we can imagine triv-
ial FSMs generating the same constant value to be connected
in place of such missing connections.

The execution semantics of N is defined as follows: the
states of N correspond to the combinations of states of
its elements, and on the initial cycle all the elements are
set to some of their initial states. Then, on each cycle, all
e ∈ E execute synchronously, following the semantics of
NuSMV. For connections between the elements, we adopt
MODCHK semantics: connections are zero-delay, meaning
that one cycle is sufficient for a signal to propagate along
a sequence of elements if each of these elements reacts to
inputs on the same cycle. The reason for this assumption is
the preference of shorter counterexamples: they are computa-
tionally cheaper to consider in model checking and easier for
the analyst to understand. However, if a set of elements lies on
a feedback loop, this loop needs to be broken with a unit delay
block to forbid infinite flow of information. This problem of
synchronous block diagrams is discussed in detail in [30].
Finally, as the aforementioned semantics allows representing
block diagrams as FSMs, the former may be nested, meaning
that systems like the one shown in Fig. 1 can also be modeled
as block diagrams.

F. SYMMETRY OF FSMS WITH RESPECT TO INPUT
VARIABLES
Let M = (S, S0, I ,O,D,T ,3) be an FSM and
{v1, . . . , vs} ⊆ I be a set of s different input variables of
M whose value sets D(v1), . . . ,D(vs) are all equal. If p is a
permutation of numbers 1, . . . , s and ι ∈ VI ,D, then by p(ι)
we denote another input of M derived from ι by permuting
the values of selected variables v1, . . . , vs with p.

VOLUME 7, 2019 162143

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

M is symmetric with respect to input variables v1, . . . , vs
if and only if for each permutation p of numbers 1, . . . , s:

((ι1, ω1),
(ι2, ω2), . . .)

∈ τIO(M)⇔
((p(ι1), ω1),
(p(ι2), ω2), . . .)

∈ τIO(M),

that is, permuting the input values of v1, . . . , vs does not lead
to the change of possible output values of the FSM. If M
is deterministic, the meaning of this statement is stronger:
permuting the corresponding values does not alter the unique
output sequence of M .
In nuclear I&C systems, symmetries with respect to input

variables are common due to the idea of voting (n-out-of-m
blocks) over signals from redundant divisions. The following
symmetry observations can be made for the ALU of the PS
(also note that the APU has no symmetries):
• the ALU is symmetric with respect to four input
variables HLEG_P_H_OR_NF_Hi (‘‘hot leg pressure
high or neutron flux high’’), 1 ≤ i ≤ 4;

• the ALU is symmetric with respect to four input vari-
ables HLEG_T_L_AND_P_Li (‘‘hot leg temperature low
and hot leg pressure low’’), 1 ≤ i ≤ 4.

G. SIGNAL FAULT/VALIDITY STATUSES
In MODCHK, each signal has both a value (Boolean or
integer) and a fault/validity status (a Boolean variable). The
status processing is explicitly defined for each basic block,
and the counterexample animation feature uses a dashed line
to show a faulty/invalid signal [27]. In nuclear applications,
the status processing feature has been very relevant, as it is not
just used in TELEPERM XS (see Section II-A), but also in a
similar way in Rolls-Royce’s Spinline platform [31]. Status
processing logic has also played a role in about 12% of the
design issues VTT has identified [28].

This means that every basic block accepts and outputs
status signals in addition to regular ones. In the simplest case,
input statuses are just ignored or passed as output statuses.
For example, the definition of TON from Section II-C may
actually look like below:

1 MODULE TON(BIN_IN, BIN_IN_FAULT)
2 ... (like in the previous listing)
3 DEFINE
4 BIN_OUT := ticks = 2;
5 BIN_OUT_FAULT := BIN_IN_FAULT;

H. HARDWARE MODELING ASSUMPTIONS
Below, we define some concepts related to failure tolerance,
using the Finnish regulatory guides on nuclear safety and
security (YVL)5 as a guideline.
Single failure criterion, which is the primary assumption

of this paper, means that the system shall be able to perform
its function even if any single component designed for the
function fails. Protection against single failures is commonly

5https://www.stuklex.fi/en/yvl-ohje

achieved using several (potentially identical), redundant sub-
systems placed in physically separated divisions.
Consequential failure refers to ‘‘a failure caused by a

failure of another system, component or structure or by an
internal or external event at the facility’’ [17]. For example,
a failure of a power supply system or a ventilation system can
result in the subsequent total failure of several I&C system
devices, and still be considered a single failure that shall be
tolerated. In this paper, consideration of consequential fail-
ures is enabled by including simultaneous failure of different
devices of the same division.
Common cause failure (CCF) refers to a ‘‘failure of

two or more structures, systems and components due to the
same single event or cause’’ [17]. Protection against CCF can
be achieved using diverse backup systems (e.g., a different
supplier, technology, or operating principle). CCFs are not
addressed in this paper.
Passive failure means that the system fails to produce

the required response. Active failure (or ‘‘spurious actua-
tion’’ [28]) refers to inadvertent actuation without a real
demand. Passive and active failures are both covered by the
proposed approach.

III. PROPOSED APPROACH
The overview of the proposed verification approach is shown
in Fig. 4. The approach starts with manual preparation of
three kinds of artifacts:

1) Formal models of units (such as the APU and the ALU
of the PS) represented as block diagrams. We create
them in MODCHK (see Fig. 3), but they also can be
written directly in NuSMV.

2) A modular configuration that describes how the
units are connected and arranged into multiple divi-
sions, together comprising one or more fault-tolerant
safety functions. These configurations are explained in
Section III-A.

3) Temporal requirements to the modular configuration,
subdivided into black-box and white-box ones depend-
ing on their purpose (see Section III-C).

FIGURE 4. Overview of the proposed verification approach.

162144 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

These artifacts are processed by three automated steps:
1) Symmetry declarations specified in the modular con-

figuration, as well as the determinism of all declared
units are formally verified (see Section III-B).

2) Based on the formal models on units and the speci-
fied modular configuration, a NuSMV formal model
of the overall system is automatically generated that
includes both software and hardware aspects. The
creation of this model involves injection of hardware
failures (Section III-D) and communication delays
(Section III-E). The basic instructions for such injec-
tion (such as the divisions to inject failures) are sup-
plied within the modular configuration.

3) The prepared formal model is model-checked against
the temporal requirements. This is done by simply
executing NuSMV on these artifacts.

The approach is implemented in a software tool, which
is available online.6 Due to confidentiality of basic block
models involved in our case study (Section IV), we provide a
different fictitious example onwhich the tool can be executed.

A. MODULAR CONFIGURATIONS
A modular configuration is a textual way to specify a block
diagram modeling the I&C system to be formally verified.
We designed a simple domain-specific language (DSL) to
describe such modular configurations. It supports declara-
tions of the following entities:

1) A unit group g is a container to group block diagrams
(such as the ones of the APU and the ALU from Fig. 2),
inputs and outputs thereof in a specified number of
divisions d(g) (e.g., d(g) = 4). One of the divisions
may be assigned as the failing one (see Section III-D).
Each unit group corresponds to a single I&C system,
which may correspond to a single safety function or a
part thereof. It is possible to think of a unit group
as of a block diagram, although due to the need to
connect units of different unit groups with each other
it is easier to define input and output variables for the
whole modular configuration (see points 3–4 below).

2) A unit u is a block diagram consisting only of basic
blocks, belonging to the specified unit group g(u) and
having the number of divisions specified by this group:
d(u) = d(g(u)). The APU and the ALU of the PS
(Fig. 2) are examples of units. Each unit is associated
with NuSMV code specifying basic blocks and connec-
tions between them. The code for the latter is gener-
ated by MODCHK from a graphically specified block
diagram, but may also be written directly in NuSMV.
For each unit, it is possible to introduce communica-
tion delays up to the specified number of cycles (see
Section III-E) and retain only one specified division in
the formal model (see Section III-D). What is more,

6https://github.com/igor-buzhinsky/hw-sw-model-builder

discovered symmetries (Section II-F) can be listed with
separate symmetry declarations.

3) An input is a set of input variables that are duplicated
for the number of divisions of the specified unit group
to which they belong and are only distinguishable by
the index of this division, i.e., their names, sets of pos-
sible values and semantics are the same. For example,
MAN_RESET is a four-division input of the PS that
corresponds to identically named input variables of the
ALUs (Fig. 2).

4) An output is the same as an input except that it is a set of
output variables. For example, RODS_DOWN is a four-
division output of the PS (Fig. 1, 2) that corresponds to
identically named output variables of PSALUs (Fig. 2).

5) A single connection is a usual block diagram con-
nection as defined in Section II-E. Its end points are
specified by names with division indices. If the start
point is an output variable of a unit, then this vari-
able is addressed with the names of the unit group,
the unit, the output, and the division index, e.g.,
PS.ALU.ENABLE_SAS.1. If the end point is an input
variable of a unit, the declaration is similar, except that
the input name is omitted, but all connections are listed
in the order of input variables in the code of the unit.

6) A parallel connection represents a group of connec-
tions between entities having the same number nd of
divisions, such that division i (1 ≤ i ≤ nd) of the
connection’s source is connected to the same division i
of the destination. For example, input MAN_RESET
of the modular configuration is connected in parallel
to the identically named input of PS ALU (Fig. 2),
and each of these inputs corresponds to four variables
for divisions 1..4. Parallel connections are specified
similarly to single connections, but concrete division
indices are omitted.

7) An all-to-all connection represents a group of con-
nections between entities having n1 (source) and n2
(destination) divisions. It is a compact way to declare
n1 n2 single connections between each division of the
source and each division of the destination. For exam-
ple, APUs and ALUs from Fig. 1 are connected this
way. All-to-all connections are specified similarly to
parallel connections.

Amore verbose description of the DSL is supplied with the
software tool. The listing of the DSL definition of the PS is
given in Fig. 5.

B. SYMMETRY AND DETERMINISM VERIFICATION
As symmetry is used to simplify the overall formal model by
omitting certain divisions of certain units and by localizing
failures in particular divisions (see Section III-D), formal ver-
ification of symmetries improves the reliability of the overall
verification. Suppose that FSM M = (S, S0, I ,O,D,T ,3),

VOLUME 7, 2019 162145

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

FIGURE 5. PS definition in the DSL.

which corresponds to some declared unit, has a symmetry
declaration with respect to input variables {v1, . . . , vs} ⊆ I . If
M is deterministic, the following procedure based on model
checking can prove or refute this symmetry.

Two copies ofM ,M1 andM2, are included into the overall
formal model (e.g., module main in NuSMV). For each non-
trivial permutation p of numbers 1, . . . , s, M1 accepts the
original input variables and M2 accepts permuted input vari-
ables. If O = {o1, . . . , ok} (fault/validity statuses included),
then temporal property

AG
((
oM1
1 = oM2

1

)
∧ . . . ∧

(
oM1
k = oM2

k

))
is checked. If all checks are passed, then the symmetry of M
with respect to v1, . . . , vs is proven, otherwise it is refuted.
This procedure requires s! − 1 model checking runs. In our
case, such checks terminate in a few seconds since s never
exceeds four (the number of divisions in the PS) and unit
models are less complex than overall modular configurations.

If M is nondeterministic (or, more precisely, can produce
different output sequences in response to the same input
sequence), this can be revealed by running model checking
on a model created as explained above, but for the identity
permutation, i.e., by simply running M against itself. Deter-
minism given a fixed input sequence is a common assump-
tion in nuclear I&C modeling, and thus it is beneficial to
check it for M even if no symmetries with respect to input
variables exist (this may be possible, e.g., for the APUs).

Such a check can be simply enforced by requesting a sym-
metry check with respect to any single variable (e.g., with
input_variable_indices=1).

C. SPECIFYING TEMPORAL REQUIREMENTS
Temporal (LTL, PSL or CTL) requirements are defined
separately for different units whose outputs are checked.
Depending on the target unit, custom modular configurations
are prepared to (1) exclude parts of the system’s model that do
not influence the specified temporal properties and (2) spec-
ify single divisions for failure injection based on symmetry
observations (see Section III-D).

1) BLACK-BOX REQUIREMENTS
A temporal requirement f to the overall model is a black-box
requirement for division i ∈ {1, . . . , d(u)} of unit u if the
following restrictions are satisfied:

1) Division i of unit u is selected as a non-failing one (see
Section III-D).

2) At least one output variable of division i of unit u is
referred to in f .

3) The internal variables of units (i.e., the ones not being
input or output ones) are not referred to in f .

4) The output variables of other units in g(u) are not
referred to in f . Output variables of units outside g(u)
may be referred to in f only if they serve as input
variables to u.

162146 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

TABLE 1. Examples of black-box temporal requirements for division 1 of PS ALU. Division indices are shown in subscripts. Requirements outcomes are
shown for the no-delay case.

5) All divisions j ∈ 1 of u, where 1 = {1, . . . , d(u)} \
{i}, are treated equally in f in the following sense.
Consider any input or output of u, which is a group
of similar variables specified for each division. Then
permuting these variables in f for divisions from 1

may not lead to the change of model checking outcome
(satisfied/violated) of f regardless of how all the units
are implemented.

6) If some other unit u′ is connected to u, j1 and j2 are
two different divisions of u′, and u is symmetric with
respect to its input variables that come from divisions
j1 and j2 of u′, then these divisions are treated equally
in f as defined above.

This means that the requirement is formulated to check the
output variables of division u that does not have an injected
failure (otherwise, this requirement would likely be violated).
Then, all units in the overall model are treated equally, except
this selected division of u—thus, there are no prior assump-
tions on the location of injected failures in the model. And
finally, motivating the name ‘‘black-box’’, the requirement
does not refer to the actual implementations of any units
(point 3 in the list above), nor to the outputs of other units
in the same unit group (point 4)—thus, it is semantically
closer to high-level functional requirements to the overall
system, such as correct execution of a safety function subject
to possible failures.

Examples of black-box requirements for division 1 of PS
ALU, assuming a modular configuration defined in Fig. 5,
are given in Table 1. In particular, this table introduces sev-
eral requirement types, or patterns, that we use: invariants,
request-response requirements, and requirements specifying
absence of spurious actuation [28] and global possibility
of different unit output values. More comments regarding
verification outcomes will be given in Section IV-E.

2) DIVISION-PARAMETERIZED REQUIREMENTS
Suppose that f is a request-response or absence of spurious
actuation black-box requirement for unit u. Suppose also that
f has one or more subformulas h1(r), . . . , ht (r) expressed as
functions of division r, 1 ≤ r ≤ d(u) to which they relate.
We would like to parameterize f with the numbers of j1, . . . ,
jt of divisions for which h1(r), . . . , ht (r) are satisfied. In the
simplest cases, for each 1 ≤ i ≤ t , ji is either 1, resulting
in subformulas hi(1) ∨ . . . ∨ hi(d(u)), or d(u), resulting in
subformulas hi(1) ∧ . . . ∧ hi(d(u)).
As an example, consider the case of t = 1 subformula

and h1(r) = (HLEG_Pr > 70) ∨ (NFr > 2 · 105). Require-
ment 3 from Table 1 requires this subformula to be satisfied
for j1 = 1 division. Note that the 1-out-of-4 construction
is actually just a disjunction over all the divisions. While
this requirement is satisfied even when a failure is assumed
(see Section III-D for the details of failure modeling), its
version with j1 = 2 (requirement 4) becomes violated in this
case. Finally, a similar requirement with j1 = 3 (require-
ment 5) is violated even when no failures are assumed. By
considering such requirement families, it becomes possible
to assess the influence of failures in a quantitative way by
finding the number j1 (in our case, j1 = 2) for which
requirement outcomes are different depending on the pres-
ence of failure. When formulating division-parameterized
requirements, we employ user-friendly macros to specify the
jt -out-of-d(u) operation, and the actual Boolean formulas
to combine h1(r), . . . , ht (r) are generated automatically.

3) WHITE-BOX REQUIREMENTS
A temporal requirement f is a white-box require-
ment for division i of unit u if points 1–2 from
the definition of a black-box requirement are satis-
fied, but at least one other point is not. For example,

VOLUME 7, 2019 162147

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

requirement G(¬MAN_RESET1 ∧ PS.ALU.AND.OUT1 ∧
X(MAN_RESET1) → X¬RODS_DOWN1) is a white-box
requirement for division 1 of PS ALU as it refers to the inter-
nal contents of the ALU (output of AND block), and require-
ment G((X∧i∈{1,3,4}PS.APU.HLEG_T_L_AND_P_Li) ∧
¬MAN_RESET1 ∧¬RODS_DOWN1→ X¬RODS_DOWN1) is
also a white-box requirement for division 1 of the ALU since
it treats division 2 differently from divisions 3 and 4 and refers
to the outputs of different units (APUs).

White-box requirements may be reasonable, especially
when violating points 3–4, to understand how particular
units behave. In addition, violating points 5–6 is useful to
formulate more detailed properties specifically for the case of
an injected failure—for example, to distinguish inputs from
a failing division from others. White-box requirements are
not inferior to black-box ones in terms of their analytical
power, and the main reason why we treat them separately in
this paper is that, while a black-box property is meaningful
regardless of whether a failure is assumed in the model,
a white-box property usually accounts for only one of these
cases.

D. FAILURE MODELING
Instead of specifying a full failure model allowing all the
processors and communication links fail (as in [16]), we sim-
plify the model by keeping our focus on verifying single
fault tolerance in open-loop models. Below, we explain this
idea in the general form, which is suitable for any modular
configuration, and illustrate it on the PS (see Fig. 6):

1) As mentioned in Section III-C, requirements for dif-
ferent units u are formulated separately. In the case of
the PS, it is possible to prepare separate configurations
for the APU and for the ALU, but in experiments
(Section IV-C) and below we only consider the con-
figuration for the ALU due to the one for the APU
being very simple from a computational point of view.

FIGURE 6. Example of failure modeling for the PS. By focusing on single
failure scenarios in open loop, the failure model can be made fairly
simple.

Requirements for the APU are included into the ALU
configuration.

2) For the chosen unit u, it suffices to model only one
division (in our example, only the ALU from divi-
sion 1). If the divisions are identical and their inputs
come from the same sources, any verification result for
the included (non-failing, see below) instance of u will
hold for the redundant (non-failing) instances as well.

3) There is no need to assume hardware failures for the
included division of u. The objective is to verify that
each non-failing division will operate according to the
specification. In open-loop analysis, we are not inter-
ested in the outputs of the unit instance that can fail,
and for the same reason the number of instances of u
whose outputs are correct at each time instant is also
not important.

4) It is sufficient, overall, to model hardware failures for
one division only. If the divisions are identical, we can
assign the failures to any single division other than
the one that is fully modeled. In Fig. 6, division 2
is selected for failure injection, but divisions 3 and 4
would be equally suitable. In the general case, mul-
tiple unit groups may be considered, and their physi-
cal isolation may imply that their failures need to be
considered independently. Even in this case it may be
sufficient to inject failures in a fixed, single division of
each unit group (see Section IV-B), although we also
permit cases where this is impossible. In this specific
case, several formal models are generated with failures
injected into different divisions, and all these formal
models are model-checked (for each temporal require-
ment, the results are then aggregated with logical con-
junction).

Furthermore, instead of having a complex failure model
for each component of the modular configuration, it suffices
to assume that within the division i selected for failure injec-
tion, any connection may fail, in which case we replace the
correct valuewith a nondeterministic, arbitrary value from the
applicable set of values. This assumption covers the following
real-world failures:

1) communication failure between the units (e.g., between
the APU and the ALU), between a sensor device or a
sensor and a unit (e.g., between NF measurement and
the APU, and between a unit and an actuator (e.g.,
the RODS_DOWN command of the ALU is transmitted
incorrectly);

2) hardware failure of a unit—since this corrupts the out-
puts of the unit, this situation is covered by failure
injection to connections.

During the generation of the NuSMVmodel, to cover each
connection, a failure is injected for each input variable of
each unit and each output variable of the modular config-
uration that belong to division i. This means that a usual

162148 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

connection between modules is broken with a specifically
designed basic block INJECT_FAILURE. At any cycle,
INJECT_FAILURE can nondeterministically enter a fault
mode and replace the actual signal value with a nondeter-
ministic value. The status of the signal is also nondetermin-
istic, meaning that the failure can be either self-announcing
(status= fault) or non-self-announcing, i.e., not detectable by
downstream logic. The actual fault status is separately output
by the block, allowing the analyst to observe even non-self-
announcing failures.

Rather than analyzing in detail what the possible hardware
failure modes are, we allow for all possible combinations of
failures, including consequential failures. It might then be
up to the analyst to determine if the failure combinations in
a counterexample are actually possible. As we allow each
signal in the failing division to fail independently and non-
deterministically, some of the permitted scenarios can seem
unrealistically chaotic, e.g., the different outputs of a failing
APU can permanently freeze in a state where some signals
fail actively and others passively. Still, such a scenario is also
feasible due to single failure, if, e.g., the CPU cooling fails.

E. MODELING COMMUNICATION DELAYS AND
ASYNCHRONY
We extend the approach described in Section III-D to account
for communication delays and asynchrony. Since each unit
operates on its own CPU, modeling delays within block dia-
grams representing units is unnecessary. A natural approach
to asynchrony would involve modeling all the units as differ-
ent processes with interleaving executions, involving nonde-
terministic delays. Modeling such an asynchronous behavior
in NuSMV can be achieved using the process keyword,7

coupled with FAIRNESS [5] declarations to prevent any
unit not being scheduled for execution forever. However, this
approach results in potentially long counterexamples (e.g.,
to execute each unit of the simplified PS model from Fig. 6
once, five cycles would be needed) and thus deteriorates
model checking performance.

Instead, we exploit the synchronous semantics of NuSMV,
allowing all units to be executed simultaneously, but permit
communication delays bounded by the number of cycles dmax

(specified in the modular configuration for each unit). Delay
injection is performed similarly to failure injection, but in
this case connections are broken with specifically designed
NONDET_DELAY basic blocks, and this injection is done for
all divisions (not only for the failing one).
NONDET_DELAY blocks are implemented in the following

way. Assume that s1, . . . , sk are signals whose delays must be
synchronized, including fault/validity statuses of these sig-
nals. Synchronization is needed only for signals transmitted
simultaneously. For an isolated signal (e.g., an input signal to

7This feature of NuSMV is listed as deprecated and is not supported by
its successor nuXmv.

a PS APU), the minimum k = 2 is achieved: a signal is paired
with its fault/validity status. In contrast, signals from one unit
to another (for fixed division indices of both) are grouped, like
in the situation of PS ALU in division 1 receiving two paired
inputs from PS APU in division 1.

The NONDET_DELAY block nondeterministically delays
the signals passing through it with bound dmax = 1, i.e., by
at most one cycle; to implement a multi-cycle delay, several
delay modules are connected in a chain of length dmax. This
possible delay is applied synchronously to all k signals. The
presence of the delay is controlled by a Boolean variable
delaying, whose value is nondeterministic on each cycle.
If delaying has been true on the previous cycle, the pre-
vious values of s1, . . . , sk are returned. Otherwise, their most
recent values are returned. However, such an implementation
may lead to changes in signal value (e.g., rising and falling
edges of Boolean signals) being lost. Hence, the following
additional condition restricts the nondeterminism of the mod-
ule: if delaying is true and the value of either of the
signals changes between the current and the next cycles, then
delaying cannot change between these cycles.

IV. EXPERIMENTAL EVALUATION
The proposed approach was evaluated on a case study
(Sections IV-A and IV-B) that is a generalization of the PS
running example. Block diagrams of units were modeled in
MODCHK and exported to NuSMV, modular configurations
were prepared in the DSL explained in Section III-A, and
functional requirements were translated into LTL, PSL and
CTL properties. The performed experiments are explained
in Section IV-C, and their results are commented on in Sec-
tions IV-D and IV-E.

A. BASIC CASE STUDY: PS ONLY
In this subsection, we restrict our attention to the part
of our case study that has already been described in
Section II-A—the PS. Failure modeling for the PS has been
explained in Section III-D and Fig. 6. According to this
explanation, a single modular configuration CPS (Fig. 5) was
prepared: it includes four APUs and one ALU (division 1)
belonging to a single unit group PS, and division 2 is assigned
as the failing one. Delays were injected as explained in
Section III-E. We found that delaying input signals of APUs
with dmax = 3 and their output signals with dmax = 6
leads to considering all possible processing orders of changed
measurement inputs: if such a change happens, the APUsmay
all become aware of this event on different cycles (assured by
APU input delays 0, 1, 2, 3 in different divisions), but the
results of processing this change by the APUs may arrive
to the ALU in the reverse order (assured by APU output
delays 6, 4, 2, 0 in the respective divisions). This means
that asynchrony is sufficiently emulated with delay injection.

VOLUME 7, 2019 162149

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

TABLE 2. Considered modular configurations.

The size and the complexity of the generated PS models are
shown in Table 2.

The following functional temporal requirements were pre-
pared for the modular configuration CPS to check the outputs
of both APU 1 and ALU 1 (from now on, adding a number
i aften the name of a unit or a unit group will mean the
reference to division i of this unit or unit group):
• Black-box properties (see Table 1 for examples):

– one invariant;
– 27 request-response properties;
– 5 absence of spurious actuation properties;
– 2 global possibility properties.

• White-box properties (see Section III-C for examples):
– 7 request-response properties.

We consider two groups of requirements depending on
whether they are prepared for verification with injected
delays or not. While no-delay requirements rely on instant
information flow through the system (e.g., the ALU is
required to react to the change of inputs to the APUs on
the same cycle), with-delay requirements do not, which in
practice leads to a higher abundance of unbounded temporal
operators G, F and O. For the majority of requirements,
we prepared both a no-delay and a with-delay version, and
for the remainder the same version was checked regardless
of delay injection as adding an explicit instant information
flow dependency to these requirements was impossible. In
addition, in a couple of cases, a group of several no-delay
requirements corresponds to a group of the same number of
with-delay requirements, but there is no one-to-one corre-
spondence between requirement pairs.

For some white-box requirements, we also considered dif-
ferent versions depending on whether a failure was assumed
in the model, with requirements expecting a failure being
weaker. Global possibility requirements were written in CTL,
and the rest were formulated in either LTL or PSL. The
pattern of division-parameterized requirements was exten-
sively applied especially for request-response black-box
properties.

B. EXTENDED CASE STUDY: PS + SAS + PACS
Nowwe consider the PS in a broader context: the PS operates
together with the Safety Automation System (SAS), and the

outputs of both systems are passed to the Priority and Actua-
tor Control System (PACS). The details are again partly based
on our own invention (for the SAS, also on [32]). Technically,
the PS and the PACS, along with their power supply and
other supportive systems, are both needed to perform a safety
class 2 reactor trip safety function, while the SAS implements
a different, preventive function of stepwise reactor trip that
belongs to safety class 3 (lower than 2). For this reason,
the single failure tolerance criterion will be applied to the PS
and the PACS as a whole, and the SASwill be allowed to have
an independent failure.

Reactor trip is needed to be actuated when sensor mea-
surements (neutron flux, hot leg temperature and pressure)
deviate from their allowed ranges. The SAS is a two-division
system consisting of APUs and ALUs (see Fig. 7), just like
the PS. The PS and the SAS share neutron flux measurements
but have different hot leg temperature measurements. When
measurement deviations from their safe ranges are rather
small, the SAS performs a preventive, stepwise trip, issuing
RODS_DOWN signal in several pulses. The SAS is also capa-
ble of raising the rods up when the trip criterion is not met.
However, if the measurements deviate further, the PS, being
of a higher safety class than the SAS, takes over, trips the
reactor, and inhibits the SAS from starting the reactor up.

Downstream, the PACS, a four-division system with one
function unit in each (without APU/ALU separation), ensures
that the PS always has first priority on orders to control rod
actuators that are controlled by both the PS and the SAS.
The connections between the PS, the SAS and the PACS are
shown in Fig. 8.

In our experiments, the PS + SAS + PACS case study is
split into three modular configurations CPS, CSAS and CPACS

depending on the unit group (PS, SAS or PACS) whose cor-
rect responses are verified. The summary of these configura-
tions is shown in Table 2. Configuration CPS, which involves
the PS only, has already been considered in Section IV-A.
Below, we consider the other two configurations in more
detail, reasoning why certain parts of the overall model can be
omitted in each case and what failure injection assumptions
are sufficient. These reasonings are grounded on the single
failure criterion, symmetry and preference of more severe to
less severe failures.

162150 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

FIGURE 7. SAS APU (top) and ALU (bottom). Function block notations:
Tc is a cycle delay, blocks with R (reset signal) in the left upper corner
are pulses of the given duration. The rest of notations are given in Fig. 2.

In configuration CSAS, requirements are formulated to
check the outputs of SAS APU and SAS ALU. Since the
inputs of the SAS depend on the PS, both the SAS and the PS
are included as unit groups. Due to the symmetry of PS ALU,
SAS APU and SAS ALU with respect to their inputs shown
in Fig. 8, verification of SAS ALU 1 and SAS ALU 2 would
yield the same results, and thus only SAS ALU 1 is retained
(alternatively, we could have retained only SAS ALU 2).
Correspondingly, division 2 is selected as the failing one in
SAS. The failing division in the PS remains to be determined.
SAS ALU 1 receives inputs from PS ALUs 1 and 3 and
does not from PS ALUs 2 nor 4, hence a failure in divi-
sions 1 or 3 of the PS may lead to more severe consequences

FIGURE 8. Structure of the extended case study. The ‘‘Neutron flux’’ input
comes from SCDS; the rest of inputs from SCDS and SICS (see Fig. 1) are
not shown for simplicity.

compared to divisions 2 or 4. Among PS 1 and PS 3, we select
PS 1 for failure injection since this impairs one of the inputs
of SAS APU 1 in addition to the already unreliable SAS
APU 2—in the opposite case, the faulty input would go to
SAS APU 2.

In configuration CPACS, requirements are formulated to
check the single unit of the PACS. Since the inputs of the
PACS depend on the PS and the SAS, all these three unit
groups are included. Then, since we apply the failure criterion
to the PS and the PACS as a functional whole (as explained
above), it suffices to assume that the failures in the PS and the
PACS co-occur only in the same division. Due to symmetry,
it is sufficient to retain only one PACS division. We retain
PACS 1, and thus the failing division for both the PACS
and the PS must be chosen among 2, 3 or 4. Postponing
this decision, we first fix the failing division of the SAS
to 1 since SAS ALU 1 is connected to PACS 1 and SAS
ALU 2 is not, which means that a failure in division 1 of
the SAS may be more severe for PACS 1. What is more,
SAS ALU 2 can be omitted entirely. Returning to the failure
in the PS, we now see that the influence of the PS on the
SAS can be neglected as the only part of SAS connected
with the PACS is already failing. PS ALUs 2, 3, 4 are not
connected to PACS 1 and hence can be disregarded as well.
Nonetheless, non-failing PS ALU 1 is connected to PACS 1.
Due to an all-to-all connection and symmetry of PSALUwith
respect to its inputs, failures in PS APUs 2, 3, 4 have the same

VOLUME 7, 2019 162151

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

TABLE 3. Performance of black-box requirements model checking. The percentages of requirements whose verification terminated within the time limit
of 10 minutes are shown, and average verification times of these requirements are given in parentheses in seconds. 100% and 0% entries are colored in
green and brown respectively. ‘‘BDD’’ stands for the BDD-based model checking algorithm. LTL and PSL requirements, which are processed with the same
model checking algorithms, are not distinguished for simplicity of presentation.

consequences for PS ALU 1, which finally means that the
choice between these divisions for failure injection is free.
We inject a fault into PS 2.

Delay injection for CPS has been explained in
Section IV-A. As connections between units become con-
voluted in CSAS and CPACS, we no longer follow the logic
of allowing all processing orders of a change in input mea-
surement by all the units and just delay the inputs of PS and
SAS APUs with dmax = 3 and inputs of all other units with
dmax = 6.
Temporal requirements prepared for CPS have been

explained in Section IV-A. Requirements forCSAS andCPACS

are similar with the following exceptions:

1) for the SAS, white-box requirements never explicitly
assume a failure, thus the same requirements are veri-
fied for the cases of no injected failure and one failure,
like this is always done for black-box requirements;

2) all requirements for the PACS are solely black-box.

C. EXPERIMENTS
Symmetry and determinism of all considered units was
checked as described in Section III-B. Since for our case
study such a check takes a few seconds per unit (the case
study has five different units), below we focus on verifi-
cation of actual temporal requirements and do not include
symmetry and determinism checking time into the reported
values.

For each configuration listed in Table 2, four formalmodels
were generated to account for the presence or absence of
(1) failure and (2) delay injection. Then, each model was
model-checked in NuSMV versus black-box and white-box
requirements for the corresponding configuration.White-box
requirements were available only for CPS and CSAS.

As the major part of the requirements was formulated
in LTL or PSL, we were able to use two model checking
algorithms: BDD-based LTL model checking and BMC (the

bound k = 20 was used). To check global possibility require-
ments, formulated in CTL, BDD-based CTL model checking
was the only possible option. Experiments were performed
on Intel Core i7-2670QM CPU with a clock rate of 2.2 GHz.
NuSMVwas run on a single core with command-line options
‘‘-coi -df -dynamic’’ to improve performance. Each
temporal requirement was checked with a separate run of
NuSMV with a time limit of 10 minutes. For a negative
verification outcome, a counterexample was required to be
generated to consider this run finished within the time limit.

In addition to experiment groups that have been mentioned
above, we compared the proposed techniques to reducemodel
checking complexity—retaining only a single division of the
unit under consideration and fixing failure divisions—with
the baseline case by also running experiments without these
simplifications. For the case of no injected failures, this only
means that some divisions of some units are not excluded
from the model. For the case of one injected failure, for each
requirement f to be checked, we perform a series of model
checking runs with the same time limit until either a negative
verification outcome is obtained or all failure combinations
have been considered (3 cases of PS failure division in CPS,
4 cases of PS failure division in CSAS, 6 cases of PS and SAS
failure divisions in CPACS). The sum of model checking times
of this series is considered as the model checking time of f .

D. COMPUTATIONAL RESULTS
The computational results of experiments are given
in Tables 3 and 4 for black-box and white-box requirements
respectively. The tables report only CPU time (as no paral-
lelism was employed, it approximately corresponds to wall
clock time). RAM consumption did not exceed 500 MB
in 97.5% of verification runs. Peak RAM consumption was
observed for 10 BMC runs that reached k = 20 and found
no counterexample, requiring 1.0–4.3 GB of RAM and ter-
minating in 25–65 seconds.

162152 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

TABLE 4. Performance of white-box requirements model checking. The same notations as in Table 3 are used. If there is no corresponding line in Table 3,
then this verification case contains only black-box requirements.

1) PERFORMANCE OF BMC
BMC succeeded in checking all requirements in all configu-
rations within the time limit, with average execution times
tending to be larger on more complex modular configura-
tions. The results of BMCwill be used for qualitative analysis
of verification outcomes in Section IV-E. Note that since
BMC is an imprecise approach, it can falsely report a violated
requirement to be satisfied if the bound k is too small. There is
no simple approach to find the minimum sufficient value of k
for an arbitrary model. With k = 20, we never observed con-
tradictions between BMC and BDD-based LTL verification,
and the maximum length of counterexamples generated by
BMC was 14, giving evidence for the sufficiency of k = 20
that can result in counterexamples up to 21 cycles long.

With the proposed simplifications enabled, BMC always
requires less time in the case of an injected failure. This
is explained by a higher abundance of violated temporal
requirements and the sufficiency of shorter counterexamples.
Since BMC works by iteratively increasing counterexample
length, this on average leads to its faster termination. Without
proposed simplifications, the foregoing observation does not
hold due to running BMC several times per requirement.

2) PERFORMANCE OF BDD-BASED MODEL CHECKING
BDD-based LTL and CTL model checking is often unable to
handle the case of injected delays, and in some cases fails to
terminate within the time limit even without delays. Speaking
of CTL verification, properties were checked for no-delay
cases, but many with-delay cases remained unsolved. No
imprecise approach like BMC exists for CTL model check-
ing, and hence we were unable to obtain verification out-
comes for these properties by other means. An additional
attempt to verify the same properties with an increased time
limit of one hour also failed.

3) PERFORMANCE OF MODELING SIMPLIFICATIONS
In the case of no injected failures, differences between the
experiments with enabled and disabled simplifications, which
in this case only means excluding unused divisions of some
units from the overall model, are negligible. This result is
explained by the use of cone of influence (COI) reduction
during verification, which simplifies the verified model on

its own, retaining only the parts influencing the checked
temporal property. Thus, this simplification is achievable
due to particular divisions not being referred to in tempo-
ral properties, which is a part of the proposed approach
(Section III-C), and explicitly excluding unused model parts
does not speed up the computations.

In the case of one injected failure, the value of the sim-
plifications is more visible as they allow performing only
one verification run instead of several. As a result, not only
verification time decreases but alsomore verification runs can
terminate in a reasonable time.

E. ANALYSIS OF VERIFICATION OUTCOMES
As our case study is partly fictitious, we did not intend
to reveal previously unknown I&C issues nor to rigor-
ously verify its fault tolerance. Yet, temporal requirements
that we checked demonstrate how failures affect verifica-
tion outcomes. Some examples of these outcomes are given
in Table 1. Below, we comment on each type of verified
requirements separately:

• Invariants are the simplest temporal properties of the
form G f , where f is a formula over state variables of
the model without temporal operators. In our case study,
invariants are used to check the consistency of outputs of
individual units, which in our case is always guaranteed
by the unit regardless of its possible inputs. Hence, these
invariants are insensitive to both failures and delays.

• Request-response and absence of spurious actuation
requirements are typically the properties that are most
sensitive to failure injection, and in addition two ver-
sions of such properties depending on the presence of
delays are usually possible. Requirements 3–5 from
Table 1 exemplify a family of division-parameterized
requirements whose verification outcomes, when taken
together, give a detailed picture of the influence of a
failure. In a fault-free case, since requirement 4 is sat-
isfied and requirement 5 is not, the safety function will
not be activated unless the precondition (excessive mea-
surements) is satisfied in two divisions. With a failure,
since requirement 3 is satisfied and requirement 4 is not,
excessive measurements in a single division may be suf-
ficient for activation. Proving that these are necessarily

VOLUME 7, 2019 162153

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

measurements in a non-failing division 1, 3 or 4 (that is,
a proper reason to activate the safety function) requires a
more detailed white-box property G(RODS_DOWN1 →
O(∧i=1,3,4((HLEG_Pi > 70)∨ (NFi > 2 · 105))), whose
outcome is true.

• Global possibility of different unit output values was
proved for all no-delay cases, including the ones with
failures, but many with-delay cases remained unsolved.

Finally, we comment on the need of multiple I&C systems
in one model for accurate verification outcomes: this limits
behavior scenarios to more realistic ones that are still man-
ifold enough to cover the single failure criterion. Note that
the satisfaction of temporal requirements behaves differently
depending on requirement types when new (upstream) I&C
systems are added:
• Since LTL property satisfaction for a model is defined
as its satisfaction for all paths in this model, a vio-
lated LTL or PSL property may become satisfied, but
not otherwise. For division-parameterized requirements,
adding upstream unit groups would refine the number of
divisions needed to refute the requirement.

• Global possibility CTL requirements behave oppositely:
in some states, certain variable values may become
unreachable, violating a previously satisfied property.
This enables a potential discovery of new system issues.

• CTL requirements of other kinds may behave differ-
ently, but they are not considered in our case study.

V. RELATED WORK
A number of studies address failure tolerance of safety-
critical systems with formal methods, especially with model
checking. A common problem with many of previously pro-
posed methods is that the system model has to be kept very
abstract, or the state space becomes too large [16], and/or
the analysis cannot be performed in a reasonable time [15].
Instead of detailed system design, the models are based on
‘‘specified behavior’’ [11], ‘‘functional model’’ [14], or other
abstractions or simplifications.

When revealed, a typical model scale is 106 states [11],
[13], [33]. In [34], the authors use a model with 109 states
(but due to the necessary iterations, entire verification effort
still takes days). Meanwhile, the complexity of the detailed
design (no-fault) models VTT is verifying is on a wholly
different level, often with 1020, sometimes even 1030 reach-
able states. On the other hand, we note that when symbolic
model checkers [21], [35] are used for verification, as in our
case, the impact of the state space size on the computational
complexity of verification is indirect, and model checking
performance remains quite unpredictable given the model to
be verified. Still, according to [35], abstractions should be
used to reduce the state space.

In [12], real-time model checker Uppaal [36] is used to
verify the fault tolerance of a 3-redundant aerospace system.

Possible failures are specified in detail as extensions of timed
automata describing fault-free components. The complexity
of the case study considered in [12] is difficult to compare
with ours due to the model being based on explicit states
rather than function block design. The authors report no
computational problems, although Uppaal is able to verify
only a limited subset of CTL.

In [10], faults are added to a model of an aircraft wheel
brake system with two redundant pistons, which is then ver-
ified with SCADE design verifier. In [11], fault variables
are introduced in a state model of a 2-redundant spacecraft
controller system, which is then verified with explicit-state
model checker Spin [37]. In [9], NuSMV is used to verify
whether an avionic altitude switch with three altimeters can
tolerate measurement errors. In [13], the application is a
2-redundant railway interlocking system, and in [15], it is an
FPGA logic. Finally, in [14] failure mechanisms are added
to a NuSMV model of an automotive brake-by-wire system
based on failure modes and effects analysis (FMEA) [38].

Other ways of combining FMEA and model checking have
also been proposed. In [34] and [39], FMEA is supported
by using model checking to identify the system-level conse-
quences of component failures. In [33], probabilistic model
checking is used to identify which components contribute
most to system-level failures.

To the best of our knowledge, the only work from the
nuclear I&C domain that analyzes failure tolerance with
model checking is [16], where a complex failure model is
proposed that specifies concrete failures in each device. The
analyst can specify the number of single failures and CCFs
and then verify whether a success criterion is reached for
each of five considered accident scenarios. The case study
in [16] includes seven four-redundant I&C systems in the
overall NuSMV model (some of its parts are abstracted away
when they are not needed). While such a model may appear
to be larger than we have, the units considered in [16] were
significantly simpler computationally, being only composed
of blocks without memory, signals were not paired with
their validity statuses, and communication delays were not
modeled. For such a case study, it was only possible to verify
invariants with k-induction [40]; BDD-based model checking
was computationally infeasible and LTL BMC was not tried.
The author attributes the computational complexity of model
checking to the used failure model, which is precisely what
has been refined in our work.

VI. CONCLUSION
In this paper, a novel verification approach has been proposed
to address verification of I&C systems that achieve failure
tolerance with redundancy. The approach was demonstrated
to work on nuclear I&C systems, but its core assumption of
single failure tolerance is rather general, making the approach
potentially useful in other safety-critical fields, such as the

162154 VOLUME 7, 2019

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

aerospace [12] and the automotive [14] ones. While previ-
ous attempts (e.g., [15], [16]) at introducing hardware fail-
ure modes to I&C application logic model checking have
resulted in prohibitively complex models and limited analysis
capabilities, our approach enables formal model generation
for redundant I&C systems with a simplified failure model
and also simplifies subsequent verification with a number of
abstractions. The approach is coupled with the idea of formu-
lating temporal requirements that permits such abstractions
without the change of verification results.

Model checking experiments with the generated models
show that LTL, PSL and CTL properties can usually be ver-
ified with BDD-based (exact) model checking, although not
always if multiple safety functions are considered within one
model. A more serious obstruction for exact model checking
is the inclusion of communication delays and asynchrony.
On the other hand, both the cases of multiple safety func-
tions and delays are well-handled with BMC, although at the
expense of coverage of possible scenarios. Model checking
of temporal properties other than invariants has not been
previously possible for nuclear I&C systemmodels of similar
complexity.

Apart from efficient failure modeling, the proposed
approach is capable of handling the interaction of multi-
ple interconnected subsystems. According to [28], in 17%
of the I&C design issues previously identified by VTT,
the fault scenario requires several I&C systems to interact.
We evaluated our approach using a model of a semi-fictitious
nuclear reactor protection system, aiming at the complex-
ity of real-world detailed designs. At the moment, our case
study includes three I&C systems. In the future, the failure
modeling approach should be further experimented with on
an industrial scale as the success of verification for our case
study suggests that it can be expanded. VTT’s customer
projects could provide the opportunity.

Our study has more limitations that may be addressed
in future work. First, our model of delays (Section III-E)
is suitable to emulate asynchrony but is insufficient to
verify real-time requirements since discrete time steps are
not mapped to any real time intervals. We are studying
the possibility of applying timed automata verification to
solve this problem. For example, it may be performed in
HyCOMP [41] or Uppaal [12], [36], [42].

Second, failure localization in particular divisions of unit
groups (that is, assignment of failing divisions in modular
configurations) is currently done manually. As this procedure
is done accounting for identity of units in different divisions
and the formalized notion of symmetry, it may be automated.

Finally, the proposed approach is not fully integrated with
the graphical tool MODCHK that we use. While systems like
the ones generated by the developed model generation tool
can be visually designed in MODCHK as well, mimicking
the structure of the generated models (e.g., we have a visual

model of PS + SAS + PACS without failures and delays),
neither automatic import from the generated NuSMVmodels
nor generation of MODCHK models directly is available.

ACKNOWLEDGMENT
The authors would like to thankM. Johansson, K.Wahlström,
M. Halinen and N. Lahtinen of STUK for valuable discus-
sions and comments, and P. Ovsiannikova, J. Lahtinen and
the anonymous reviewers for giving advice to enhance the
manuscript.

REFERENCES
[1] V. D’Silva, D. Kroening, and G. Weissenbacher, ‘‘A survey of automated

techniques for formal software verification,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 27, no. 7, pp. 1165–1178, Jul. 2008.

[2] J. Rushby, ‘‘Theorem proving for verification,’’ in Summer School onMod-
eling and Verification of Parallel Processes. Berlin, Germany: Springer,
2000, pp. 39–57.

[3] H. Geuvers, ‘‘Proof assistants: History, ideas and future,’’ Sadhana, vol. 34,
no. 1, pp. 3–25, 2009.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[5] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[6] A. Pakonen, J. Valkonen, S. Matinaho, andM. Hartikainen, ‘‘Model check-
ing for licensing support in the Finnish nuclear industry,’’ in Proc. Int.
Symp. Future Nucl. Power Plants (ISOFIC), 2014, pp. 1–9.

[7] A. Pakonen, T. Tahvonen, M. Hartikainen, and M. Pihlanko, ‘‘Practical
applications of model checking in the Finnish nuclear industry,’’ in Proc.
10th Int. Top. Meeting Nucl. Plant Instrum., Control Human Mach. Inter-
face Technol. (NPIC HMIT), 2017, pp. 1342–1352.

[8] Areva, U.S. EPR Protection System Technical Report, Revision 4, doc-
ument ANP-10309NP, 2012. [Online]. Available: https://www.nrc.gov/
docs/ML1216/ML121660317.html

[9] M. P. E. Heimdahl, Y. Choi, and M. W. Whalen, ‘‘Deviation analysis:
A new use of model checking,’’ Automated Softw. Eng., vol. 12, no. 3,
pp. 321–347, Jul. 2005.

[10] A. Joshi andM. P. E. Heimdahl, ‘‘Model-based safety analysis of Simulink
models using SCADEDesign Verifier,’’ in Proc. Comput. Saf., Rel., Secur.,
R. Winther, B. A. Gran, and G. Dahll, Eds. Berlin, Germany: Springer,
2005, pp. 122–135.

[11] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann, ‘‘Val-
idating requirements for fault tolerant systems using model checking,’’ in
Proc. IEEE Int. Symp. Requirements Eng. (RE), Apr. 1998, pp. 4–13.

[12] M. Zhang, Z. Liu, C. Morisset, and A. P. Ravn, ‘‘Design and verification of
fault-tolerant components,’’ inMethods, Models Tools for Fault Tolerance,
M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, Eds. Berlin,
Germany: Springer, 2009, pp. 57–84.

[13] C. Bernardeschi, A. Fantechi, and S. Gnesi, ‘‘Model checking fault tolerant
systems,’’ Softw. Test., Verification Rel., vol. 12, no. 4, pp. 251–275,
Dec. 2002.

[14] S. Sharvia and Y. Papadopoulos, ‘‘Integrating model checking with HiP-
HOPS in model-based safety analysis,’’ Rel. Eng. Syst. Saf., vol. 135,
pp. 64–80, Mar. 2015.

[15] R. Leveugle, ‘‘A new approach for early dependability evaluation based on
formal property checking and controlled mutations,’’ in Proc. 11th IEEE
Int. On-Line Test. Symp., Jul. 2005, pp. 260–265.

[16] J. Lahtinen, ‘‘Hardware failure modelling methodology for model check-
ing,’’ VTT Tech. Res. Centre Finland, Espoo, Finland, Tech. Rep. VTT-R-
00213-14, 2014.

[17] STUK. (2013). YVL B.1 Safety Design of a Nuclear Power Plant. [Online].
Available: https://www.stuklex.fi/en/ohje/YVLB-1

[18] Areva. (2013) U.S. EPR Final Safety Analysis Report. [Online]. Available:
https://www.nrc.gov/reactors/new-reactors/design-cert/epr/reports.html

[19] A. Pakonen and I. Buzhinsky, ‘‘Verification of fault tolerant safety I&C
systems usingmodel checking,’’ inProc. 20th IEEE Int. Conf. Ind. Technol.
(ICIT), Feb. 2019, pp. 969–974.

VOLUME 7, 2019 162155

I. Buzhinsky, A. Pakonen: Model-Checking Detailed Fault-Tolerant Nuclear Power Plant Safety Functions

[20] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NUSMV: A new
symbolic model checker,’’ Int. J. Softw. Tools Technol. Transf., vol. 2, no. 4,
pp. 410–425, 2000.

[21] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
‘‘Symbolicmodel checking: 1020 states and beyond,’’ Inf. Comput., vol. 98,
no. 2, pp. 142–170, 1992.

[22] T. Ovatman, A. Aral, D. Polat, and A. O. Ünver, ‘‘An overview of model
checking practices on verification of PLC software,’’ Softw. Syst. Model.,
vol. 15, no. 4, pp. 937–960, Oct. 2016.

[23] B. F. Adiego, D. Darvas, E. B. Viñuela, J. Tournier, S. Bliudze, J. O. Blech,
and V. M. G. Suárez, ‘‘Applying model checking to industrial-sized PLC
programs,’’ IEEE Trans. Ind. Informat., vol. 11, no. 6, pp. 1400–1410,
Dec. 2015.

[24] S. Preuße, H. Lapp, and H.-M. Hanisch, ‘‘Closed-loop system modeling,
validation, and verification,’’ in Proc. 17th IEEE Conf. Emerg. Technol.
Factory Automat. (ETFA), Sep. 2012, pp. 1–8.

[25] J. Machado, B. Denis, and J.-J. Lesage, ‘‘Formal verification of industrial
controllers: With or without a plant model?’’ in Proc. 7th Portuguese Conf.
Autom. Control (CONTROLO), 2006, pp. 341–346.

[26] I. Buzhinsky, A. Pakonen, and V. Vyatkin, ‘‘Explicit-state and sym-
bolic model checking of nuclear I&C systems: A comparison,’’ in Proc.
43rd Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct./Nov. 2017,
pp. 5439–5446.

[27] A. Pakonen, T. Mätäsniemi, J. Lahtinen, and T. Karhela, ‘‘A toolset for
model checking of PLC software,’’ in Proc. 18th IEEE Conf. Emerg.
Technol. Factory Automat. (ETFA), Sep. 2013, pp. 1–6.

[28] A. Pakonen and K. Björkman, ‘‘Model checking as a protective method
against spurious actuation of industrial control systems,’’ in Proc. 27th Eur.
Saf. Rel. Conf. (ESREL), 2017, pp. 3189–3196.

[29] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems—A Cyber–
Physical Systems Approach. Cambridge, MA, USA: MIT Press, 2011.

[30] S. A. Edwards and E. A. Lee, ‘‘The semantics and execution of a syn-
chronous block-diagram language,’’ Sci. Comput. Program., vol. 48, no. 1,
pp. 21–42, 2003.

[31] Rolls-Royce, ‘‘Spinline, a Rolls-Royce modular I&C digital platform
dedicated to nuclear safety,’’ Rolls-Royce, Meylan, France, Tech. Rep.
0004/TS/12, 2012.

[32] K. Björkman, J. Frits, J. Valkonen, K. Heljanko, and I. Niemelä, ‘‘Model-
based analysis of a stepwise shutdown logic,’’ VTT Tech. Res. Centre
Finland, Espoo, Finland, Tech. Rep. 115, 2009.

[33] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, and
S. Leue, ‘‘Safety analysis of an airbag system using probabilistic FMEA
and probabilistic counterexamples,’’ in Proc. 6th Int. Conf. Quant. Eval.
Syst. (QEST), Sep. 2009, pp. 299–308.

[34] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay, ‘‘Expe-
rience with fault injection experiments for FMEA,’’ Softw., Pract. Exper.,
vol. 41, no. 11, pp. 1233–1258, Jan. 2011.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, ‘‘Progress on the state
explosion problem in model checking,’’ in Informatics. Berlin, Germany:
Springer, 2001, pp. 176–194.

[36] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, ‘‘UPPAAL 4.0,’’ in Proc. 3rd Int. Conf. Quant. Eval.
Syst. (QEST), Sep. 2006, pp. 125–126.

[37] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[38] FailureModes and Effects Analysis (FMEA and FMECA), IEC Standard 60
812:2018, 2018.

[39] V. Molnár and I. Majzik, ‘‘Model checking-based software-FMEA:
Assessment of fault tolerance and error detection mechanisms,’’ Periodica
Polytechnica Elect. Eng. Comput. Sci., vol. 61, no. 2, pp. 132–150, 2017.

[40] A. F. Donaldson, L. Haller, D. Kroening, and P. Rümmer, ‘‘Software
verification using k-induction,’’ in Proc. Int. Static Anal. Symp. Berlin,
Germany: Springer, 2011, pp. 351–368.

[41] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, ‘‘HyComp: An SMT-
based model checker for hybrid systems,’’ in Proc. Int. Conf. Tools Algo-
rithms Construct. Anal. Syst. Berlin, Germany: Springer, 2015, pp. 52–67.

[42] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and
K. Heljanko, ‘‘Model checking of safety-critical software in the nuclear
engineering domain,’’ Rel. Eng. Syst. Saf., vol. 105, pp. 104–113,
Sep. 2012.

IGOR BUZHINSKY was born in 1992. He
received the B.Sc. and M.Sc. degrees in applied
mathematics and computer science from ITMO
University, St. Petersburg, Russia, in 2013 and
2015, respectively, the M.Sc. degree in software
engineering and service design from the Univer-
sity of Jyväskylä, Jyväskylä, Finland, in 2015, and
the D.Sc. (Tech.) degree from Aalto University,
Espoo, Finland, in 2019.

He is currently a Postdoctoral Researcher at Aalto University, and also
a Software Engineer with ITMO University. His research interests include
formal verification and synthesis of finite-state models, practical application
of model checking for safety assessment of industrial automation systems,
and machine learning.

ANTTI PAKONEN was born in 1979. He received
the M.Sc. (Tech.) degree from the Helsinki Uni-
versity of Technology, Espoo, Finland, majoring
in I&C systems, in 2004.

He is currently a Senior Scientist and a Project
Manager of the VTT Technical Research Centre of
Finland Ltd., Espoo, where he has been employed
since 2002. His research interests include I&C
software engineering, I&C architecture evaluation,

practical application of model checking in industrial applications, and
knowledge management.

162156 VOLUME 7, 2019

