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Engineering a Delegatable and Error-Tolerant Algorithm for
Counting Small Subgraphs∗

Petteri Kaski†

Abstract

We study the problem of counting the number of occurrences

of a given six-vertex pattern graph S in an n-vertex host

graph H. We engineer an open-source GPU implementation

of a distributed algorithm design of Björklund and Kaski

[PODC 2016] where (i) the execution of the algorithm can be

delegated [Goldwasser, Kalai, and Rothblum, J. ACM 2015]

to produce a noninteractive probabilistically checkable proof

of correctness, and (ii) the execution of the algorithm when

preparing the proof tolerates a controllable number of ad-

versarial errors. Experiments with NVIDIA Tesla K80 and

Tesla P100 Accelerators demonstrate that the framework is

practical for inputs of up to 512 vertices, with proof check-

ing being several orders of magnitude more efficient than

preparing the proof; however, proof preparation still carries

at least one order of magnitude overhead compared with just

solving the problem.

1 Introduction.

1.1 Delegating Computation. Recent work has
shown that delegating computation (Goldwasser, Kalai,
and Rothblum [57]) with verifiable1 results is tanta-
lizingly close to practicality (cf. Walfish and Blum-
berg [117]), with complete tool-chains that enable out-
sourced execution of a program written in a subset of
a general-purpose programming language in a verifiable
manner, with only modest cryptographic assumptions
underpinning the soundness of the system. The theo-
retical background for such systems stems from some
of the most celebrated results in theoretical computer
science, namely the theories of interactive proof sys-
tems and probabilistically checkable proofs (cf. §2.1).

∗The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement 338077 “Theory and Practice of Advanced Search and
Enumeration”. We gratefully acknowledge the use of computa-
tional resources provided by the Aalto Science-IT project at Aalto
University and by CSC – IT Center for Science, Finland.
†Department of Computer Science, Aalto University, Helsinki
1Verifiable with probabilistic soundness, that is, a counterparty

who is executing the computation (the prover or the delegate)
who is cheating will be caught by the party who is issuing the
computation (the verifier or the delegator) with high probability.

Very recently, the study of fine-grained complexity has
prompted such investigations of verifiability in the con-
text of individual problems ranging from canonical NP-
hard problems, such as CNF-satisfiability and graph
coloring, to problems believed to be hard in poly-
nomial time, such as k-SUM or k-clique for a con-
stant k (cf. Carmosino, Gao, Impagliazzo, Mihajlin, Pa-
turi, and Schneider [32], Williams [118], Björklund and
Kaski [27], Nederlof [85], Ball, Rosen, Sabin, and Va-
sudevan [13, 14], and Abboud and Rubinstein [2]).

While verifiable general-purpose computation on an
extensive scale is perhaps still not practical, earlier
engineering effort with interactive proofs (e.g. Cormode,
Mitzenmacher, and Thaler [38] and Thaler [105]) and
recent theoretical work in the context of fine-grained
complexity (see above) suggest that in the context of
specific problems and algorithm designs one could make
an engineering push towards increasingly practical and
non-interactive delegation on extensive infrastructure.

This paper seeks to make such a demonstration to-
gether with an open-source release [71] to ease further
practical developments. The specific problem we con-
sider is a canonical hard counting problem in polynomial
time (cf. §1.4 and §2.3), namely the task of counting
the number of isomorphic occurrences of a constant-size
pattern graph in a host graph. What is more, in addi-
tion to delegatability, we obtain tolerance against ad-
versarial errors in proof preparation. To our knowledge
this is the first empirical study of delegatability that
tolerates errors in proof preparation, and does so with
a low requirement for over-provisioning of resources.2

1.2 The Case for Tolerance Against Errors.
Before proceeding to our specific problem, let us give
motivation for tolerance against errors and study of
algorithm designs for specific problems, rather than
for general-purpose computation, with the objective of
practical delegatability.

First, delegation is arguably most useful in situa-

2The low requirement for over-provisioning comes from the
fact that proof preparation amounts to producing coordinates of
a Reed–Solomon codeword; cf. Footnote 4 for an analysis of the
over-provisioning needed to tolerate adversarial errors.
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tions where the required computation is extensive, such
as in cases when no efficient (low-order polynomial time)
algorithms are known, including our present case study.
Extensive computations necessitate parallelism and a
distributed computing infrastructure.

The more extensive the infrastructure, the more
likely it is that the execution of the algorithm experi-
ences a physical error or other such tail event (cf. Dean
and Baker [42]) that may outright invalidate the compu-
tation, or, for example, delay its completion due to need
to re-issue parts of the computation. For empirical work
and motivation of consideration of errors and other tail
events in large-scale infrastructure, cf. Tiwari, Gupta,
Gallarno, Rogers, and Maxwell [106], Di Martino,
Kalbarczyk, Iyer, Baccanico, Fullop, and Kramer [79],
Schroeder, Pinheiro, and Weber [99, 100], Meza, Wu,
Kumar, and Mutlu [83], Herault and Robert [62], and
Barroso, Clidaras, and Hölzle [17].

Tail events are perhaps realistically expected to be
an accelerating concern with increasingly massive com-
putations and infrastructure (cf. Snir et al. [103] and
Reed and Dongarra [94]). Thus, algorithms that intrin-
sically both (a) provide a proof of correctness of the
result, and (b) tolerate tail events in distributed execu-
tion arguably present a sound objective for theory and
engineering towards practical delegated computation.

Second, studies of specific problems enable a fo-
cused investigation of the design space and thus more
efficient problem-tailored designs. Focus on a specific
problem enables one to measure the resource overhead
for delegatability and tail-tolerance by analytical com-
parison with the best known designs that merely solve
the problem in an assumed tail-event-free environment,
including bandwidth-based considerations.

To set the stage for our present contribution, let us
next review the mathematical framework we will use for
tail-tolerant delegation.

1.3 Polynomials and Tail-Tolerant Delegation.
A univariate polynomial of degree at most d over a
field F can be represented in two alternative ways.
The coefficient representation gives d + 1 coefficients
π0, π1, . . . , πd ∈ F with

(1) P (x) = π0 + π1x+ π2x
2 + . . .+ πdx

d .

Dually, an evaluation representation gives at least e ≥
d+ 1 evaluations

(2) (ξ1, P (ξ1)) , (ξ2, P (ξ2)) , . . . , (ξe, P (ξe))

at any distinct points ξ1, ξ2, . . . , ξe ∈ F.
The fact that one can in near-linear3 time trans-

form between the two dual representations (1) and (2)

3For the purposes of this introduction, we will use the expres-

is perhaps one of the most fundamental algorithmic du-
alities in the study of computation; we refer to von zur
Gathen and Gerhard [114] for an introduction to near-
linear time algorithms for computing with univariate
polynomials. A further serendipitous fact is that the
transformation from (2) to (1) is possible even when
at most (e− d− 1)/2 of the e evaluations are in error.
Furthermore, this transformation is computable in near-
linear time using, for example, Gao’s [54] fast decoding
algorithm for Reed–Solomon codes.

Motivation for using low-degree polynomials in de-
signing error-tolerant representations and proof systems
enabling delegatibility can be traced back at least to the
work of Reed and Solomon [95] on polynomial error-
correcting codes, to the work of Freivalds [52] on prob-
abilistically verifying algebraic identities, and to the
works of Babai, Fortnow, Levin, and Szegedy [10] and
Lund, Fortnow, Karloff, and Nisan [78] on algebraic
methods in proof systems.

The particular case for univariate polynomials as a
source of efficiency when pushing towards practicality of
proof systems has been highlighted in multiple works,
including e.g. Ben-Sasson and Sudan [22] and Ben-
Sasson, Chiesa, Genkin, and Tromer [19] when working
towards practical probabilistically-checkable proofs, and
by Williams [118] in the context of fine-grained proof
systems for specific problems such as the CNF satisfia-
bility problem. (Cf. also Cormode, Mitzenmacher, and
Thaler [38], and Thaler [105] for problem-specific work.)
Continuing on the ideas of Williams, the objective of
pushing univariate proof systems towards algorithm de-
signs meeting the simultaneous goals of parallelizability,
error-tolerance, and matching in total complexity the
best known algorithms for specific problems is explored
by Björklund and Kaski [27].

In this paper we proceed to implement one of the
Björklund–Kaski designs, so let us here give a high-level
introduction to the framework they consider without
yet entering into detail (cf. §4) how the framework is
implemented for our target problem.

The proof. The proof that a computation has
been correctly executed is the sequence of coefficients
π0, π1, . . . , πd ∈ F of a univariate polynomial of degree
at most d. That is, the proof is given in the coefficient
representation (1).

Preparing the proof. The proof is prepared using the
evaluation representation (2). This in particular en-

sion “near-linear time” for an algorithm that on an input of size
m runs in time O(m(logm)c) for a (small) positive constant c,
with the understanding that more detailed time bounds will be
presented later, can be found in the cited references, and/or can
be obtained by consulting the accompanying source code.
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ables immediate parallelization, since proof preparation
amounts to evaluating the same polynomial at e distinct
points. In essence, each compute node participating in
proof preparation gets as input (i) the problem instance,
and (ii) one (or more) of the points ξ1, ξ2, . . . , ξe ∈ F.
The output of a node consists of the evaluations at its
assigned point (or points).

Decoding the proof. As soon as at least e ≥ d+ 1 evalu-
ations are available, Gao’s near-linear-time decoding al-
gorithm [54] for Reed–Solomon codes enables recovery
of the proof even when at most (e − d − 1)/2 evalua-
tions are in error. This property enables low-overhead
tolerance against tail events (such as errors or omissions
due to unexpected delays) during proof preparation by
over-provisioning of evaluations.4

Verifying the proof. Proof verification relies on standard
polynomial identity testing. Assuming a verifier has
available the problem instance and a putative proof
π̃0, π̃1, . . . , π̃d ∈ F with

(3) P̃ (x) = π̃0 + π̃1x+ π̃2x
2 + . . .+ π̃dx

d ,

the proof can be checked by performing an evaluation
at a uniform random point ξ ∈ F. Indeed, since the
problem instance is available, the verifier can compute
the correct value P (ξ) using the same algorithm that
is used for proof preparation. The verifier can then
compute the value P̃ (ξ) using Horner’s rule and test
that P̃ (ξ) = P (ξ). The verifier’s test clearly always
succeeds when P̃ (x) = P (x). When P̃ (x) 6= P (x), that
is, when the proof supplied to the verifier is incorrect,
the verifier’s test detects this with probability at least
1− d/|F|.5

We observe in particular that proof preparation uses
computational resources for e evaluations of the polyno-
mial, and these evaluations can be executed in parallel,
independently of each other, without the need for com-
munication. Verification requires only one evaluation.6

4For example, assuming that at most an ε-fraction of the
e = (1 + δ)(d + 1) evaluations is in error for some 0 ≤ ε < 1/2,
it suffices to over-provision so that εe ≤ (e − d − 1)/2 holds,
that is, so that δ ≥ 2ε/(1 − 2ε) holds. For example, if the error
rate is ε = 0.01, it suffices to over-provision by δ ≥ 0.02041.
Furthermore, assuming there are at most (e − d − 1)/2 errors,
the erroneous evaluations can be identified in near-linear time,
enabling further investigation into the source of the errors.

5Indeed, the difference P̃ (x)− P (x) is then a nonzero polyno-
mial of degree at most d, so the verifier’s random choice ξ ∈ F
lands at a root of the difference with probability at most d/|F|.

6Or more evaluations if the verifier wants further confidence
that the proof is correct. With r independent repetitions, the
probability to detect a bad proof is at least 1− (d/|F|)r.

1.4 Counting Small Subgraphs. We are now
ready to proceed to our problem of interest. Suppose we
are given as input two undirected loopless graphs, S and
H, together with a designation for each unordered pair
of vertices of S as either important or non-important.
Our task is to count the number of injective mappings
ϕ : V (S) → V (H) from the k-vertex small graph S to
the n-vertex host graph H such that for every important
pair {u, v} ⊆ V (S) it holds that {u, v} ∈ E(S) if and
only if {ϕ(u), ϕ(v)} ∈ E(H). By varying the designa-
tions of importance, it is immediate that this problem
subsumes both counting the occurrences of S as a sub-
graph of H and counting the occurrences of S as an
induced subgraph of H.

The task of counting small subgraphs in a graph has
received substantial attention in the algorithms commu-
nity, both as a generic problem when S is part of the
input (as formulated above), or in special cases when
S is fixed to be a specific graph with specific designa-
tions of importance, such as when S is the complete
graph on k vertices and all pairs of vertices are impor-
tant, in which case one obtains the k-clique counting
problem. We refer to e.g. Itai and Rodeh [67], Nešetřil
and Poljak [86], Alon, Yuster, Zwick [6], Alon and Gut-
ner [5], Eisenbrand and Grandoni [44], Björklund, Hus-
feldt, Kaski, and Koivisto [26], Björklund, Kaski, and
Kowalik [28], Vassilevska Williams, Wang, Williams,
and Yu [110], Vassilevska Williams and Williams [112],
Fomin, Lokshtanov, Raman, Saurabh, and Raghavenda
Rao [51], Floderus, Kowaluk, Lingas, and Lundell [49],
Olariu [87], Kloks, Kratsch, Müller [72], and Curtica-
pean, Dell, and Marx [40] for a non-exhaustive sam-
ple of earlier work on algorithm designs for subgraph
counting. We postpone a discussion of hardness of the
problem, implementations, and applications to §2.3.

Despite of extensive work, from a worst-case per-
spective asymptotically the fastest known algorithm for
solving the generic problem (when S is part of the in-
put) remains the 1985 design of Nešetřil and Poljak [86]
(see also Eisenbrand and Grandoni [44]) and runs in
time O(n(ω+ε)bk/3c+(k mod 3)), where ε > 0 is any posi-
tive constant and 2 ≤ ω < 2.3728639 is the exponent7 of
square matrix multiplication (cf. Le Gall [75] and Vas-
silevska Williams [109]).

In the particular case when S has six vertices,
the running time of the Nešetřil–Poljak algorithm is
O(n2ω+ε).8 The algorithm is based on an algebraization

7More precisely, we let ω be the limit limn→∞
log rk〈n,n,n〉

logn
,

where 〈n, n, n〉 is the n × n matrix-multiplication tensor and rk
means the tensor rank in characteristic 0.

8We restrict this conference abstract to consider the case of six
vertices since this results in a balanced design and a problem that
is hard to solve already for small n. Indeed, the näıve running
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of the counting task. More precisely, let us assume that
the vertex set of S is V (S) = {a,b, c,d, e, f}. Let F be a
field and associate an n×n matrix with each unordered
pair of vertices; namely, let χab, χac, χad, χae, χaf ,
χbc, χbd, χbe, χbf , χcd, χce, χcf , χde, χdf , χef ∈ Fn×n
be these matrices.9 The subgraph counting task now
reduces to evaluating the

(
6
2

)
-linear form

X(6
2)

=

n∑
a,b,c,d,e,f=1

χab
ab χ

ac
acχ

ad
adχ

ae
aeχ

af
af ·

· χbc
bc χ

bd
bd χ

be
be χ

bf
bf χ

cd
cd

· χce
ceχ

cf
cf χ

de
deχ

df
df χ

ef
ef ,

(4)

which can be evaluated näıvely in O(n6) operations and,
using fast matrix multiplication on n2 × n2 inputs [86],
in O(n2ω+ε) operations for any constant ε > 0.

Björklund and Kaski [27] present a new design
(cf. §4) that improves the Nešetřil–Poljak [86] design
with better parallelisability and less memory usage.
This design also extends to the univariate proof frame-
work (cf. §1.3), with a proof polynomial P (x) of degree
d = O(nω+ε); the proof polynomial can be evaluated at
any given point ξ ∈ F using O(nω+ε) operations in F
for any constant ε > 0. Thus, the total effort to pre-
pare the proof essentially matches10 the Nešetřil–Poljak
effort. Furthermore, the proof preparation can be par-
allelized to d+ 1 compute nodes.

1.5 Our Contribution. In this paper we seek to
engineer a practical implementation of the Björklund–
Kaski design for delegatable and error-tolerant counting
of six-vertex subgraphs. Our objective is to understand
the practical feasibility of the polynomial framework
and the engineering considerations in relation to the
available arithmetic and memory bandwidth on modern
massively parallel microarchitetures, in particular on
graphics processing units (GPUs) and systems built
from a large number of GPUs.11 This objective presents
us with a number of challenges in algorithm engineering
compared with the theoretical framework.

time for a dense input is O(n6).
9To obtain the generic subgraph counting problem for given S

and H, choose the adjancency matrix of H (for important pairs
that are edges of S), the zero-diagonal non-adjacency matrix of
H (for important pairs that are non-edges of S), and the all-ones
but zero-diagonal matrix (for non-important pairs) for each of the
15 matrices χ.

10Up to low-order terms masked by ε; the overhead is polylog-
arithmic in n.

11For example, each of the 18,688 nodes of the Titan supercom-
puter is equipped with 2688-core NVIDIA Tesla K20X Accelera-
tors (cf. Tiwari, Gupta, Gallarno, Rogers, and Maxwell [106]).

The foremost challenge is to expose sufficient paral-
lelism in the framework to cope with the extensive laten-
cies caused by long pipelines for both arithmetic opera-
tions and access to all levels of memory other than reg-
isters in a GPU (cf. Volkov [113] and Mei and Chu [82]
for a discussion of the role of latency and GPU microar-
chitectures). Indeed, although the Björklund–Kaski al-
gorithm is by design massively vector-parallel—it eval-
uates the same univariate polynomial modulo a prime
at a large number of distinct points; cf. (2)—this paral-
lelism is, as is, rather unsuitable for a latency-tolerant
implementation. Here the main challenge are the exten-
sive memory accesses needed by each point evaluation
(e.g. matrix multiplications on large independent matri-
ces), which necessitate storage capacity that cannot be
satisfied by low-latency memory; indeed, while a GPU
can easily maintain the state of thousands of individual
threads in execution, even this capacity is in practice
insufficient to hide memory latency unless

(i) each thread has as much as possible data local in its
dedicated registers to enable low-latency operations
on data,

(ii) when a thread accesses high-latency memory, the
size of the access is as large as possible to saturate
the memory bandwidth, and

(iii) the memory layout of the data used by the algo-
rithms has been designed for coalesced (vectorized)
memory accesses as supported by the GPU hard-
ware.

A secondary challenge is that modern GPU hardware
has been optimized towards floating-point arithmetic
on short word lengths rather than integer arithmetic
on long words.

Let us now discuss our engineering contributions to-
wards making the Björklund–Kaski framework practical
on GPUs, proceeding from low-level details to higher-
level considerations.

Scalar arithmetic. Subgraph counts already on modest-
size inputs can exceed the word length to which the
physical instruction set has been optimized. This and
the proof framework force us to work with the Chinese
Remainder Theorem and modular arithmetic. Our solu-
tion relies on standard Montgomery multiplication [84]
and a low-level PTX assembly-language implementa-
tion for Montgomery multiplication modulo word-length
primes on the GPU.

Polynomial arithmetic. The proof framework requires
practical parallel algorithms for working with polyno-
mials of degree in the hundreds of millions and beyond.
This requires a careful implementation of the near-linear
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time algorithms for polynomial arithmetic (cf. [114]),
starting from fast polynomial multiplication and culmi-
nating with Gao’s [54] fast decoding algorithm for Reed–
Solomon codes for decoding the proof polynomial. For
polynomial multiplication, we implement a parallel ver-
sion of the Schönhage–Strassen [98] algorithm both on
the GPU and on the host CPU, with the possibility to
execute the outer butterfly-layers of the algorithm on
the host when the GPU memory suffices only for the
recursive inner layers.

The evaluation algorithm for the proof polynomial. The
Björklund–Kaski evaluation algorithm for the proof
polynomial for counting six-vertex subgraphs consists of
a preprocessing phase for coefficients of Lagrange poly-
nomials and seven fast matrix multiplications on matri-
ces of size n×n modulo a prime (cf. §4). To expose suf-
ficient parallelism in the design, we look inside the eval-
uation algorithm for parallelism and implement both
the preprocessing and the fast matrix multiplication
steps using Yates’s algorithm and Strassen’s decompo-
sition of the 2×2 matrix-multiplication tensor (cf. (6)),
which enables us to obtain vector-parallelization for
each component-transform of Yates’s algorithm. In
essence, each component of Yates’s algorithm is a (data-
expanding or data-contracting) butterfly circuit which
can be easily optimized for vector-parallel execution.
Here our design was encouraged by recent successes in
deploying Strassen’s algorithm [104] and its generaliza-
tions in practice (cf. §2.4). At low level, to enable low-
latency execution and a hardware-aware memory lay-
out, we execute the innermost 4× 4 matrix multiplica-
tion on local registers available to each thread, utilizing
the per-thread 4-scalar-wide load and store instructions
available in the microarchitecture. Exposing this par-
allelism inside the evaluation algorithm enables us to
obtain empirical throughput that is less than two or-
ders of magnitude from a lower bound using the peak
modular multiplication rate of the hardware (cf. §6).

Open-source implementation. We make the implemen-
tation available as C++/CUDA open-source [71] under
the MIT License to encourage and ease further develop-
ments in the area.

1.6 Experiments. We present experiments that in-
vestigate the practical feasibility of the framework for
extensive computations on current NVIDIA Kepler and
Pascal GPU microarchitectures. We find that the
framework is practical for inputs of up to 512 vertices,
with proof checking being several orders of magnitude
more efficient than preparing the proof; however, proof
preparation still carries at least one order of magnitude
overhead compared with just solving the problem. Yet

we find it promising that, as a proof of concept, del-
egatability and error-tolerance can be simultaneously
realized for nontrivial input sizes.

1.7 Organization. We start with a further discus-
sion of earlier work in §2. In §3 we review the math-
ematical and algorithmic preliminaries for our imple-
mentation, including a review of the Björklund–Kaski
algorithm design in §4. Our engineering considerations
for implementation are presented in §5. We report on
our experiments in §6.

2 Earlier and Related Work.

2.1 Proof Systems and Delegation. Can one
prove to a resource-limited counterparty that an exten-
sive computation has been correctly executed? The study
of this question is fundamental to the current under-
standing of computation, such as in the classical charac-
terization of NP as the class of decision problems whose
positive instances have polynomial-size proofs that are
verifiable in deterministic polynomial time.

Allowing for two-way interaction between a com-
putationally unbounded prover and a randomized-
polynomial-time verifier leads to the study of inter-
active proof systems introduced by Babai [9, 12] and
Goldwasser, Micali, and Rackoff [58, 59], with classi-
cal highlights including the algebraic proof framework
of Lund, Fortnow, Karloff, and Nisan [78], Shamir’s re-
sult [102] that unbounded interaction captures exactly
the class of polynomial-space-solvable decision prob-
lems, and Babai, Fortnow, and Lund [11] establishing
that interaction with two independent provers captures
nondeterministic exponential time.

Limiting the verifier to use only logarithmic ran-
domness and a constant number of bit-queries to a
proof string led Arora, Feige, Goldwasser, Lovász, Lund,
Motwani, Safra, Sudan, and Szegedy [7, 8, 46] to a
breakthrough characterization of NP via probabilisti-
cally checkable proofs (PCPs) and to a theory of hard-
ness of polynomial-time approximation in combinatorial
optimization.

Subsequent theoretical work has evolved along a
number of lines, including the objectives to (i) dele-
gate computation by restricting the interactive prover
to polynomial time (Goldwasser, Kalai, and Roth-
blum [57]; Goldreich and Rothblum [56]), (ii) optimize
and simplify PCPs for use in verifiable computation
and inapproximability (e.g. Babai, Fortnow, Levin, and
Szegedy [10], Ben-Sasson, Goldreich, Harsha, Sudan,
and Vadhan [21], Ben-Sasson and Sudan [22], Dinur [43],
and H̊astad [60]), and most recently, (iii) gain insight
into fine-grained complexity (cf. §1.1).

Beyond theoretical foundations, recently substan-
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tial progress has been made in engineering verifiable
computation to near-practicality, such as in the Pinoc-
chio system of Parno, Howell, Gentry, and Raykova [89,
55] relying only on modest cryptographic assumptions;
cf. Walfish and Blumberg [117] for a review of ef-
forts to make verifiable universal computation practical
(including Cormode, Mitzenmacher, and Thaler [38],
Thaler [105], Vu, Setty, Blumberg, and Walfish [115],
Wahby, Setty, Ren, Blumberg, and Walfish [116], and
Ben-Sasson, Chiesa, Genkin, Tromer, and Virza [20]).
Yet the objective of realizing general-purpose verifiable
computation apparently remains some distance away
from practical deployment, e.g. as regards tolerance for
errors (cf. §1.2).

2.2 Verifiable or Error-Tolerant Algorithms.
McConnell, Mehlhorn, Näher, and Schweitzer [80] re-
view certifiable algorithms that produce an easy-to-
verify certificate that the output of the algorithm is
correct. Yet such designs in general are not tolerant
against tail events. Conversely, a number of works
study algorithms that are resilient to errors but do not
in general produce a correctness proof. For example,
Caminiti, Finocchi, Fusco, and Silvetri [30] study re-
silient dynamic programming, Chen, Grigorescy, and
de Wolf [33] study error-correcting data structures for
membership queries and polynomial evaluation, Ci-
calese [37] studies fault-tolerant search algorithms, and
Finocchi, Grandoni, and Italiano [48] present sorting
and searching algorithms robust against memory errors.
Herault and Robert [62] review fault-tolerance tech-
niques in high-performance computing, including work
on algorithm-based fault tolerance introduced by Huang
and Abraham [66]. Our work differs from these works
in that we obtain simultaneously (i) low-overhead fault-
tolerance against adversarial errors, and (ii) a noninter-
active, probabilistically checkable proof of correctness.

2.3 Counting and Enumerating Subgraphs.
From a parameterized complexity standpoint it is
known that subgraph-counting parameterized by the
number of vertices k in the pattern graph S is a hard
problem in the class #W[1]. Cf. Flum and Grohe [50],
Chen and Flum [34], Chen, Thurley, Weyer [35], Cur-
ticapean [39], Curticapean and Marx [41], Jerrum and
Meeks [69, 70], and Meeks [81]. The specific problem
of finding and counting cliques is used as a source of
fine-grained hardness reductions by Abboud, Backurs,
and Vassilevska Williams [1].

Small-subgraph counting and enumeration on large
host graphs, including homomorphism-counting, is en-
countered in a large number of applications. For a non-
exhaustive sample of the extensive body of work in this

direction, including theoretical and engineering work,
cf. [108, 92, 111, 68, 29, 64, 107, 36, 3, 47, 73, 97, 74,
88, 18, 45, 24, 91, 96, 63, 93, 4, 25, 90]. Our work differs
from these works in that we seek a proof-of-concept im-
plementation for simultaneous delegatability and error-
tolerance.

2.4 Fast Matrix Multiplication. A number of
works in the last few years study the communication-
efficiency and practice of matrix multiplication on dis-
tributed architectures using decompositions of small
matrix-multiplication tensors, such as Strassen’s de-
composition. Cf. Ballard, Demmel, Holtz, Lipshitz,
and Schwartz [15], Ballard, Demmel, Holtz, and
Schwartz [16], and Lipshitz, Ballard, Demmel, and
Schwartz [77]. Recent engineering work includes Benson
and Ballard [23] and Huang, Rice, Matthews, and van
de Geijn [65]. Our work differs from these works in that
we seek a self-contained proof-of-concept demonstration
requiring good-performance finite-field matrix multipli-
cation on GPUs, but we do not necessarily seek the most
optimized possible implementation; such optimizations
are left for future work.

3 Preliminaries.

For algorithms working with elements of a field F,
we measure the running time using operations in F
(addition, negation, multiplication, inverse).

Let S and T be two finite sets. Let us write FS×T for
the set of |S| × |T | matrices with entries in F indexed
by S × T . For a matrix A, let us write A> for the
transpose of A. For two matrices A and B, let us write
A ⊗ B for the Kronecker product of A and B. For a
nonnegative integer r, let us write A⊗r for the r-fold
Kronecker power of A.

3.1 Yates’s Algorithm. Yates’s algorithm [119] en-
ables fast multiplication of a vector with a large Kro-
necker power of a matrix. Let S and T be index sets
of sizes s and t, respectively. Let A ∈ FT×S be matrix
of size t × s and let r be a nonnegative integer. Let us
write Im for the m ×m identity matrix. Given a vec-
tor x ∈ FSr

as input, we seek to compute A⊗rx ∈ FT r

.
Yates’s algorithm executes this computation via the fol-
lowing decomposition of A⊗r. For ` = 0, 1, . . . , r − 1

define the linear map A[`] : FSr−`×T ` → FSr−`−1×T `+1

with

A[`] = Is ⊗ Is ⊗ · · · ⊗ Is︸ ︷︷ ︸
r−`−1

⊗A⊗ It ⊗ It ⊗ · · · ⊗ It︸ ︷︷ ︸
`

.

Now observe that A⊗r = A[r−1]A[r−2] · · ·A[1]A[0]. In
particular, the number of arithmetic operations to mul-
tiply the matrix A[`] with a vector is O(sr−`t`+1). Thus,
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we can compute A⊗rx given x in total O(sr+1r) opera-
tions if t = s and O(max(sr+2, tr+2)) operations if t 6= s.
Using an O(max(sr, tr))-processor shared-memory mul-
tiprocessor, Yates’s algorithm can be executed in paral-
lel in r layers where each processor executes O(s) oper-
ations in a layer.

3.2 Fast Matrix Multiplication. This section de-
velops fast matrix multiplication via Yates’s algorithm.
Let U be an index set of size u and let V be an in-
dex set of size v for positive integer constants u and v.
Let α, β, γ ∈ F(U×U)×V be three u2 × v matrices with
entries αij′`, βjk′`, γi′k` for all i, i′, j, j′, k, k′ ∈ U and
` ∈ V such that

(5)
∑
`∈V

αij′`βjk′`γi′k` ==

{
1 if i = i′, j = j′, k = k′;

0 otherwise.

For example, to represent Strassen’s matrix multiplica-
tion algorithm [104], let us write “1̄” to indicate a “−1”
and take u = 2 and v = 7 with

α =

 1 0 1 0 1 1̄ 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 1̄

, β =

 1 1 0 1̄ 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 1̄ 0 1 0 1

, γ =

 1 0 0 1 1̄ 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 1̄ 1 0 0 1 0

 .(6)

Let us now develop a fast matrix multiplication al-
gorithm based on Yates’s algorithm. Fix a decomposi-
tion α, β, γ such as (6) with index sets U and V . Let
X = (Xij : i, j ∈ Ur) and Y = (Yij : i, j ∈ Ur)
be two matrices of size ur × ur. We seek to com-
pute the product matrix Z = XY with entries given
by Zik =

∑
j∈Ur XijYjk for i, k ∈ Ur.

Rearrange and flatten the entries of X ∈ FUr×Ur

to
a vector x̃ ∈ F(U×U)×(U×U)×···×(U×U) so that

x̃(i1,j1),(i2,j2),...,(ir,jr) = X(i1,i2,...,ir),(j1,j2,...,jr)

holds for all i1, i2, . . . , ir ∈ U and j1, j2, . . . , jr ∈ U .
Do a similar rearranging and flattening to the matrix Y
to obtain the vector ỹ. Next, use Yates’s algorithm to

compute the vectors ˜̃x ←
(
α>
)⊗r

x̃ and ˜̃y ←
(
β>
)⊗r

ỹ.
Take the elementwise (Hadamard) product to obtain
˜̃z ← ˜̃x � ˜̃y. Then use Yates’s algorithm to compute
z̃ ← γ⊗r ˜̃z. Finally, recover the product matrix Z by
un-flattening and rearranging z̃. When v ≥ u2 + 1, this
enables us to multiply two ur × ur matrices in O(vr+2)
arithmetic operations in F.

4 Counting Six-Vertex Subgraphs.

This section reviews the Björklund–Kaski [27] algorithm
for counting six-vertex subgraphs. The univariate poly-
nomial framework which the algorithm instantiates is
reviewed in §1.3.

Throughout this section we will work with a fixed
decomposition of a matrix-multiplication tensor. That

is, we fix three constant-size u2 × v matrices α, β, γ ∈
F(U×U)×V from §3.2. For concreteness, consider the
4 × 7 Strassen matrices (6). Accordingly, U and V are
constant-size index sets of sizes u and v, respectively.

4.1 The 6-Choose-2-Linear Form. Recalling the
binomial linear form (4) from §1.4, it will be convenient
to assume the input size n = ur is a nonnegative integer
power of u, and the indexing of the rows and columns
of the fifteen input matrices is via a Cartesian power of
U . More precisely, let χab, χac, χad, χae, χaf , χbc, χbd,
χbe, χbf , χcd, χce, χcf , χde, χdf , χef ∈ FUr×Ur

. We seek
to compute the

(
6
2

)
-linear form

X(6
2)

=
∑

a,b,c,d,e,f∈Ur

χab
ab χ

ac
acχ

ad
adχ

ae
aeχ

af
af ·

· χbc
bc χ

bd
bd χ

be
be χ

bf
bf χ

cd
cd

· χce
ceχ

cf
cf χ

de
deχ

df
df χ

ef
ef .

(7)

4.2 The Proof Polynomial. The proof polynomial
will utilize polynomial extensions of the p-fold Kro-
necker powers of the matrices α, β, γ. Toward this end,
for d, e, f, d′, e′, f ′ ∈ Ur and ` ∈ V r, let us write

α⊗rde′` = αd1e′1`1αd2e′2`2 · · ·αdre′r`r ,
β⊗ref ′` = βe1f ′1`1βe2f ′2`2 · · ·βerf ′r`r ,
γ⊗rd′f` = γd′1f1`1γd′2f2`2 · · · γd′rfr`r

(8)

for the entries of the p-fold Kronecker powers. Let
us now extend to low-degree polynomials. Associate
with each ` ∈ V r a unique element ξ` ∈ F. For all
d, e, f, d′, e′, f ′ ∈ Ur introduce the univariate polynomi-
als

α⊗r
de′(x) =

∑
`∈V r

α⊗r
de′`

∏
`′∈V r\{`}

x− ξ`′

ξ` − ξ`′
,

β⊗r
ef ′ (x) =

∑
`∈V r

β⊗r
ef ′`

∏
`′∈V r\{`}

x− ξ`′

ξ` − ξ`′
,

γ⊗r
d′f (x) =

∑
`∈V r

γ⊗r
d′f`

∏
`′∈V r\{`}

x− ξ`′

ξ` − ξ`′
.

(9)

In particular, the polynomials in (9) are Lagrange
interpolation polynomials of degree at most vr − 1 that
for each ` ∈ V r are easily seen to satisfy

α⊗r
de′(ξ`) = α⊗r

de′` ,

β⊗r
ef ′ (ξ`) = β⊗r

ef ′` ,

γ⊗r
d′f (ξ`) = γ⊗r

d′f` .

(10)

It will be convenient to view (9) as defining three
ur × ur matrices α⊗r(x), β⊗r(x), γ⊗r(x) ∈ F[x]U

r×Ur

with entries that are polynomials in x.
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Using elementwise (Hadamard) multiplication
and matrix multiplication, introduce the matri-
ces H(x),K(x), L(x) ∈ F[x]U

r×Ur

defined for all
a, b, c, d, e, f ∈ Ur by

Had(x) =
∑

e′∈Ur

α⊗r
de′(x)χae

ae′ χ
de
de′ ,

Kbe(x) =
∑

f ′∈Ur

β⊗r
ef ′ (x)χbf

bf ′ χ
ef
ef ′ ,

Lcf (x) =
∑

d′∈Ur

γ⊗r
d′f (x)χcd

cd′ χ
df
d′f .

(11)

Next, introduce the matrices A(x), B(x), C(x) ∈
F[x]U

r×Ur

with entries defined for all a, b, c, d, e, f ∈ Ur
by

Aab(x) =
∑
d∈Ur

χad
adχ

bd
bdHad(x) ,

Bbc(x) =
∑
e∈Ur

χbe
be χ

ce
ceKbe(x) ,

Cac(x) =
∑
f∈Ur

χaf
af χ

cf
cfLcf (x) .

(12)

Then, introduce the matrix Q(x) ∈ F[x]U
r×Ur

with
entries defined for all a, b ∈ Ur by

(13) Qab(x) =
∑
c∈Ur

χac
acχ

bc
bcBbc(x)Cac(x) .

Finally, introduce the polynomial

P (x) =
∑

a,b∈Ur

χab
abAab(x)Qab(x) .(14)

From (14), (13), (12), (11), and (9) it is immediate that
P (x) has degree at most 3vr − 3.

The next theorem shows that we can recover the(
6
2

)
-linear form (7) as a simple sum of evaluations of the

polynomial (14). That is, to count subgraphs it suffices
to evaluate the polynomial at sufficiently many distinct
points.

Theorem 4.1. X(6
2)

=
∑
`∈V r P (ξ`).

Proof. Expand
∑
`∈V r P (ξ`) via (14), (13), (12), (11)

and apply (10), (8), and (5) for each a, b, c ∈ Ur in turn
to conclude that the claim holds.

4.3 Evaluating the Proof Polynomial. We now
describe how to evaluate the polynomial (14) fast. Let
us write Fq for a finite field with q elements.

Theorem 4.2. Let v ≥ u2 + 1 and let p be a prime
with p ≥ vr. Then, there is an algorithm that for a
given ξ ∈ Fp computes P (ξ) ∈ Fp in O(vr+2) operations
in Fp and using space for O(vr) elements of Fp.

Proof. Let ξ ∈ Fp be given. Arbitrarily identify
elements of V r with unique elements of {0, 1, . . . , vr −
1} ⊆ Fp. Subject to this identification, take ξ` = ` ∈
{0, 1, . . . , vr − 1} for all ` ∈ V r. Let us first compute a
vector η ∈ FV r

such that for all ` ∈ V r we have

(15) η` =
∏

`′∈V r\{`}

ξ − ξ`′
ξ` − ξ`′

.

Note in particular that this is trivial when ξ = ξ` for
some ` because then η is {0, 1}-valued with a single 1 at
position `, so let us assume otherwise. Because of our
identification, for all ` ∈ V r it then holds that

(16) η` =

∏
`′∈V r (ξ − ξ`′)

`! (−1)vr−1−` (vr − 1− `)! (ξ − ξ`)
.

Now observe that the numerator in (16) is independent
of ` and hence can be precomputed in O(vr) operations.
Similarly, we can precompute a table of (inverse) facto-
rials to access the factorials in the denominator of (16)
in O(1) operations each. Finally, for each ` ∈ Vr the
inverse (ξ − ξ`)−1 can be computed in O(1) operations.
Thus, we can compute the vector η in total O(vr) oper-
ations.

Let us now observe that (8), (9), and (15) imply that
we can use Yates’s algorithm to compute the matrices
α⊗r(ξ), β⊗r(ξ), γ⊗r(ξ) ∈ FUr×Ur

p by

α⊗r(ξ)← α⊗rη , β⊗r(ξ)← β⊗rη , γ⊗r(ξ)← γ⊗rη .

By our assumption v ≥ u2 + 1, this takes O(vr+2)
operations. Using Yates’s algorithm to perform fast
matrix multiplication, we can now use (11), (12), (13),
and (14) to obtain P (ξ) ∈ Fp in O(vr+2) operations.

5 Engineering an Implementation.

This section documents the key engineering consider-
ations in our implementation of the Björklund–Kaski
framework, with more detailed considerations presented
in the accompanying source code [71].

5.1 Arithmetic in Prime-Order Fields. To ob-
tain good arithmetic performance over prime-order
fields on the GPU, one must pay attention to low-level
implementation of such arithmetic. We rely on Mont-
gomery multiplication [84] implemented at low level us-
ing PTX inline assembly in CUDA C to obtain fast
arithmetic modulo an at-most-32-bit prime.

5.2 Near-Linear-Time Polynomial Arithmetic.
Our implementation relies on standard algorithms for
fast polynomial arithmetic on univariate polynomi-
als [114]. The foundation for such algorithms is a fast
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algorithm for polynomial multiplication that runs in
O(M(d)) operations for inputs of degree at most d. We
rely on the Schönhage–Strassen algorithm [98] for this
foundation, with M(d) = d log d log log d. (Asymptot-
ically faster algorithms are known, cf. Fürer [53] and
Lin, Al-Naffouri, Han, and Chung [76] for the state of
the art.) Once a fast multiplication algorithm is avail-
able, standard reductions to multiplication yield the
near-linear-time toolkit for polynomials (quotient, re-
mainder, batch evaluation, interpolation, and extended
Euclidean algorithm), including an implementation of
Gao’s decoding algorithm [54] that runs in O(M(e) log e)
operations for e given points. We release our GPU im-
plementation of this toolkit that has sufficient perfor-
mance for our purposes as regards the present proof-
of-concept demonstration, with the understanding that
the implementation can be further optimized.

5.3 Fast Matrix Multiplication. The most
performance-critical aspect in implementing the
Björklund–Kaski framework for subgraph counting
consists of implementing the seven fast matrix multi-
plications in the algorithm that produces evaluations
of the proof polynomial (cf. §4.3). We develop a
batch-parallel implementation of Strassen’s algorithm
using Yates’s algorithm (cf. §3.2) that multiplies in
parallel P independent pairs of 2k × 2k operands.

To guarantee coalesced workloads on the GPU, we
employ a memory layout of shape

4k−1 × P × 4

for the operands, which we then expand using Yates’s
algorithm with (6) to shape

4× 7k−2 × P × 4 .

We then use a kernel that executes in parallel indepen-
dent 4 × 4 matrix multiplications along the most and
least significant modes, using 4-scalar load and store
instructions for each thread of the kernel. Finally, we
compress back to shape

4k−1 × P × 4 .

The expanding transformations start from the least
significant length-4 modes to produce length-7 modes,
and proceed towards the more significant modes to
guarantee that the memory accessed are coalesced when
the intermediate results occupy the most memory. The
compressing transformation proceeds in reverse order.

6 Experiments.

6.1 Hardware and Software Configuration. Our
implementation is written in C++ and CUDA C that
is compiled to the following platforms.

K80 GPU compute node. An NVIDIA Tesla K80 Ac-
celerator with two 875-MHz NVIDIA GK210 GPUs
(Kepler microarchitecture, 2496 cores, 13 SMX, 192
cores/SMX), 12288 MiB of on-device GDDR5-3004
memory with ECC enabled. The host is a Dell
PowerEdge C4130 with two 2.40-GHz Intel Xeon E5-
2620v3 CPU (Haswell microarchitecture, 12 cores, 6
cores/CPU, no hyper-threading, 15 MiB L3 cache)
and 128 GiB of main memory (16 × 8 GiB DDR4-
2133 Hynix HMA42GR7AFR4N-TF). The operating
system is Red Hat 4.8 with Linux kernel version 3.10.0-
327.13.1.el7.x86 64. The C compiler is gcc 4.8.3 and
CUDA version is 7.5.18. The host and the accelerator
are connected by a 16-lane PCI Express 3.0 bus.

P100 GPU compute node. An NVIDIA Tesla P100
Accelerator with one 1189-MHz NVIDIA GP100 GPU
(Pascal microarchitecture, 3584 cores, 56 SMX, 64
cores/SMX), 16384 MiB of on-device 4096-bit HBM2
memory with ECC enabled. The host is a Dell
PowerEdge C4130 with two 2.54-GHz Intel Xeon E5-
2680v3 CPU (Haswell microarchitecture, 24 cores, 12
cores/CPU, no hyper-threading, 30 MiB L3 cache) and
256 GiB of main memory (16 × 16 GiB DDR4-2133
Hynix HMA82GR7MFR8N-UH). The operating sys-
tem is CentOS 7.3 with Linux kernel version 3.10.0-
514.26.2.el7.x86 64. The C compiler is gcc 5.0.3 and
CUDA version is 8.0.61. The host and the accelerator
are connected by a 16-lane PCI Express 3.0 bus.

6.2 Input instances. The algorithm implementa-
tion receives as input fifteen n×n matrices modulo a 31-
bit prime p, where n is a power of two. Apart from the
value of n, the implementation is performance-oblivious
to the input matrices when it evaluates the

(
6
2

)
-linear

form (4) modulo p. That is, apart from the value of n,
essentially identical performance is obtained regardless
of the n-vertex host graph H and the six-vertex pattern
graph S represented via the fifteen matrices (cf. §1.4).

Table 1 displays the problem parameters with dif-
ferent input sizes n. Our present experiments cover the
range n = 128, n = 256, and n = 512. To accommo-
date subgraph counts up to N = n(n−1) · · · (n−5), we
employ two distinct prime moduli p in our experiments.

6.3 A conservative lower bound. To set up a
conservative lower bound for the running times that
are feasible with implementation engineering, let us
review the number of scalar multiplications that must
be executed based on the arithmetic structure of the
algorithm designs, and present an empirical measure
for the peak achievable arithmetic bandwidth for such
multiplications to obtain a lower bound.

First, to count the occurrences of a six-vertex sub-
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graph in a 2k-vertex host graph, the Nešetřil–Poljak [86]
algorithm with Strassen’s [104] factorization for the 2×2
matrix-multiplication tensor needs at least B = 72k

multiplications. Second, the Björklund–Kaski frame-
work implemented with Strassen’s factorization needs
at least C = 7 · (3 · 7k − 2) · 7k modular multiplica-
tions to evaluate a proof polynomial modulo a prime at
the required at least d + 1 = 3 · 7k − 2 points. Third,
in terms of empirical performance, by relying on Mont-
gomery multiplication [84], our implementation gives a
peak empirical multiplication rate of approximately 215
billion multiplications per second for 31-bit prime fields
on the P100 GPU compute node using a single NVIDIA
Tesla P100 Accelerator. For the K80 GPU node using
a single CUDA device (out of the two available devices)
in the NVIDIA Tesla K80 Accelerator the peak rate is
approximately 60 billion multiplications per second.12

For example, for n = 512 = 29 vertices, the
arithmetic structure of the algorithms forces at least

B = 1,628,413,597,910,449

and

C = 34,196,683,861,267,935

multiplications. At 60 billion multiplications per sec-
ond, the former takes 7.5 hours and the latter 6.6 days.
Both lower bounds should be multiplied by two when
comparing with the performance of our actual imple-
mentation on the same hardware in Table 2 since two
31-bit prime moduli were employed in the experiments.

6.4 Results. Table 2 displays data on experiments
when we do not introduce errors into the polynomial
evaluation and consequently can just interpolate the
polynomial without decoding. These experiments are
executed on our K80 GPU compute nodes. We observe
that for our largest input size n = 512, the proof
preparation takes 322 days of total computing time,
whereas verifying the proof (which has size less than
a gigabyte, cf. Table 1) takes only minutes. We also
observe that the proof preparation time is less than two
orders of magnitude from the conservative 13-day lower
bound in §6.3.

Table 3 displays data on experiments where we
introduce errors into the proof preparation stage. That
is, we over-provision evaluations and randomly corrupt

12Please note that these modular multiplication rates are sub-
stantially less than the available peak bandwidth for floating-point
arithmetic due to the fact that the GPU hardware has been heav-
ily optimized for the latter. Cf. §5.1 and the source code for our
implementation of Montgomery multiplication. The accompany-
ing source code [71] also contains performace-testing subroutines
to measure the peak modular multiplication rate.

some of the evaluations so that the number of errors is
still below the decoding threshold (cf. Footnote 4). We
then error-correct the proof with our implementation
of Gao’s decoder [54], followed by verification of the
result. These experiments are executed on our P100
GPU compute nodes.

We observe that the framework is practical as a
proof-of-concept demonstration, with proof verification
several orders of magnitude more efficient than proof
preparation for the largest inputs considered. However,
proof preparation still has at least one order of magni-
tude overhead compared with just solving the problem.
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Table 1: Problem parameters for six-vertex subgraph counting. For an n-vertex host graph with n = 2k we display
(a) the näıve complexity N = n(n − 1) · · · (n − 5), (b) the Nešetřil–Poljak [86] baseline B = 72k with Strassen’s
decomposition [104], (c) the degree d = 3 · 7k − 3 of the Björklund–Kaski proof polynomial, and (d) the size S of
the proof in gibibytes (GiB) using two proof polynomials modulo 31-bit primes.

n N B d S
128 3,905,000,064,000 678,223,072,849 2,470,626 0.02
256 265,343,617,566,720 33,232,930,569,601 17,294,400 0.13
512 17,492,443,956,449,280 1,628,413,597,910,449 121,060,818 0.91

1024 1,136,126,223,187,845,120 79,792,266,297,612,001 847,425,744 6.32

Table 2: Experiments with the framework in the absence of errors. Timings for proof evaluation and interpolation
(in the absence of errors) for six-vertex subgraph counting on the K80 GPU compute node using one CUDA device
(out of two available devices) in an NVIDIA Tesla K80 Accelerator. Verification time is for 10 random points on an
unoptimized single-threaded CPU implementation. Timings are for two 31-bit moduli and two proof polynomials
to capture the subgraph count via the Chinese Remainder Theorem. The proof evaluation was distributed to
multiple identical K80 GPU compute nodes; we display the total time taken by all nodes in evaluating the proof.

n = 128: 9431363.26 ms to evaluate (2.6 h)
964843.63 ms to interpolate (16 min)

9637.95 ms to verify (10 s)
n = 256: 430925138.97 ms to evaluate (5.0 days)

7976254.34 ms to interpolate (2.3 h)
68968.46 ms to verify (69 s)

n = 512: 27770318698.23 ms to evaluate (322 days)
49481576.80 ms to interpolate (14 h)

470549.08 ms to verify (8 min)

Table 3: Experiments with the framework in the presence of errors. Timings for proof evaluation and decoding in
the presence of erroneous evaluations for six-vertex subgraph counting on the P100 GPU compute node using a
single NVIDIA Tesla P100 Accelerator. We use 2.1% overprovisioning of evaluations and corrupt a subset of 1%
of the evaluations uniformly at random. Decoding time includes listing the locations of the evaluations that were
erroneous. Verification time is for 10 random points on an unoptimized single-threaded CPU implementation.
Timings are for two 31-bit moduli and two proof polynomials to capture the subgraph count via the Chinese
Remainder Theorem. The proof evaluation was distributed to multiple identical P100 GPU compute nodes; we
display the total time taken by all nodes in evaluating the proof.

n = 128: 3837609.07 ms to evaluate (1.1 h)
388717.58 ms to decode (6.5 min)

8627.63 ms to verify (8.6 s)
n = 256: 162694846.33 ms to evaluate (45.2 h)

3932064.66 ms to decode (1.1 h)
540443.28 ms to verify (54 s)

n = 512: 14150000000.00 ms* to evaluate (164 days*)
23128936.16 ms to decode (6.5 h)

466734.40 ms to verify (7.8 min)

Please note: (*) The displayed evaluation time for n = 512 is an estimate based on 2542278 evaluations for both
polynomials. To complete the subsequent experiments, we used 121060819 evaluations prepared earlier with the older K80
GPU compute nodes (cf. Table 2) to supplement the 2542278 evaluations to a total of 123603097 evaluations for the two
proof polynomials to enable 1% random corruption, deconding, and verification experiments reported above.
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