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Reinforcement Learning Framework for Delay
Sensitive Energy Harvesting Wireless Sensor

Networks
Hanan Al-Tous, Senior Member, IEEE , and Imad Barhumi, Senior Member, IEEE

Abstract— A multi-hop energy harvesting wireless sensor network (EH-WSNs) is a
key enabler for future communication systems such as the internet-of-things. Opti-
mal power management and routing selection are important for the operation and
successful deployment of EH-WSNs. Characterizing the optimal policies increases
significantly with the number of nodes in the network. In this paper, optimal control
policy is devised based on minimum-delay transmission in a multi-hop EH-WSN
using reinforcement learning (RL). The WSN consists of M EH sensor nodes aiming
to transmit their data to a sink node with a minimum delay. Each sensor node is
equipped with a battery of limited capacity to save the harvested energy and a data
buffer of limited size to store both the sensed and relayed data from neighboring
nodes. Centralized and distributed RL algorithms are considered for EH-WSNs. In the
centralized RL algorithm the control action is taken at a central unit using the state
information of all sensor nodes. In the distributed RL algorithm the control action is taken locally at each sensor node
using its state of information and the state information of neighboring nodes. The proposed RL algorithms are based
on the state-action-reward-state-action (SARSA) algorithm. Simulation results demonstrate the merits of the proposed
algorithms.

Index Terms— Wireless sensor network, energy harvesting, reinforcement learning, SARSA, action-value-function approx-
imation.

I. INTRODUCTION

Wireless sensor networks (WSNs) are autonomous net-
works of distributed sensor nodes that are communicating
with each other wirelessly in a multi-hop fashion. WSN has
been identified as one of the major technologies for future
wireless communication systems such as the internet-of-things
(IoT) and green fifth generation (5G) and beyond 5G (B5G)
networks. A crucial characteristic of WSNs is to have a
very long network lifetime span, since human intervention
for battery replenishment may not be possible in inaccessible
locations [1]–[3].

Energy harvesting wireless sensor nodes are usually
equipped with limited-capacity energy storage, and limited
buffer size. To overcome these constraints in EH-WSNs,
optimal resource allocation techniques are crucial for the de-
ployment and operation of EH-WSNs [4]–[7]. Several resource
allocation problems for EH sources were studied aiming to
achieve different objectives such as throughput and reward
maximization. Different solution approaches are proposed
using offline, online optimizations and game theory as in [8]–
[17].

EH-WSNs can be deployed to monitor a physical space
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(field) to improve the ecosystem and human life. EH-WSNs
gained increasing popularity for a range of applications for
environmental monitoring, including air quality monitoring,
water quality monitoring, and disaster monitoring such as
earthquakes, hurricanes, and floods, as well as health monitor-
ing of civil structures such as bridges, buildings, transportation
infrastructures and smart cities monitoring applications [18],
[19].

Resource allocation in EH-WSNs can be modeled as a
Markov decision process (MDP), where the future state is
only dependent on the current state. Classical Dynamic pro-
gramming (DP) can be used to obtain optimal policies for
MDP systems. However, DP suffers from the curse of di-
mensionality. In addition, DP requires exact knowledge of
the transition probabilities, which are often hard to obtain
in practical systems. Reinforcement learning (RL) algorithms
can, to a great extent, alleviate the dimensionality problem
and obtain near optimal solutions without knowing the precise
values of the transition probabilities [20], [21].

In general, the complexity in characterizing the optimal
policies increases significantly with the number of nodes in the
network. The transmission policy of a sensor node affects the
data arrivals at the next-hop node, hence, couples the optimal
transmission scheme across the network. Dynamic resource
allocation in EH-WSNs is considered in this paper. Each
sensor node is equipped with an energy harvesting device, a
finite energy storage and a finite data buffer. Based on the
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harvested energy, the channel state information, the buffer
state, the energy level of the sensor node and neighboring
nodes, an adaptive policy is proposed. The objective of the
proposed policy is to minimize the overall delay in the EH-
WSN. Minimum delay is important for many future IoT ap-
plications, such as: detection, estimation and video streaming
[22]. In a multi-hop WSN, the control policy consists of power
allocation and route (next-hop) selection. Two RL algorithms
are considered to find the optimal control policy based on the
action value-function approach. A centralized RL algorithm,
where the state information of all sensor nodes are known at
a central unit, and a distributed RL algorithm, where the state
information of the sensor node and only neighboring nodes
are used to learn the optimal policy locally.

A. Related Work and Contribution
In this subsection we survey the literature related to EH-

WSNs and present the main contributions of this paper.
In [22], asymptotically optimal low-complexity power con-

trol is proposed for delay-aware resource allocation in point-to-
point EH wireless system. Energy harvesting for delay-limited
point-to-point wireless communication is considered in [23].
The transmitter is equipped with a finite-capacity recharge-
able battery. Q-learning framework is used to determine the
transmission policy assuming finite state and action spaces. In
[24], optimal selective transmission policy for single link EH-
WSN is proposed using monotone neural network. Based on
the channel state information, the battery status, and the packet
priority, the node adapts its selective transmission policy. RL
for EH decode-and-forward (DF) two-hop communication is
considered in [25]. The transmission policy aims to maximize
the network throughput where the source and relay nodes are
assumed to have only local information. The two-hop joint
power allocation problem is separated into two point-to-point
power allocation problems. In [26], the optimal transmission
policy is formulated to minimize the symbol-error rate in
EH DF relay network. Optimal transmission policy in EH
cooperative two-hop multi-relay communication is proposed
in [27]. The problem is formulated as a partially observable
stochastic game, where the power control is obtained locally
at each relay node using RL. In [28], the authors proposed a
novel energy management algorithm to maximize the packet
rate for point-to-point communication based on the actor-critic
RL framework. In [29], a distributed multi-agent RL algorithm
is proposed based on an identical reward function for all nodes.

In the aforementioned work, the resource allocation and
the corresponding power control are proposed for point-to-
point EH communication. The formulated resource allocation
problems may not be directly applied to EH-WSNs, since
each sensor node has his own data in addition to the relayed
data from its neighbors. In addition, the action of one sensor
node may affect the actions of the other nodes. The main
contributions of this paper are summarized as follows:
• A multi-hop connected EH-WSN is considered. The rout-

ing is done based on graph structure, and all sensor nodes
are equipped with limited buffer capacity and limited
battery storage. The sensor nodes relay their own sensed
data and the relayed data from neighboring nodes.
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Fig. 1. EH-WSN System model.

• The optimal policy consists of optimal power control and
route (next-hop) selection. The cost function is formu-
lated aiming to minimize the average delay.

• Two RL algorithms are proposed: Centralized and dis-
tributed. Linear function approximation with binary fea-
tures is used to approximate the Q-value function. The
binary features are devised to capture the system’s dy-
namics and constraints.

• In the distributed RL algorithm, the sensor nodes ex-
change with their neighbors the difference in their Q-
value, and their buffer states.

• The findings are confirmed with numerical results. The
performance of the proposed RL algorithms are compared
with the offline resource allocation.

• To the authors best of knowledge, this is the first time
that RL framework is proposed for the online operation
of EH-WSNs1.

The remainder of this paper is organized as follows. In
Section II, the system model of EH-WSN is introduced.
In Section III, the problem formulation, SARSA and the
D-SARSA algorithms are presented. Numerical results are
presented and discussed in Section IV. Finally, conclusions
are drawn in Section V.

II. SYSTEM MODEL

The system under consideration is shown in Fig. 1. The
sender (source) node Si for i = 1, . . . ,M aims to transmit data
to a sink node SM+1 using multi-hop communication. The
routing protocol is based on a connected graph structure. The
graph structure captures the organization of sensor nodes based
on their distance from each other. It can be constructed in the
setup phase based on the average received power, if location
information is not available. Sensor node Si communicates
with its neighboring set denoted as Ni using a single-hop
transmission. The set Ni consists of the one-hop neighbors

1Preliminary results of this work have been accepted as work in progress
in IEEE BlackSeaCom 2019 conference [30].
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of node Si that serve as the next-hop towards the sink node.
Transmission is organized in time-slots of fixed duration T
over K time-slots with K →∞. The data rate and power are
assumed to be fixed at each time-slot. Orthogonal multiple
access to the medium is assumed, where only non-interfering
links can transmit simultaneously. A control channel can be
used to coordinate nodes’ transmission. Orthogonal multiple
access to the medium is nearly optimal when interference is
strong [31]. Each sensor node is assumed to transmit to only
one of its neighbors at each time-slot, this is to simplify the
action selection of the proposed RL algorithm as discussed in
Section III.

No energy loss is assumed during the harvesting time-
slots, and the harvested energy at time-slot t can be used for
transmission at time-slot t + 1. Sensor node Si is equipped
with a limited battery storage E

(i)
max units of energy, and

limited buffer capacity C
(i)
max in bits. We have assumed that

the control messages will occupy a fixed amount of memory
that is different from the data buffer.

At each time-slot t, the transmitter has to guarantee that
the energy spent is not greater than the available energy in
the battery. Hence, the state dynamics of the energy level at
sensor node Si for i = 1, . . . ,M , can expressed as:

E
(i)
t+1 =

min{E(i)
t − T (

∑
j∈Ni

Y
(i,j)
t P

(i,j)
t + P (i)

c ) +H
(i)
t , E(i)

max},

(1)

where E(i)
t is the energy level, and Y (i,j)

t ∈ {0, 1} is the relay
selection indicator of sensor node Si with

∑
j∈Ni Y

(i,j)
t ≤ 1.

P
(i,j)
t ≥ 0 denotes the amount of power used to transmit r(i,j)t

bits from sensor node Si to sensor node Sj for j ∈ Ni, which
is kept constant during time-slot t. The processing cost P (i)

c

represents the sum of all other power consumption of sensor
node Si [32], and H

(i)
t is the harvested energy. Since the

harvested energy H(i)
t needs to be stored in the battery before

being used during time-slot t, the transmit power feasibility
constraint can be stated as:∑

j∈Ni

Y
(i,j)
t P

(i,j)
t + P (i)

c ≤ E
(i)
t /T. (2)

Similarly, at each time-slot t the sensor nodes must guar-
antee that there is enough buffer space before receiving data
from neighboring nodes. Hence, the state dynamic of the data
buffer of sensor node Si can be expressed as:

C
(i)
t+1 =

min{C(i)
t −

∑
j∈Ni

Y
(i,j)
t r

(i,j)
t +

∑
j|i∈Nj

Y
(j,i)
t r

(j,i)
t + d

(i)
t , C(i)

max},

(3)

where C(i)
t is the data buffer level in bits, and d(i)t is the data

sensed by source node Si during time-slot t. The sink buffer is
assumed to have a very large capacity compared to the buffer
of source nodes Si for i = 1, . . . ,M , i.e., C(M+1)

max >> C
(i)
max.

The data transmitted from sensor node Si to a neighboring
node Sj for j ∈ Ni are constrained by the channel capacity

of the link as:

r
(i,j)
t ≤ TW log2

(
1 + γ

(i,j)
t P

(i,j)
t

)
, (4)

where γ
(i,j)
t =

|h(i,j)
t |2
σ2 with h

(i,j)
t is the fading channel

coefficient between nodes Si and Sj at time-slot t, σ2 is
the noise power at the receiver node Sj , and W is the
channel bandwidth. Since the received data need to be stored
in the buffer before being transmitted, the data transmission
feasibility constraint at sensor node Si can be expressed as:∑

j∈Ni

Y
(i,j)
t r

(i,j)
t ≤ C(i)

t . (5)

III. PROBLEM FORMULATION

The main objective of the considered dynamic resource
allocation problem is to minimize the delay subject to limited
data buffer capacity and battery storage constraints. Several
scenarios have been considered in the paper: First, a central-
ized offline minimum delay problem is formulated assuming
non-causal knowledge of the harvested energy, sensed data,
and channel gains. Second, a centralized online minimum
delay problem assuming causal information. The optimal
power allocation, and next-hop selection policy is obtained
using RL based SARSA algorithm. The optimal policy is
computed at a central unit and then disseminated to all sensor
nodes. Third, a distributed online minimum delay problem is
formulated assuming causal information. The optimal power
allocation and next-hop selection policy is obtained locally
at each sensor node using RL based distributed SARSA (D-
SARSA) algorithm.

In the centralized offline problem, the minimum delay trans-
mission policy is obtained for a finite number of time-slots
over a realization of the stochastic processes (i.e., data/energy
arrivals and channel gains). Whereas in the online scenarios,
the minimum delay transmission policy is obtained over an
infinite horizon. The average performance of the offline cen-
tralized scenario can be considered as a benchmark for the
performance of the proposed centralized and distributed online
scenarios as in [23].

In the following, we present the offline resource allocation
problem, the basic concepts of MDPs, action-value-function
approximation, SARSA and D-SARSA algorithms.

A. Offline Resource Allocation

In the offline resource allocation, all future data/energy
arrivals of all sensor nodes and the channel gains of all links
are known non-causally at a central unit before transmission.
Offline optimization is relevant in applications for which the
stochastic processes can be estimated accurately in advance at
a central unit [7].

The offline resource allocation problem aiming to minimize
the delay can be formulated based on Little’s law. Since the
delay is directly related to the amount of data stored in the
sensor nodes’ buffers [33], the objective function is formulated
as the sum of the empty spaces of all buffers in bits. The
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optimization problem can then be expressed as:

max
P , Y , r

M∑
i=1

K−1∑
t=0

(
C(i)

max − C
(i)
t+1

)
, (6a)

subject to:

given E(i)
0 &C

(i)
0 , for i = 1, . . . ,M, (6b)

(1)-(5), for i = 1, . . . ,M, t = 0, . . . ,K − 1, (6c)

P
(i,j)
t ≥ 0, r

(i,j)
t ≥ 0, i = 1, . . . ,M, j ∈ Ni,

t = 0, . . . ,K − 1, (6d)

C
(i)
t ≥ 0, E

(i)
t ≥ 0, i = 1, . . . ,M, t = 1, . . . ,K, (6e)∑

j∈Ni

Y
(i,j)
t ≤ 1, i = 1, . . . ,M, t = 0, . . . ,K − 1, (6f)

Y
(i,j)
t ∈ {0, 1}, i = 1, . . . ,M, j ∈ Ni, t = 0, . . . ,K − 1,

(6g)

where P , Y and r denote the power allocation, relay se-
lection indicator and data transmitted vectors, respectively.
The power allocation vector P = [P

(1)
0 , . . . ,P

(M)
K−1] where

P
(i)
t = [P

(i,j)
t |∀j∈Ni ] represents the power allocation vector of

sensor node Si at time-slot t. The relay selection vector Y =

[Y
(1)
0 , . . . ,Y

(M)
K−1] with Y (i)

t = [Y
(i,j)
t |∀j∈Ni ] represents the

relay selection indicator vector of sensor node Si at time-slot
t. The vector r = [r

(1)
0 , . . . , r

(M)
K−1] with r(i)t = [r

(i,j)
t |∀j∈Ni ]

represents the data transmitted vector of sensor node Si at
time-slot t. Constraint (6c), represents the buffer and battery
dynamics, causality and feasibility constraints as in [34]. The
initial energy and buffer states of sensor node Si denoted as
E

(i)
0 and C(i)

0 , respectively, are assumed given.
Problem (6) is a mixed integer non-convex optimization

problem that is difficult to solve. An upper bound of the
optimal value can be obtained by relaxing the integer variables,
such that Y (i,j)

t ∈ [0, 1], for i = 1, . . . ,M , j ∈ Ni, and
t = 0, . . . ,K − 1. The variable transformation technique can
then be used to convert (1), (2), (3) and (5) to linear constraints
as in [35]–[37]. Therefore, the relaxed problem is transformed
to a convex optimization problem, that can be easily solved
using different convex optimization techniques such as the
interior point method [35].

B. MDP and RL Basic Concepts

A MDP is defined by the 4-tuple M = (X ,A,R,P),
compromised of the state space X , action space A, reward
function R and the transition probabilities P . A deterministic
policy π is a rule to select actions given a current state,
π : X → A [20].

Typical objective functions of MDPs are the expected dis-
counted reward and the average reward per stage [20]. In this
paper, the objective function is selected as the average reward.
The average reward per stage fits the delay performance much
better than the discounted reward as explained in [27]. The
per stage average reward is expressed as:

ηπ(x) = lim
K→∞

1

K
E
[K−1∑
t=0

Rt+1|x0 = x, π
]
, (7)

where x0 is the starting state, Rt is the reward function
at time-slot t, and E is the expectation operator. When the
Markov chain resulting from applying every stationary policy
is recurrent or ergodic, the optimal average reward per stage
is independent of the initial state x0 [38], i.e., ηπ(x) = ηπ .

The (action)-value-function is used with discounted re-
ward objective functions, whereas, differential (action)-value-
function is used with the average reward per stage objective
functions [20]. Hence, the differential value function V π(x)
is defined as the sum of the differential rewards starting at
state x, and following the policy π, thereafter, i.e., V π(x) =
E
[∑∞

t=0Rt+1 − ηπ|x0 = x, π
]
. Similarly, the differential-

action-value-function Qπ(x,a) is the expected sum of the
differential rewards starting at state x, taking action a and
then following the policy π thereafter, i.e., Qπ(x,a) =
E
[∑∞

t=0Rt+1 − ηπ|x0 = x,a0 = a, π
]

[20], [38]. The
solution of a MDP is obtained by finding the optimal policy
π∗ that maximizes the objective/value function, i.e., π∗ =
arg max

π
V π(x), ∀x ∈ X . For finite state and action spaces

and assuming full knowledge of transition probabilities, the
optimal policy π∗ can be obtained using value iteration or
policy iteration [20].

Definition An EH-WSN consisting of M sensor nodes is
defined at time-slot t by: the state vector of all sensor
nodes xt = [x

(1)T
t , . . . ,x

(i)T
t , . . . ,x

(M)T
t ]T with x

(i)
t =

[E
(i)
t , H

(i)
t , C

(i)
t , d

(i)
t , h

(i,j)
t |∀j∈Ni ]T , and the action vector of

all sensor nodes at = [a
(1)T
t , . . . ,a

(i)T
t , . . . ,a

(M)T
t ]T , the

action a
(i)
t of sensor node Si is defined by the transmit

power and the relay selection indicator that is used for the
next-hop transmission, i.e., a(i)

t = [P
(i)
t , Y

(i,j)
t |∀j∈Ni ]T with

P
(i,j)
t = Y

(i,j)
t P

(i)
t , Y (i,j)

t ∈ {0, 1}, and
∑
j∈Ni Y

(i,j)
t ≤ 1.

A finite set of power actions is considered at sensor node
Si for i = 1, . . . ,M by discretizing the transmit power, i.e.,
P

(i)
t ∈ {0, δ, 2δ, . . . , E(i)

max/T}, where δ is the step size. The
transmitted data r(i,j)t from sensor node Si to a neighboring
node Sj is computed as r(i,j)t = TW log2(1+γ

(i,j)
t P

(i)
t ). The

reward function Rt+1 is defined as: Rt+1 =
∑M
i=1 C

(i)
max −

C
(i)
t+1.

The harvested energy and sensed data arrivals, and the channel
gains are assumed to change according to independent prob-
abilistic distributions. The sensed data and harvested energy
arrivals d(i)t and H(i)

t , respectively, are assumed to be known
at time-slot t, but could not be used before time-slot t+ 1.

In EH-WSNs, the state space is infinite and transition proba-
bilities may not be easy to obtain. In this sense, model-free RL
algorithm is proposed to devise the optimal transmission policy
without the need to know the transition probabilities. Fur-
thermore, action-value-function approximations can be used
to deal efficiently with the infinite state space.

C. Q-value Linear Approximation

To deal with continuous state spaces, Q-value approximation
techniques are used. Linear-function-approximation is widely
used because of their simplicity and mathematical tractability
[20]. Since the battery and buffer states of sensor node Si
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evolve based on its own state and action and the actions of
neighboring nodes, the Q-value linear-function-approximation
of the EH-WSN is defined as:

Q̂π(xt,at;θ) =
M∑
i=1

Φ(i)(x
(i)
t ,at) θ

(i), (8)

where Φ(i)(·) = [Φ
(i)
1 (·), . . . ,Φ(i)

p (·)] is a vector of p features,
and θ(i) = [θ

(i)
1 , . . . , θ

(i)
p ]T is a vector of p parameters

(weights). Devising feature functions based on the prob-
lem/solution structure is more efficient than using general
approximation techniques as shown in [20], [25]. The Q-
value linear approximation using the standard fixed-sparse-
representation (FSR) technique is presented in the Appendix.
In general, the state and action constraints can be handled
either using the reward function or the feature functions. In
this paper, binary feature functions are used to handle the
constraints as in [25]. The proposed feature functions using
sensor node Si state vector x(i)

t are divided into two groups:
In one group, the feature is a function of the sensor node action
vector a(i)

t and is not affected by the actions of other sensor
nodes, whereas in another group, the feature is a function
of the action vector at of all sensor nodes. Given a state
vector x(t)

i for i = 1, . . . ,M , the features Φ
(i)
1 (x

(i)
t ,a

(i)
t ) to

Φ
(i)
6 (x

(i)
t ,a

(i)
t ) belong to the first group of features, whereas,

the feature Φ
(i)
7 (x

(i)
t ,at) belongs to the second group as

explained next.
The first feature function Φ

(i)
1 (x

(i)
t ,a

(i)
t ) deals with the

transmit power feasibility constraint and the battery capacity
constraint of sensor node Si given as [25]:

Φ
(i)
1 (x

(i)
t ,a

(i)
t ) =

1, if E(i)
t − T (P

(i)
t + P

(i)
c ) +H

(i)
t ≤ E

(i)
max

∩ T (P
(i)
t + P

(i)
c ) ≤ E(i)

t ,

0, otherwise.

(9)

This feature is active when the transmit power (action) of
sensor node Si satisfies the feasibility and battery capacity
constraints.

The second feature is developed based on the idea of model
predictive control, where sensor node Si plans for a horizon
of several time-slots but applies the optimal action at the
first time-slot. For simplicity and based on the available state
information, the horizon length is chosen to be two time-slots.
The average value of the channel gain is used in the second-
time slot assuming the same relay link is used. Sensor node Si
maximizes the sum of the data transmitted over two successive
time-slots. Therefore, the optimal power allocation ρ

(i,j)
t can

be computed as:

ρ
(i,j)
t =min

{
( 1

λ
(i)
t

− 1

γ
(i,j)
t

)+,
E

(i)
t

T − P
(i)
c

}
if Y (i,j)

t = 1,

0, otherwise,
(10)

where (x)+ = max(x, 0), and the water-level λ(i)t is computed

as:

λ
(i)
t =

(1

2

[E(i)
t +H

(i)
t

T
− P (i)

c +
1

γ
(i,j)
t

+
1

γ
(i,j)
t

])−1
, (11)

where γ
(i,j)
t =

∑t
l=0 γ

(i,j)
l

t+1 is the mean-value estimated us-
ing past channel realizations. The second feature function
Φ

(i)
2 (x

(i)
t ,a

(i)
t ) can be expressed using optimal power allo-

cation ρ(i,j)t as:

Φ
(i)
2 (x

(i)
t ,a

(i)
t ) =

1, if
∑
j∈Ni δ

⌊
ρ
(i,j)
t

δ

⌋
= P

(t)
i ,

0, otherwise,
(12)

where byc is the integer part of y. A third feature function
Φ

(i)
3 (x

(i)
t ,a

(i)
t ) can be devised based on battery overflow.

Sensor node Si is encouraged to transmit with maximum
available power when the harvested energy at time-slot t is
larger than the battery capacity. Hence, Φ

(i)
3 (x

(i)
t ,a

(i)
t ) can be

expressed as [25]:

Φ
(i)
3 (x

(i)
t ,a

(i)
t ) =


1, if H(i)

t + E
(i)
t − TP

(i)
c ≥ E(i)

max

∩ δ
⌊
E

(i)
t −TP

(i)
c

Tδ

⌋
= P

(i)
t

0, otherwise
(13)

The communication of sensor node Si with the sink node
SM+1 for M + 1 ∈ Ni using maximum available energy may
reduce the delay at the buffer of sensor node Si. In this regard,
feature function Φ

(i)
4 (x

(i)
t ,a

(i)
t ) can be defined as:

Φ
(i)
4 (x

(i)
t ,a

(i)
t ) =


1, if M + 1 ∈ Ni ∩ Y

(i,M+1)
t = 1

∩ P (i)
t = δbE

(i)
t −TP

(i)
c

Tδ c,
0, otherwise.

(14)

The next-hop that maximizes the data rate should be selected.
This feature is captured by the function Φ

(i)
5 (x

(i)
t ,a

(i)
t ) ex-

pressed as:

Φ
(i)
5 (x

(i)
t ,a

(i)
t ) =

1, if
∑
j∈Ni Y

(i,j)
t r

(i,j)
t ≥ max

k∈Ni
r
(i,k)
t ,

0, otherwise.
(15)

The data transmission feasibility constraint of sensor node
Si is captured by feature function Φ

(i)
6 (x

(i)
t ,a

(i)
t ) defined as

[25]:

Φ
(i)
6 (x

(i)
t ,a

(i)
t ) =

{
1, if

∑
j∈Ni Y

(i,j)
t r

(i,j)
t ≤ C(i)

t ,

0, otherwise.
(16)

The buffer feasibility constraint is handled using feature func-
tion Φ

(i)
7 (x

(i)
t ,at) given as:

Φ
(i)
7 (x

(i)
t ,at) =


1, if C(i)

t + d
(i)
t +

∑
j|i∈Nj

Y
(j,i)
t r

(j,i)
t

−
∑
j∈Ni Y

(i,j)
t r

(i,j)
t ≤ C(i)

max.

0, otherwise.
(17)

This feature function is affected by the actions of other nodes.
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Algorithm 1 SARSA Algorithm
1: Set t = 0.
2: Given αt, βt, and εt.
3: Initialize h(i,j)t , ∀j ∈ Ni and i = 1, . . . ,M .
4: Initialize θt randomly, and ηπt = 0.
5: Observe the state xt.
6: Select the action at according to the εt-greedy policy.
7: Apply the action at.
8: while Stopping criterion is not satisfied do
9: for t = 0, . . . ,K − 1 do

10: Measure the reward Rt+1.
11: Observe the next state xt+1.
12: Select the action at+1 according to the
13: εt+1-greedy policy.
14: Update θt and ηπt using (19) and (22), respectively.
15: Apply the action at+1.
16: end for
17: end while

D. SARSA Algorithm
SARSA Algorithm is an incremental centralized (single-

agent) online-policy learning algorithm for (near) optimal
control. It estimates the Q-value-function from the states that
are visited and earned rewards [20], [21]. The action vector at
at time-slot t is selected using an εt-greedy policy, where at
time-slot t, the action at is selected randomly from the action
space A with probability εt and greedy with probability 1−εt
as:

at = arg max
A∈A

Q̂π(xt,A;θt). (18)

The exploration probability εt decreases with the learning-time
in order to find the optimal (greedy) policy [20]. SARSA al-
gorithm uses gradient-descent to update the parameters vector
θ as:

θt+1 = θt + αtδt∇θQ̂π(xt,at;θt), (19)

where αt is the learning rate that needs to satisfy the Robbins-
Monro conditions [21], δt is the temporal difference (TD) error
computed as [20]:

δt = Rt+1 − ηπt + Q̂π(xt+1,at+1;θt)− Q̂π(xt,at;θt),
(20)

and ∇θQ̂π(.) is the gradient of the approximated Q-value with
respect to θ computed as:

∇θQ̂π(.) = [Φ(1)(·), . . . ,Φ(M)(·)]T . (21)

The average value ηπt is updated as [20]:

ηπt+1 = ηπt + βtδt, (22)

where βt is the learning rate that needs to satisfy the Robbins-
Monro conditions [21]. The SARSA algorithm is summarized
in Algorithm 1. The SARSA algorithm for EH-WSNs needs to
be implemented at the central unit. The inputs to the SARSA
algorithm at time-slot t are the initial parameters’ vector θt,
and the state vector xt. The output is the action vector at. The
central unit disseminate the optimal policy to all sensor nodes
at each time-slot. The sate vector and the parameters vector
are then updated, and the reward is computed. The operation

of the SARSA algorithm consists of two phases: the learning
phase, where the parameters’ vector θ is learned followed by
a testing phase. In both phases the state vector of all senor
nodes is acquired by the central unit. The stopping criteria for
the learning phase of the algorithm is chosen as the number
of episodes N .

E. D-SARSA Algorithm

The centralized SARSA algorithm entails high complexity
and may be prohibitive for implementation and for online op-
eration especially for large scale EH-WSNs for the following
reasons. First, the communication overhead is high and the
delay is unpredictable, since the central unit needs to receive
the state vector xt at each time-slot before taking an action and
each sensor node needs to receive its action vector from the
central unit at each time slot. Second, the action space grows
exponentially with the number of sensor nodes (using discrete
power action). Therefore, the action selection at each time-
slot is computationally expensive. To overcome the complexity
of the centralized SARSA, a multi-agent RL is proposed to
devise a distributed transmission policy, where each sensor
node adapts its operation over time in response to its own state
information, statistical information and exchanged information
from its neighboring sensor nodes.

To devise a multi-agent RL algorithm, each of the feature
functions of sensor node Si needs to be a function of its
own action and state vectors, statistical information, and
information exchanged from its neighboring nodes. In this
sense, features Φ

(i)
1 (·) to Φ

(i)
6 (·) satisfy these requirements.

However, feature Φ
(i)
7 (·) does not satisfy these requirements,

since it depends on the actions of other sensor nodes.
In the proposed distributed RL algorithm, we assume that

sensor node Si uses the average received data from previous
time slots instead of the received data (action) at the current
time slot, i.e., an estimate of the actions of other sensor
nodes are used. Following assumption, allows to decouple
the action selection at each sensor node. Therefore, feature
function Φ

(i)
7 (x

(i)
t ,at) is replaced by the feature function:

Φ̃
(i)
7 (x

(i)
t ,a

(i)
t ) =


1, if C

(i)
t + d

(i)
t +D

(i)

t

−
∑
j∈Ni Y

(i,j)
t r

(i,j)
t ≤ C(i)

max,

0, otherwise,
(23)

where D
(i)

t is the mean-value of the received data from the
other sensor nodes estimated using previous time-slots as

D
(i)

t =

∑t−1
l=0

∑
j|i∈Nj

Y
(j,i)
l r

(j,i)
l

t .

The buffer state C(j)
t for j ∈ Ni is assumed to be known at

sensor node Si by information exchange, which allows sensor
node Si to estimate the average remaining data in the buffer
of sensor node Sj . An additional feature function related to
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the buffer state of neighboring node Sj can be expressed as:

Φ
(i)
8

(
x
(i)
t , C

(j)
t |∀j∈Ni ,a

(i)
t

)
=


1, if C(j)

t +D
(j,i)

t + r
(i,j)
t ≤ C(j)

max,

where j : Y
(i,j)
t = 1,

0, otherwise,

(24)

where D
(j,i)

t is the average data remaining at the buffer of
sensor node Sj excluding the arrived data from sensor node Si,

which is computed as: D
(j,i)

t =
∑t−1
l=0 (C

(j)
l+1−C

(j)
l −Y

(i,j)
l r

(i,j)
l )

t .
In the proposed multi-agent (distributed) RL algorithm, the

action space of each sensor node Si for i = 1, . . . ,M is
affected only by the number of its neighbors |Ni| and the
number of discrete power levels. Sensor node Si for i =
1, . . . ,M selects its action at time-slot t from its action space
A(i) whereas, in the centralized RL algorithm, the action space
scales exponentially with the number of sensor nodes, i.e.,
A = A(1) × · · · × A(M). In the proposed distributed RL
algorithm, each sensor node determines its action without the
need for a central unit. The approximated Q-value Q̂πi (·) of
sensor node Si is obtained as:

Q̂πi
(
x
(i)
t , C

(j)
t |∀j∈Ni ,a

(i)
t ;θ(i)

)
= Φ(i)

(
x
(i)
t , C

(j)
t |∀j∈Ni ,a

(i)
t

)
θ(i), (25)

where sensor node Si features’ vector is given as: Φ(i)(·) =

[Φ
(i)
1 (·), . . . ,Φ(i)

8 (·)] and sensor node Si parameters’ vector is
defined as θ(i) = [θ

(i)
1 , . . . , θ

(i)
8 ]T .

A distributed-value-function for multi-agent systems is pro-
posed in [39], based on the Q-learning algorithm using dis-
counted reward. The Q-learning requires additional computa-
tional cost at each parameter update step since the Q-value
of the greedy policy needs to be computed. In this paper, the
distributed RL algorithm is based on the SARSA algorithm
using average reward. At time-slot t, sensor node Si observes
its own state x(i)

t and the buffer states of its neighboring nodes
C

(j)
t , ∀j ∈ Ni. The action a(i)

t is then selected using εt
greedy policy, where the action a(i)

t is selected randomly with
probability εt from the action space A(i) and greedy with
probability 1− εt as:

a
(i)
t = arg max

A∈A(i)
Q̂πi
(
x
(i)
t , C

(j)
t |∀j∈Ni ,A

)
. (26)

Sensor nodes Si for i = 1, · · · ,M apply their selected actions,
and then sensor node Si observes/computes its reward R

(i)
t+1

which is designed to have a cooperative behavior. The reward
function of sensor node Si is aligned with the EH-WSN wide
objective of minimum delay transmission of all sensor nodes.
The reward function R(i)

t+1 of sensor node Si is defined based
on information exchange with neighboring nodes as:

R
(i)
t+1 = C(i)

max − C
(i)
t+1 +

∑
j∈Ni& j 6=M+1

(C(j)
max − C

(j)
t+1). (27)

Sensor node Si assigns equal weights for the data remaining
in its own buffer and the data remaining in the buffers of
its neighbors. Without loss of generality, different weights
can be assigned as in [39], [40]. It can be shown that the

Algorithm 2 D-SARSA Algorithm
1: Set t = 0.
2: Given αt, βt and εt.
3: Initialize D(i)

t , h
(i,j)

t , D
(j,i)

t , ∀j ∈ Ni.
4: Initialize θ(i)t randomly, and η(i)t = 0.
5: Observe the state x(i)

t .
6: Communicate with Sj , and get C(j)

t , ∀j ∈ Ni.
7: Select the action a(i)

t according to the εt-greedy policy.
8: Apply the action a(i)

t .
9: while Stopping criterion is not satisfied do

10: for t = 0, . . . ,K − 1 do
11: Observe the next state x(i)

t+1.
12: Communicate with Sj , and get C(j)

t+1, ∀j ∈ Ni.
13: Measure the reward R(i)

t+1.

14: Update D(i)

t , h
(i,j)

t and D
(j,i)

t , ∀j ∈ Ni.
15: Select the action a(i)

t+1 according to the
16: εt+1-greedy policy.

17: Communicate with Sj , ∀j ∈ Ni and get ∆
Q̂πj
t .

18: Compute δ(i)t .
19: Update θ(i)t and η(i)t using (28) and (29).
20: Apply the action a(i)

t+1.
21: end for
22: end while

proposed reward (utility) R(i)
t+1 has an associated potential

function Rt+1 (the centralized RL algorithm reward function)
based on the potential games framework [41], [42]. Therefore,
the optimization of the individual reward functions leads to a
local optimal of the potential function under certain conditions.

D-SARSA uses gradient-descent to update the parameters’
vector θ(i) as:

θ
(i)
t+1 = θ

(i)
t + αtδ

(i)
t ∇θ(i)Q̂πi (x

(i)
t , C

(j)
t |∀j∈Ni ,a

(i)
t ;θ

(i)
t ),

(28)
where ∇θ(i)Q̂πi (·) is the gradient of the approximated Q-value
with respect to θ(i) and δ(i)t is the TD error computed as:

δ
(i)
t =R

(i)
t+1 − η

(i)
t + ∆

Q̂πi
t +

∑
j∈Ni&j 6=M+1

∆
Q̂πj
t , (29)

Sensor node Si computes the difference in the Q-value ∆
Q̂πi
t

as:

∆
Q̂πi
t = Q̂πi

(
x
(i)
t+1, C

(j)
t+1|∀j∈Ni ,a

(i)
t+1;θ

(i)
t

)
− Q̂πi

(
x
(i)
t , C

(j)
t |∀j∈Ni ,a

(i)
t ;θ

(i)
t

)
. (30)

Sensor node Si communicates with its neighboring nodes

at each time-slot to acquire ∆
Q̂πj
t for j ∈ Ni. After computing

the difference, sensor node Si computes the TD error δ(i)t and
updates the average value η(i)t as:

η
(i)
t+1 = η

(i)
t + βtδ

(i)
t . (31)

The D-SARSA algorithm is summarized in Algorithm 2.
The inputs to the D-SARSA algorithm at time-slot t are
the initial parameters’ vector θ(i)t , and the state vector x(i)

t .
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Fig. 2. Small EH-WSN. The data of sensor node S1 at each time slot
can be routed either to sensor node S2 or S3.

The output is the action vector a(i)
t . Then the sate vector is

updated, the reward is computed and the parameters vector is
updated. It’s worth mentioning that, the operation of the D-
SARSA algorithm consists of two phases: the learning phase,
where the parameters’ vector θ(i) is learned followed by a
testing phase. In the testing phase, only the buffer state needs
to be exchanged between neighboring sensor nodes at each
time-slot. Usually, the duration of the testing phase is longer
compared to the duration of the learning phase. The network
will return to the learning phase only if the environment has
changed. In addition, for the proposed D-SARSA algorithm,
the information exchange is only between neighboring nodes
and not between each sensor node and the sink node.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, numerical results for the performance of
the proposed SARSA and D-SARSA algorithms are presented.
The comparison is made with the offline algorithm. For each
sensor node the harvested energy is modeled as a uniform ran-
dom variable over [0, Hmax]. The maximum harvested energy
Hmax depends on the size and the efficiency of the solar panel,
the environmental condition (incidence solar radiation and the
month of the year), Hmax = 2.5 µJoules as in [23]. As the pro-
cessing power is assumed to be constant over the transmission
duration, the processing power doesn’t affect the convergence
of the RL algorithms and the convexity of the optimization
problem. Without loss of generality, the processing power is
assumed Pc = 0. The channel coefficients h(i,j)t are modeled
as zero mean complex Gaussian with variance ν

dκij
, with dij is

the separating distance between sensor nodes Si and Sj , κ=4
is the propagation loss factor and ν = 0.01 is the propagation
gain. The data arrival at each sensor node is modeled as a
Poisson random variable with arrival packet rate λ = 0.6 and
packet size of 200 bits. Transmission is organized in time-
slots with duration T = 5 ms, the transmission bandwidth
W = 2 MHz, and the noise power σ2 = −70 dBm. For the
RL algorithms, we consider 2000 independent realizations, in
each realization, the episode length K = 100. The learning
rates αt = 5 × 10−3 and βt = 1 × 10−3 and the εt-greedy
probability εt = 1× 10−3.

First we consider a small EH-WSN that consists of three
sensor nodes and a sink node as depicted in Fig. 2. This allows
to compare the centralized SARSA, the D-SARSA, with the
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Fig. 4. EH-WSN with M = 5. The solid line represents a possible
route between two sensor nodes.

offline algorithm obtained using CVX MATLAB toolbox [43].
Each sensor node is equipped with a finite battery storage
E

(i)
max = 2Hmax µJoules and a finite buffer size C(i)

max = 100
Kbits. Fig. 3 shows the average reward as a function of
episodes for the offline, centralized SARSA, the D-SARSA,
with the offline algorithm. As clear in this figure, the gap of
the average reward of the proposed centralized and distributed
RL algorithms using power-step values of δ = 0.05Emax/T
and δ = 0.01Emax/T is negligible compared to the average
reward of the offline solution.

To study the effect of the maximum buffer and maximum
battery capacities on the reward function, a slightly larger
EH-WSN consists of M = 5 sensor nodes is considered as
shown in Fig. 4. Sensor nodes {S1, . . . , S5} are aiming to
transmit their data to the sink node S6. Figs. 5 & 6 show
the average reward of the distributed RL algorithm and the
offline approach as a function of the number of episodes for
different maximum buffer and maximum battery capacities.
The average reward increases by increasing the maximum
buffer capacity. Similarly, the average reward increases by
increasing the battery maximum capacity.

The average reward of the distributed RL algorithm using
the proposed binary features is compared with average reward
using a hasty approach, where each sensor node uses the
maximum available transmission power and selects randomly
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the next-hop. As shown in Fig. 7, the average reward of
the distributed RL outperforms the hasty approach. Similarly,
the average reward of the distributed RL algorithm using
the proposed binary features is compared with the average
reward using standard FSR technique. The average reward of
the proposed binary features slightly outperforms the average
reward of the FSR. The number of parameters for the FSR
depends on the dimension of the state space, the step size
of each dimension and the dimension of the action space of
each sensor node, whereas, the number of parameters of the
proposed feature functions is fixed. In general, the number
of tiles/reference points of FSR is problem dependent [20].
In this paper, the number of tiles of the FSR is selected
with a step size δm = 0.05xmax(m), where xmax(m) is the
maximum value of the state in the mth dimension. The number
of parameters of the standard FSR technique at sensor node Si
is |Ai|

∑5+|Ni|
m=1 . For example, the number of parameters for

the standard FSR technique for sensor node S1 is 40×7×20.
The computation complexity of the proposed binary features
is much lower than the computational complexity of the FSR.

To show the scalability of the proposed distributed RL
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Fig. 8. System layout for M = 225, 49,&9 senor nodes.

algorithm, M EH-sensor nodes are randomly distributed is
considered as shown in Fig. 8. The number of nodes are
chosen as M = 9, 49&225 sensor nodes as shown in the
marked rectangular areas. The network is constructed in away
to make sure that each sensor node has at least one path
to the sink node. For M = 225 the maximum number of
neighboring nodes is 7. The power step size δ = 0.05Emax/T

and Emax = 2Hmax Joules. The buffer capacity C
(i)
max = 100

Kbits, and the packet arrival rate λ = 0.4 with packet size
of 200 bits. The average reward normalized by the number of
sensor nodes is shown in Fig. 9. It is clear that the proposed
distributed RL is able to empty the buffers in the network.
A maximum average reward of 100 Kbits per sensor will be
obtained if all buffers are fully empty.

V. CONCLUSION

In this paper, RL framework for online operation of multi-
hop EH-WSNs was proposed aiming to minimize the average
delay. The optimal policy comprises of optimal power control
and optimal next-hop selection. Centralized and distributed
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SARSA based RL algorithms were devised. Differential Q-
value function approximation using linear function approxi-
mation with binary features was proposed for the centralized
and distributed algorithms. The reward function is defined as
the number of empty spaces in all data buffers. The centralized
RL algorithm learns the approximated Q-value function of
the network at a central unit using the state information of
all sensor nodes at every time-slot. On the other hand, the
distributed RL algorithm learns the approximated Q-value
function locally using sensor node’s state information and
state information of neighboring nodes. The distributed RL
algorithm can play a key role in the deployment of large scale
EH-WSNs, since the computational complexity scales only
with the moderate number of neighboring nodes. The average
reward of the distributed RL algorithm is comparable with the
average reward of the centralized RL algorithm (confirmed for
a small scale network).

APPENDIX I
FSR FEATURE FUNCTIONS

Fixed-sparse representation (FSR) is one of the simplest
techniques to represent continuous state spaces, where each
state is represented using binary codes in each dimension
[20], [44]. Let the state vector x(i)

t of sensor node Si for
i = 1, . . . ,M at the tth time-slot be represented by a d

dimensional vector, where x
(i)
t (m) corresponds to the mth

component, hence x(i)
t = [x

(i)
t (1), x

(i)
t (2), . . . , x

(i)
t (d)]T . Let

nm be the number of tiles that represent the mth dimension of
the state space. The tiles in the mth dimension are generated
using a step size δm. A given feature function is equal to one if
the corresponding variable lies in that tile and zero otherwise.
The FSR vector is expressed as:

Φ(i)(x
(i)
t ) =

[
Φ

(i)
1,1(x

(i)
t ), . . . ,Φ

(i)
1,n1

(x
(i)
t ), . . . ,

Φ
(i)
2,1(x

(i)
t ), . . . ,Φ

(i)
2,n2

(x
(i)
t ), . . . ,

Φ
(i)
d,1(x

(i)
t ), . . . ,Φ

(i)
d,nd

(x
(i)
t )
]T
, (A1)

where,

Φ(i)
m,n(x

(i)
t ) =

{
1 if x(i)t (m) ∈ T (i)

n (m),

0, otherwise,
(A2)

and T (i)
n (m) is the nth tile of the mth dimension of the

state space of sensor node Si for n = 1, . . . , |nm|, and
m = 1, . . . , d. The total number of FSR features per action is
computed as [44]:

∑d
m=1 nm.
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