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Abstract One of the main issues associated with

ionic liquids (ILs) is their recyclability. Viable recy-

cling concepts can only be developed if one knows

what is in the IL mixtures and solutions. In our

previous work, we showed that it is possible to

quantify water and 1.5-diazabicyclo[4.3.0]non-5-

enium acetate [DBNH][OAc] IL components in liquid

mixtures using Raman spectroscopy. In this regard, we

considered Raman spectroscopy as a promising ana-

lytical method for the inline monitoring and control of

the Ioncell� process. In the present work, we push the

limits of this analytical method further by extending it

to more complex and realistic liquid mixtures includ-

ing the hydrolysis product 1-(3-aminopropyl)-2-

pyrrolidone (APP) that can be formed upon the

reaction of 5-diazabicyclo[4.3.0]non-5-ene (DBN)

with water. Quantifying APP is important in order to

measure the extent of the hydrolysis reaction and

apply the right corrective measures to reverse the

reaction and to maintain the process within the optimal

working conditions. The simultaneous quantification

of the four components (Acetic acid, DBN, APP and

H2O) in typical Ioncell
� liquid streams is investigated

using Raman spectroscopy. The sensitivity of the

Raman method in quantifying APP is also highlighted

in comparison with refractometry, which is widely

applied to measure IL concentration in aqueous

mixtures. Finally, we propose simple modifications

on the multivariate partial least square regression

model based on a variable selection algorithm to

enhance the accuracy of the predicted calibration

values.

Keywords Ioncell� process � Raman spectroscopy �
Ionic liquid � Chemometrics

Introduction

Process analytical technology (PAT) is increasingly

adopted for inline analysis and process control.

According to Kuppers et al., the advantages of

integrated process analysis and control comprise a

better control over the process, safer operations,

significant economic advantages due to better product

quality and short troubleshooting delays (Kueppers

and Haider 2003).

For process control in industrial settings, waiting

times of a few hours for an accurate and precise

laboratory analysis are unacceptable. Fast and accu-

rate feedback mechanisms are needed to avoid the
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production of inferior and substandard products during

the analytical delay time. The combination of spec-

troscopy and chemometrics is ideal for such a situation

where a compromise between the delay and accuracy

is desired. Some of the accuracy and precision of the

laboratory method is sacrificed for getting fast answers

that can be used to monitor and control the process

continuously (Geladi et al. 2004). With this regard,

Raman spectroscopy is increasingly considered as

method of choice for a fast, multi-component, inline

quantitative analysis, for real-time process monitoring

and control (Cooper 1999).

Indeed, a single fast-acquired Raman spectrum,

with its well-resolved spectral features, can provide a

large amount of information about a sample. The

proportional relationship between the Raman scatter-

ing intensity and analyte concentration is the basis for

most of the quantitative analyses done using Raman

spectroscopy (Smith and Dent 2004; Larkin 2011).

In a multicomponent system, quantitative Raman

analysis relies on the principle of linear superposition:

the Raman spectrum of a mixture is equal to the

weighted sum of the Raman spectra of the components

present in the mixture (Pelletier 2003). The attractive-

ness of multi-component analysis using Raman spec-

troscopy is reinforced by the absence of optical

coherence between components in the sample, which

means that the Raman scattering by one component in

the sample does not influence the Raman scattering of

another component (Pelletier 2003). Interference can

only occur when the absorption spectrum of one or

more components significantly affects the transmis-

sion of excitation or Raman scattered light to or from

the target analyte. Further, possible changes in the

interactions between the analytes upon changing their

relative concentrations may alter their respective peak

shape and intensity in the spectrum (Kauffmann and

Fontana 2015).

From the perspective of process digitalization, real-

time monitoring and control, we showed in our

previous work that Raman spectroscopy is a very

promising analytical tool for the Ioncell� process

(Guizani et al. 2020). Combining Raman spectroscopy

and chemometrics would allow a real time quantifi-

cation of the protic ionic liquid (IL) 1.5-diazabicy-

clo[4.3.0]non-5-eniume acetate [DBNH][OAc] and

water in the process liquid streams.

Nevertheless, the liquid stream composition may

change as 1.5-diazabicyclo[4.3.0]non-5-ene (DBN)

can undergo a reversible hydrolysis into 1-(3-amino-

propyl)-2-pyrrolidone (APP) which also forms

3-(aminopropyl)-2-pyrrolidonium acetate

([APPH][OAc]) with acetic acid (Fig. 1). Further-

more, [APPH][OAc] may undergo a condensation into

1-(3-acetamidopropyl)-2-pyrrolidone (APPAc)

according to the second reaction shown in Fig. 1.

The formation of APP in the liquid streams may

lower or even suppress the cellulose dissolution power

of the IL and ultimately lead to the irreversible

formation of APPAc. Recently, Hyde and coworkers

showed that the hydrolysis reaction could be avoided

by controlling the pH (Hyde et al. 2019). Limiting the

hydrolysis reaction is hence possible but will not be

discussed in this paper. The process viability is

therefore dependent on the constant monitoring of

APP formation and on reversing the hydrolysis

reaction when it occurs. Hence, the inline Raman

method must be capable of determining the hydrolysis

product concentration in the process streams when

protic ILs prone to hydrolysis are used.

Since DBN and APP show structural differences

which would lead to distinct scattering signals, we

hypothesized that the Raman quantitative analytical

method could be extended to mixtures containing

APP. Hence, in the present work, we investigate the

potential of Raman spectroscopy for the quantification

of a more challenging and complex multicomponent

mixture of DBN, APP, acetic acid (AcOH) and H2O.

We also explore a simple modification of a multivari-

ate regression model algorithm using variable selec-

tion, in order to improve the model prediction

performances.

Material and methods

Raw materials

Samples of DBN (CAS no. 3001-72-7; purity

C 99.0% in mass) and HOAc (CAS no. 64-9-7;

purity C 99.8% in mass) were purchased from Fluo-

rochem and Sigma-Aldrich, respectively, and were

used without further purification.
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Experimental procedures

Sample preparation

The [DBNH][OAc] stock solution was synthetized

using the procedure described in (Guizani et al. 2020).

1-(3-aminopropyl)-2-pyrrolidone acetate

([APPH][OAc]) was synthetized by the University of

Helsinki. The stock solution of [APPH][OAc] con-

tained partly DBN. Both stock solutions used for the

sample preparation were characterized using capillary

electrophoresis, NMR and Karl Fisher titration for the

determination of the initial AcOH, DBN, APP and

H2O concentrations. Their specifications are given in

Table S1 in the Electronic Supplementary Information

(ESI).

Out of those stock solutions and Millipore H2O,

forty samples (each weighing more than 3 g) with

defined compositions were prepared gravimetrically

using an electronic weighing scale with a precision of

0.1 mg. These forty samples can be classified into four

categories as a function of the water contents (* 0

wt.%, * 25 wt.%, * 50 wt.% and * 75 wt.%). The

concentration ranges for the four individual molecular

constituents are given in Table 1. The composition of

the forty samples is illustrated in Fig. S1 in the ESI.

The training sample was prepared such that it spans

wide ranges of the four analytes’ concentrations and

encompasses as wide as possible sample composition

that could be encountered in the process liquid

streams.

Refractometry

The reader may legitimately wonder if other simpler

inline methods could be considered instead of Raman

spectroscopy. We asked ourselves similar questions

while screening alternative analytical methods.

Refractometry is widely applied for inline process

monitoring and control and is suitable to quantify the

IL concentration in aqueous mixtures (Liu et al. 2008;

Kaneko et al. 2018). Therefore, we considered it as an

alternative method that should be investigated and

conducted refractive index (RI) measurements on the

set of forty samples in order to assess its potential. The

RI was measured with a Peltier heated Abbe refrac-

tometer (Abbemat 300, Anton Paar, Austria) at

293.15 K.

Raman spectroscopy

Samples were analyzed with an Alpha 300 R confocal

Raman microscope (Witec GmbH, Germany) at

ambient conditions. Nearly 100 lL of the sample

was spread on a microscope concavity slide and

covered with a cover glass. The Raman spectra were

obtained by using a frequency doubled neodymium-

doped yttrium aluminum garnet (Nd:YAG) laser

(532.35 nm) at a constant power of 30 mW, and a

Nikon 209 (NA = 0.4) air objective. The Raman

system was equipped with a DU970 N-BV EMCCD

camera behind a 600 lines/mm grating. The excitation

laser was polarized horizontally. After fixing the focus

Fig. 1 [DBNH][OAc] (1)
hydrolysis into

[APPH][OAc] (2) and
condensation into APPAc

(3)

Table 1 Concentration ranges for AcOH, DBN, APP and H2O in the prepared mixtures

Molecule AcOH DBN APP H2O

Concentration range wt.% 7.5–32.6 2.7–67.4 0–58.4 0.1–75.2
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using the microscopy mode, each single spectrum was

acquired as an average of 32 scans with an integration

time of 0.5 s/scan. In total, forty spectra were

collected for the forty mixtures.

Data analysis

Data analysis and plotting were performed with

Matlab (The Mathworks, Inc.). The dataset analyzed

during this study is available from the corresponding

author on a reasonable request.

Exploratory data analysis: Principal Components

Analysis (PCA)

The spectra were first baseline corrected using a

second order polynomial and then area normalized.

PCA was done on the pre-processed mean centered

spectra. For more details on PCA the reader is invited

to read specialized literature (Brereton 2003; Geladi

2003; Geladi et al. 2004).

Partial least squares regression (PLS)

The PLS1 algorithm was used in this study to generate

a model for each of the component in the sample set.

The same pre-processing method as described for PCA

was adopted for the PLS modelling. The decomposi-

tion into latent structures was done by maximizing the

co-variance between the samples preprocessed spectra

and their specific analyte mean-centered concentra-

tions using the Nonlinear Iterative Partial Least

Squares (NIPALS) algorithm (Geladi and Kowalski

1986).

The model validation and selection of the adequate

number of latent variables for the PLSmodel was done

using model cross-validation procedure based on the

leave-one-out method. The root-mean square error of

cross validation (RMSECV) was used as quantitative

measure for the selection of the model latent variables

(LVs). It was calculated using the following formula:

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðyi� ŷiÞ2

n

s

where yi and byi denote the measured and predicted

values, respectively, and n the number of samples in

the data set.

Results and discussion

The limitations of refractometry

Refractometry was first considered regarding its

simplicity and the proven applicability in analyzing

mixtures of ILs and water (Liu et al. 2008) (Kaneko

et al. 2018). Hence, before tackling the core of this

paper, we would like to discuss our choice of further

developing the Raman analytical method in the light

of results we got from refractometry. The evolution of

the RI for the 40 samples is shown in Fig. 2. In

addition to the RI measurements on the 40 samples,

we measured the RI for aqueous solutions of APP-free

[DBNH][OAc]/H2O mixtures, in order to assess the

sensitivity of RI in detecting the formation of APP.

The RI evolves linearly with the IL mass fraction

and the trends are very similar in the presence or

absence of APP. Samples measured at similar water

content but with large difference in APP content do not

show any significant difference in the RI value, though

some spread in the RI values can be seen at low

dilution levels. Altogether, those results show that

refractometry is very limited in probing the extent of

DBN hydrolysis to APP and that an alternative more

sensitive analytical method is needed.

Raman spectra of the liquid mixtures

The pre-processed Raman spectra of the different

mixtures are shown in Fig. 3. The spectra are colored

according to the H2O wt.% concentration in the

Fig. 2 Comparison of RI as a function of IL wt.% in mixture

with water in the presence and absence of APP (0–58.4 wt.%)
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mixture. The samples having the same water content

are clearly grouped into four distinct categories

corresponding to the four dilution levels. The scatter

intensity in the 3000–3700 cm-1 region results from

the OH stretching vibrations in the water molecules

and increases as the water content gets higher (Sun

2009). Inversely, the scattering intensity in the

300–2000 cm-1 region decreases with the dilution

level as it is mainly related to the other molecules. The

bending mode of water (* 1640 cm-1) (Pavlović

et al. 1991) has a low influence due to its low intensity

compared to the scatter intensity of the other

molecules as discussed in our previous article

(Guizani et al. 2020).

Effects of H2O addition

The spectra of the four APP-free samples having

different water contents are shown in Fig. 4. The band

assignment was done in the light of the existing

literature on the Raman spectra-structure correlations

and characteristic group frequencies (Larkin 2011).

In APP-free samples, the peaks at 464 and

518 cm-1 originate from the C-N–C bending/defor-

mation modes in DBN. The peak around 740 cm-1

originated most probably from the C–C vibrations in

DBN. The two prominent peaks at * 920

and * 2930 cm-1 were ascribed to the C–C and C–

H stretching bands in AcOH respectively. The peaks

at * 2890 and * 2980 cm-1 would be attributed to

–CH2 in phase and out of phase stretching in DBN. In

the water free sample, the medium intensity band

at * 1650 cm-1 was safely attributable to the C=O

stretching band from AcOH.

Upon addition of water, the scattering intensity in

the 280–3000 cm-1 region decreased notably due to

the dilution effect. Conversely, the broad peak related

to the OH vibrations in the water molecule * 3100 to

3700 cm-1 increased markedly when increasing the

water content. It is well known that the Raman

scattering from an analyte can show a strong depen-

dence on the molecule’s environment (Kauffmann and

Fontana 2015). Thus, in addition to the intensity

Fig. 3 Pre-processed Raman spectra of the different mixtures.

The color code describes the H2O wt.% in the mixture. The

spectra are divided into fingerprint region (down) and high

frequency region (top) for the sake of clarity

Fig. 4 Pre-processed Raman spectra of four APP-free IL

samples with different dilution levels. The spectra are divided

into fingerprint region (down) and high frequency region (top)

for the sake of clarity
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change due to the concentration of the analyte, band

shift and shape modifications result from the change in

the molecule’s environment.

Interactions of the analytes with water molecules

via hydrogen bonding are expected upon addition of

water. Those would explain partly some modifications

other than the intensity decrease in the spectra of the

diluted samples. For instance, the C=O stretching band

shifted down to * 1600 cm-1 which was most likely

due to the structural modifications of the solutions in

the presence of water (Nakabayashi et al. 1999;

Gofurov et al. 2019). Further, upon addition of H2O,

the band at * 900 cm-1 vanished, which might

indicate the absence of specific AcOH structures

(dimers or trimers) that were only present in the water-

free IL. At higher frequencies, the reader can notice a

marked intensity decrease in the 2800–2870 cm-1

region, reflecting modifications in the vibrational

modes of DBN in the presence of water.

Effects of APP addition

The Raman spectra of APP-free samples and IL

samples with APP/DBN = 4.47 mol/mol are shown in

Fig. 5 for both cases of nearly water-free mixtures and

mixtures with 75 wt.% of water. The reader can notice

that there were visible changes in the spectra upon the

variation of the APP/DBN ratio regardless of the water

content both in the fingerprint region and in the higher

frequency region. In the fingerprint region, the scat-

tering intensity increased in the range of

332–340 cm-1 and was assigned to the vibrational

modes of d C–C present in the aliphatic amino-propyl

chain of APP. The bands at * 464 and * 516 cm-1

decreased markedly upon the addition of APP. Those

probably originated from the C–N–C bending/defor-

mation modes which would have lower intensities in

APP than in DBN since APP has only one C–N–C

bond after the DBN ring opening. Moreover, this

region of 900–1680 cm-1 is marked by visible

changes in peak intensities and shapes upon the

addition of APP. This region probably reflects the

different deformation and rocking vibrations of –

NH3
? groups as reported in (Socrates 2001).

Upon the addition of APP, the peak around *
1640 to 1675 cm-1 broadened markedly. This peak

would represent the overlapped contributions from

C=O vibrations in the ketone group of APP, and the

C=O vibrations from the carboxylic acid group in

AcOH. Also, since amine -NH3
? groups have also

medium-to-strong absorptions near 1600 cm-1 and

1500 cm-1 due to asymmetric and symmetric defor-

mation vibrations (Socrates 2001), they probably

contribute to this peak.

For several peaks, a shift in the wavenumber was

noticed and attributed to the presence of water as

discussed previously.

In the high-frequency region, the bands at * 2890

and * 2980 cm-1 attributed to –CH2 in phase and out

of phase stretching in DBN, decreased markedly upon

the addition of APP. Moreover, the peak intensity in

the * 3100 to 3500 cm-1 region increased in the

presence of APP. The higher intensity might be due to

the overlapping contribution of OH groups from H2O

and -NH3
? groups from APP. In water-free samples,

the stretching vibrations from -NH3
? groups were not

visible. According to Socrates (2001), stretching

vibrations of –NH3
? groups in amine hydro halides

yield a signal of medium intensity. The same obser-

vation stands for the NH? vibrations in DBN, which

do not show a contribution in the high frequency

region.We speculate that the solution composition and

the molecular environment around the –NH3
? and

NH? hinder those vibrational modes. More investiga-

tions are needed to elucidate this riddle.

The observed changes in the spectral features due to

the variation of the APP/DBN ratio and H2O contents

encouraged the development of a quantitative analysis

using Raman spectroscopy.

Principal components analysis (PCA)

PCA is a method for data reduction and visualization.

It is in the core of chemometrics and is commonly used

for an exploratory multivariate data analysis and

unsupervised pattern recognition. In PCA, the dimen-

sionality of the data set is reduced by transforming the

original spectral data set into a smaller data set

composed by few uncorrelated variables (PCs), which

retain most of the variation present in all the original

variables. The aim is to identify the direction of

greatest variability in the data and interpret them in

terms of the underlying chemistry.

PCA was performed on the pre-processed (back-

ground corrected, area normalized and mean-cen-

tered) data (see Fig. S4 in the ESI for a comparison

between the original and the pre-processed, mean-

centered spectra). The results show that more than
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99% of the variance in the data was captured by the

first three PCs (see Fig. S5 in the ESI). The first PC

explained 89% of the variance, while the three

following ones explained 5.1%, 4.4% and 0.52%,

respectively. The pseudo-rank of the data matrix

should be therefore three or four, which was physically

reasonable since four different molecules were present

in the mixtures and contribute to the scattering. The

sample N35 showed difficulties during the pre-

processing (background subtraction) and had very

high Hoteling T2 and Q residual values. It was

consequently considered as an outlier and excluded

from the decomposition procedure.

The scores and loadings of the first three PCs are

shown in Fig. 6. For PC1, the scores were colored

according to the H2Owt.% in the mixtures. PC1 scores

were related to the water content in the different

mixtures. Samples having the same water content had

similar scores on PC1. Their loadings showed positive

contributions in the * 280 to 1800 cm-1 region

(corresponding mainly to the scattering from DBN,

APP and AcOH), and negative ones in the * 3020 to

3720 cm-1 region (corresponding mainly to the

scattering from H2O).

PC2 and PC3 separated the samples within each

group according to the proportion of DBN in the sum

of DBN and APP. PC2 and PC3 indicated also some

interesting features. In PC2, the water-free samples

and the samples with the highest water content had

negative scores and are separated from the less

extreme samples having respectively 25 wt.% and 50

wt.% H2O and positive scores. In PC3, the spread in

scores became narrower as the dilution increased, and

the shape of the scores for the different samples was

very similar to the shape of DBN wt.% in the mixture

as shown in Fig. S2 in the ESI. Altogether, the PCA

decomposition showed that the variance in the data

could be captured almost entirely in the four first

components. These four PCs reflected most of the

Fig. 5 Pre-processed Raman spectra of an APP-free sample and

a sample with APP/DBN = 4.47 mol/mol, at two H2O contents

of 0 wt.% (left) and 75 wt.% (right). The spectra are divided into

fingerprint region (down) and high frequency region (top) for

the sake of clarity
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chemical information according to the different sam-

ple compositions.

PLS for the quantification of DBN, APP, AcOH

and H2O in the liquid mixtures

PLS model based on the entire spectra

The PLS model was built on 39 samples after

discarding sample N35 which showed some signal

anomalies and for which the background correction

was unsuccessful, resulting in a high Q residual and a

clear outlier behavior when included in the models.

The results from the PLS regression are shown in

Table 2. As the PLS1 algorithm was adopted for the

regression, each component was modeled separately.

This choice was motivated by the fact that PLS1

regression results in a lower error than PLS2 with

which all components are modeled simultaneously

(Brereton 2003).

The number of chosen LVs varied between 3 and 5

for the different models. Each of the models captured

Fig. 6 Scores (left) and loadings plots for the three first PCs
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more than 96% of the variability in the predictor

(spectra) and more than 99% of the variability in the

response (concentrations).

The RMSECV for the AcOH, DBN, APP and H2O

were 0.23 wt.%, 2.09 wt.%, 1.15 wt.% and 0.64 wt.%,

respectively. The model showed a better predictability

for AcOH and H2O than for DBN and APP, although

the results were still in a good range for the two last

molecules. Figure 7 shows the cross-validation pre-

dicted versus measured concentrations of AcOH,

DBN, APP and H2O. The reader can notice that the

data points for the four molecules lie very close to the

1:1 identity line. The Pearson correlation coefficient

was above 0.99 for the four cases. Overall, the

analytical method showed very good results even for

more complex mixtures containing APP. Additional

data about the PLS models are given in the ESI. It is

important finally to stress the universality of such

analytical methods based on spectroscopy and multi-

variate analysis. The applications are practically

unlimited, and readers are encouraged to try applying

them on their own systems where variations in signal

intensities could be correlated to the analyte

concentration.

Enhancing the PLS model prediction performance

through variable selection

The purpose of variable selection is to obtain a model

that is easier to understand, and which has a better

predictive performance. In searching for the best

variable selection procedure, one might be tempted to

Table 2 PLS regression results: explained variances and RMSECVs

Component LVs X var% Y var% RMSEC, wt.% RMSECV, wt.% R2 Range, wt.%

AcOH 3 98.7 99.9 0.20 0.23 0.999 7.5–32.6

DBN 4 99.1 99.7 1.73 2.09 0.992 2.7–67.4

APP 5 99.6 99.8 0.81 1.15 0.998 0–58.4

H2O 3 96.9 99.9 0.68 0.64 0.999 0.1–75.2

Fig. 7 Cross-validation predicted vs measured concentrations of AcOH, DBN, APP and H2O
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try all possible combinations of the predictor variables

in order to select the best one. However, this turns out

to be prohibitive due to the large number of variables

and causes a high risk of overfitting when the number

of variables is higher than the number of samples

(Andersen and Bro 2010). Both conditions are

encountered when dealing with spectroscopic data.

Therefore, the purpose here is not to search for the best

model, but for a more robust one, in terms of

prediction and understanding.

With this regard, we adopted a simple method in

which the spectral range was divided into 10 subin-

tervals and PLS models were determined based on all

possible interval combinations. The algorithm calcu-

lated the Root-Mean Square of Errors for Calibration

(RMSEC) for all combinations and chose the combi-

nation that resulted in the lowest RMSEC. The results

are shown in Fig. 8. The reader can see for instance

that taking the whole spectrum to predict DBN or APP

results in the worst prediction case in terms of the

lowest possible RMSEC. For AcOH and H2O, the

worst case in terms of the lowest RMSEC is obtained

with one subinterval.

The best cases for lowest RMSEC were found

between those two extremes. They are summarized in

Table 3 with the optimal number of subintervals and

the corresponding lowest RMSEC. The reader can

notice that with this simple procedure, the model

calibration errors can be further reduced.

Conclusion and perspectives

With short analytical delays and acceptable accuracy

in determining the expectable liquid stream composi-

tion, Raman spectroscopy shows significant potential

for the Ioncell� process monitoring and control.

Concentrations of water, IL components and degra-

dation product in the liquid streams could be deter-

mined in real time using adequate Raman in-situ

probes. The real-time information can be used to

monitor and control the process operations.

Compared to the more widely applied refractom-

etry for measuring aqueous IL concentration, Raman

spectroscopy reveals a much better sensitivity in

detecting the IL degradation products and shows

hence a clear advantage. This study further confirmed

Fig. 8 The lowest RMSEC values for the 10 best models using an increasing number of intervals
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that the combination of Raman spectroscopy and

chemometrics opens the door for reliable monitoring

and efficient control of a potential wide range of IL-

based processes.
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