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ABSTRACT

In this work, we investigate activity recognition using mul-
timodal inputs from heterogeneous sensors. Activity recog-
nition is commonly tackled from a single-modal perspective
using videos. In case multiple signals are used, they come from
the same homogeneous modality, e.g. in the case of color and
optical flow. Here, we propose an activity network that fuses
multimodal inputs coming from completely different and het-
erogeneous sensors. We frame such a heterogeneous fusion as
a non-local operation. The observation is that in a non-local
operation, only the channel dimensions need to match. In the
network, heterogeneous inputs are fused, while maintaining
the shapes and dimensionalities that fit each input. We outline
both asymmetric fusion, where one modality serves to enforce
the other, and symmetric fusion variants. To further promote
research into multimodal activity recognition, we introduce
GloVid, a first-person activity dataset captured with video
recordings and smart glove sensor readings. Experiments on
GloVid show the potential of heterogeneous non-local fusion
for activity recognition, outperforming individual modalities
and standard fusion techniques.
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Figure 1: Non-Local Fusion. Recognizing an activity from
a video clip with complex dynamics states a challenging
problem. Combining video inputs with a sensor (here, a
smart-glove) in a non-local manner allows us to recognize
activities, even when they are not visible on camera.

1 INTRODUCTION

This paper proposes an approach that can recognize activities
captured by multiple modalities from vastly different sensors.
Activity recognition from videos has gained a lot of traction
in recent years, due to advances in deep networks designed
for videos [7, 17, 18, 58, 59, 62]. These advances are fueled
by the introduction of new large-scale video datasets such as
Moments in Time [42], Kinetics [32], and ActivityNet [28].
The ability to automatically recognize activities and events
is an important component in video surveillance [1, 43, 46],
virtual/augmented reality [5, 24], and human-robot interac-
tion [3, 25, 41]. Here, we aim to improve activity recognition
by incorporating information that is missed or inherently
invisible purely from videos.

Often human actions look like a magic trick - a sleight
of hand, for a machine vision method. Certain hand move-
ments or operated objects that define an activity can be
occluded or misinterpreted for video inputs, see Figure 1.
A fixed camera might miss an important visual clue due to
occlusions or insufficient resolution, and a body-mounted
camera, having a limited field of view, might not capture an
activity region of interest. On the other hand, sensor-based
activity recognition relies on time sequence data collected
by various wearable sensors while missing the necessary con-
text information about the surrounding environment may
successfully recognize the differences between certain body
dynamics [9]. The information extracted from sensors can
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help reliably differentiate between activities with pronounced
dynamics, where the context and surroundings do not define
the action category. The challenge in combining videos and
wearable sensors for activity recognition is that they are het-
erogeneous in two aspects; the type of information coming
from the inputs is different and the modalities do not match
in their spatio-temporal shapes and topologies.

In this paper, we propose heterogeneous non-local fusion,
a fusion component that allows for end-to-end learning of
activities in a unified multimodal network. We seek to learn
complementary information across modalities, without the
need to match the shapes and dimensions of the modalities.
We do so by generalizing non-local neural networks, originally
designed for self-attention [59]. The key behind our fusion
is that non-local operations can be performed on different
inputs; the spatio-temporal dimensions do not even need
to match. Only the channel dimensions need to be of equal
size. The result is a network that combines modalities, while
abiding to their heterogeneous nature. We outline both asym-
metric and symmetric variants of the fusion. To promote
research into heterogeneous multimodal activity recognition,
a new dataset is proposed: GloVid. The GloVid dataset con-
tains samples captured by both mounted cameras and smart
gloves in a maintenance setting. As illustrated in Figure 1,
smart gloves provide information hidden from video cameras
and vice versa. Experiments on the new dataset show that
our fusion provides a direct boost over the individual modal-
ities and outperform common fusion techniques. The code,
as well as preprocessed multimodal features and labels for
samples in GloVid will be made accessible upon acceptance.

2 RELATED WORK

2.1 Video-based Activity Recognition

Traditionally, activity recognition from video sequences was
tackled through crafted spatio-temporal features [15, 36, 38]
aggregated over videos [34, 57, 60]. Within the last years,
video recognition with deep spatio-temporal networks has
become the dominant research direction. Well-known network
architectures include two-stream networks [20, 48], long-term
temporal convolutions [52], and multiplier networks that mo-
tion and appearance pathways through multiplicative gating
[19]. Their main idea is to learn representations from both
RGB and optical flow streams to learn effective space and
time features. More recently, 3D convolutional networks have
shown to be state-of-the-art for video-based activity recog-
nition. Inflated 3D networks (I3D) use expanded 2D filters
and pooling layers trained on image classification [7]. 3D
residual connection networks (Resnet3D) proved to be ade-
quate in case of sufficient amount of data as they are prone
to over-fitting [26]. 3D convolutional networks can also be
factorized into (2+1)D networks for parameter efficiency [51].
All such approaches are trained on large-scale datasets such
as ActivityNet [28], Kinetics [32], Moments in Time [42], and
Sports-1M [30]. Such datasets provide hundreds of activity
classes with hundreds/thousands of samples per class. As an
extension to current approaches, the non-local network has

gained popularity as a way to deal with the non-local na-
ture and long-range dependencies in videos [59]. A non-local
block follows a convolutional operation and learns relations
between different positions (in space, time, or space-time)
of a video representation. In [10], cross-modal attention is
performed on homogeneous modalities, namely RGB and
optical flow, to learn non-local relations. In our work, we rely
on state-of-the-art 3D convolutional networks to represent
video modalities and we are inspired by the non-local block,
which we generalize to operate on multiple inputs simultane-
ously, even when their shapes and dimensions do not directly
correspond.

2.2 Sensor-based Activity Recognition

Wearable sensors such as contact sensors, RFIDs (Radio
Frequency Identification), IMU (Inertial Measurement Unit)
composed of accelerometers, gyroscopes, magnetometers, and
microphones have been used to detect events and activities
[23, 35, 45, 61, 63]. Such sensors are attached to different body
parts depending on their functions and application domain.
Hand mounted sensors such as smart rings, gloves, watches,
bands, and smartphones have recently also gained traction
for activity understanding [4, 39, 49]. Initial work focused
on recognition from traditional machine learning approaches,
such as decision trees, support vector machines and random
forests [13, 16, 21, 40, 50]. For tasks such as tracking in
sports activities, intensity and count repetition estimation
even suffices [2, 56]. Nonetheless, deep learning solutions
have achieved state-of-the-art performance in the context of
activity recognition, where training data is represented by
temporal sensor recordings. For activity classification (sensor
readings classification) one-dimensional convolutions and long
short-term memory units have been used as basic building
blocks [11, 29, 64, 65]. Such networks learn local correlations
with 1D convolutions and long-term dependencies with the
LSTM module from raw sensor input.

Combining sensor inputs within a single deep network is a
less commonly tackled problem. Sensory combinations have
been studied using late convolutional fusion followed by fully-
connected layers [31], using convolutional LSTMs on top of
sensory-independent representations [44], or through multi-
objective regularization on different embedding combinations
for sensory-specific networks [54]. Such approaches focus on
fusing low-dimensional sensors, ignoring high-dimensional
signals such as videos. Multimodal fusion for activity recog-
nition with videos is generally homogeneous, e.g. fusing color
and optical flow streams [10, 47]. In heterogeneous settings,
the non-video sensor generally has the same spatial and
temporal dimensionalities, such as with RGB-D cameras,
allowing for a fusion along those dimensions [8, 12]. When
shapes and topologies also do not match, a late fusion of
final scores from independently trained single-modal net-
works is performed [33, 55]. In this work, we seek to fuse
heterogeneous inputs from videos and smart gloves, which
have non-matching spatio-temporal topologies. Rather than
fusing the inputs after independent training, we propose a



fusion mechanism that integrates both signals within a single
network. Fermüller et al. [22] also employ videos and hand
sensors, but do so to predict finger forces from videos. We
focus on fusing both signals for activity recognition.

3 NON-LOCAL FUSION NETWORK

3.1 Problem Formulation

For the problem of multimodal activity recognition, we aim
to learn a function 𝜑(𝜇1, 𝜇2) ↦→ 𝑐, where 𝜇1 and 𝜇2 denote
the heterogeneous sensory inputs of a sample and 𝑐 ∈ 𝐶
denotes the predicted class label from a set 𝐶 = {1, ..., |𝐶|}.
A challenge in this problem setting is that both the input
dimensionality and shape of the modalities vary. The number
of dimensions typically varies from 1-dimensional (a temporal
sequence of sensor readings) to 3-dimensional (space and time
dimensions of a video). Moreover, the temporal and spatial
extents of the modalities may not be aligned. To tackle this
problem, we propose to formalize the function 𝜑(·, ·) as a
network that is able to fuse the video modalities in spite of
their non-matching shapes and dimensions.

To train our proposed network, we are given a training

set of 𝑁 double-modality tuples {(𝜇(𝑖)
1 , 𝜇

(𝑖)
2 , 𝑐(𝑖))}𝑁𝑖=1. Our

network consists of two branches that perform representa-
tion learning of the individual modalities: 𝜓(𝜇1, 𝜇2) ↦→ (𝑥, 𝑦),
followed by a novel heterogeneous non-local fusion block to
combine the representations. The block is followed by a few
final layers, resulting in |𝐶|-dimensional output representa-
tion. The output representation is fed to a soft-max to obtain
activity probabilities, which are compared to the ground
truth activity labels and optimized using the cross-entropy
loss. The key to getting an effective network is in the fusion
of the heterogeneous video representations.

3.2 Non-Local fusion

Non-local block. For our heterogeneous fusion, we take
inspiration from the non-local block, which was originally
designed for the purpose of self-attention in deep networks
[59]. The idea behind the non-local block is to compute
relations between different space-time locations of the same
instance. The standard non-local operation is defined as
follows:

𝑧𝑖 =
1

𝐶(𝑥)

∑︁
∀𝑗

𝑓(𝑥𝑖, 𝑥𝑗)𝑔(𝑥𝑗), (1)

where 𝑥 is an input signal, 𝑖 is the index of an output position,
𝑗 enumerates all other possible positions, and 𝑓 computes
a scalar relation between 𝑖 and all 𝑗. Function 𝑔 computes
a representation of the input signal at position 𝑗 and 𝐶(𝑥)
is a normalization factor. In this formulation, each spatio-
temporal location is enforced by representations from all
other locations. Here, we seek to generalize the idea of the
non-local operation to take in multiple inputs.

Heterogeneous non-local fusion. The idea behind our
heterogeneous non-local fusion is to generalize the non-local
block in two aspects. First, we change the perspective from

x:	D1	×	D2	×	...	×	Dp	×	N

D1	×	D2	×	...	×	Dp	×	K

y:	S1	×	S2	×	...	×	Sq	×	M

S1	×	S2	×	...	×	Sq	×	K

φ	:	p-D	conv
K	filters

	θ	:	q-D	conv
K	filters

D1	D2	...	Dp×	K

D1	D2	...	Dp	×	S1	S2	...	Sq	 S1	S2	...	Sq×	K

q-D	conv
K	filters

D1	×	D2	×	...	×	Dp	×	K
p-D	conv
N	filters

D1	×	D2	×	...	×	Dp	×	N

K×	S1	S2	...	Sq

Softmax

Figure 2: The Non-Local Fusion block. x and y - two
modality feature tensors with varied shape. At each stage
we show the shape of a feature with the last value being the
number of channels (in 𝐷1 ×𝐷2 × ...×𝐷𝑝 ×N is the number
of channels).

⨂︀
and

⨁︀
denote matrix multiplication and

tensor-sum.
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Figure 3: 3 variants of the Non-Local Fusion. (1) and
(2) - the fusion is built upon 1st or 2nd modality. (3) Both
modalities are augmented with the non-local fusion.

self-attention to cross-modal attention by using two multi-
modal inputs, rather than the same input twice. Second, we
show how to utilize the non-local operation in such a way
that the spatio-temporal dimensions do not need to match in
order to perform the fusion. At a high-level, this operation



changes to:

𝑧𝑖 =
1

𝐶(𝑥𝑖, 𝑦)

∑︁
∀𝑗

𝑓(𝑥𝑖, 𝑦𝑗)𝑔(𝑦𝑗), (2)

𝑓(𝑥𝑖, 𝑦𝑗) = 𝑒𝜃(𝑥𝑖)
𝑇 𝜑(𝑦𝑗), (3)

𝐶(𝑥𝑖, 𝑦) =
∑︁
∀𝑗

𝑓(𝑥𝑖, 𝑦𝑗). (4)

In this formulation, 𝑖 is the dimensional index of the first
modality (𝑥) and 𝑗 of the second modality (𝑦). In other
words, modality 𝑦 enforces the features of modality 𝑥. This
is done through function 𝑓 , which should now model the
relationship between 𝑥 and 𝑦 and 𝑔 that maps 𝑦 into the
same embedding space. Our observation for function 𝑓 is that
the two modalities only need to match across the channel
dimensions, all other dimensions can be different. To that
end, we model 𝑓 as a network block, where 𝑥 is a tensor
of shape 𝐷1 × 𝐷2 × ... × 𝐷𝑝 × 𝑁 , where 𝑝 is the number
of dimensions, {𝐷𝑘}𝑘=1..𝑝 dimensions’ sizes, and 𝑁 is the
number of feature maps (channels). In similar fashion, 𝑦 is
a tensor of shape 𝑆1 × 𝑆2 × ...× 𝑆𝑞 ×𝑀 , where 𝑝 and 𝑞 do
not necessary match.

Our non-local fusion block is shown in Figure 2. First,
functions 𝜃(.) and 𝜑(.) perform convolution across all non-
channel dimensions for 𝑥 and 𝑦 respectively, both using 𝐾
feature maps. This ensures an alignment across the channel
dimension. Consequently, we perform a matrix product along
the channel dimension of both output tensors, followed by
a soft-max to obtain a form of multimodal attention. After-
wards, we perform a matrix product over the non-channel
dimensions of 𝑦 to factor out those dimensions, resulting in
a transformed version 𝑧 of input 𝑥 by the hand of 𝑦. Then,
we perform a convolutional operation ℎ over the non-channel
dimensions of the transformed version of 𝑥 to revert it back
to the original number of 𝑁 channels. Lastly, we obtain the
block output by adding a residual connection to the input 𝑥
itself:

𝑧 = ℎ(𝑧(𝑥, 𝑦)) + 𝑥. (5)

The method can be extended to more then two modalities
by applying the non-local operation to all the combinations
of the inputs:

𝑧 = ℎ1(𝑧1(𝑥, 𝑦1))+ℎ2(𝑧2(𝑥, 𝑦2))+...+ℎ𝑟(𝑧𝑟(𝑥, 𝑦𝑟))+𝑥, (6)

where ℎ1, ℎ2, ...ℎ𝑟 compute relations between the primal
modality 𝑥 and all the others 𝑦1, 𝑦2, ...𝑦𝑟.
Asymmetric and symmetric fusion. By design of our
non-local fusion, one modality is transformed using the repre-
sentations of the other modality. To investigate which fusion
ordering is preferred for activity recognition, we outline three
variants, as shown in Figure 3. The first two directly follow
from the non-local fusion itself; one modality is the main
modality, the other serves as transformer. Next to these
asymmetric fusions, we also investigate a symmetric fusion,
where the non-local fusion is done with both modalities as
main, followed by a classification block. Since the symmetric
fusion keeps the corresponding shapes of input tensors we

need an extra fusion block for the final classification. We test
concatenation of the corresponding non-local fusion outputs
followed by a fully-connected layer.

4 EXPERIMENTAL SETUP

4.1 Dataset

The GloVid dataset. To promote research into activity
recognition from multiple heterogeneous sensors, we introduce
a novel dataset. The dataset consists of eight activities that
heavily involve hand dynamics, centered around elevator
maintenance. The context and background are similar for all
activities, which makes recognition challenging since static
appearance is not sufficient.

For multimodality, the dataset is constructed by capturing
both first-person video information and sensor readings from
gloves. The dataset studies a typical workflow procedure,
with eight activities that commonly occur during such a
workflow. The activities are: neutral activity, pressing a but-
ton, unplugging the cables, plugging the cables, disassembling
a button, assembling a button, using a screwdriver, and using
a hummer. A visual example for each activity is shown in
Figure 4.

Dataset details. The dataset was recorded with help of
19 subjects, each performing a maintenance procedure for an
elevator panel. Each subject takes 16 to 20 minutes to com-
plete the list of steps, sometimes taking breaks in-between,
which are assessed as neutral activity. For data collection
we use an RGB camera and a pair of Captogloves [6]. Each
glove is equipped with flex sensors for the five fingers, an
accelerometer, a gyroscope, a magnetometer, and a pressure
sensor for the thumb. The videos are collected with a chest
mounted Gopro camera (Gopro HERO7, 1080x1920, 60fps),
which provides an egocentric view of the workflow. Before
performing the task, each participant clapped their hands
indicating the start of the recording for the camera and the
smart-gloves.

The GloVid dataset consists of 3800 video-glove samples,
200 for each subject. Original 60fps videos were downsampled
to 15fps. Fixed-sized chunks of 79 frames are extracted to
be used as individual examples, amounting to roughly 5.3
seconds. Smart-glove sensory reading are extracted to match
the duration of video chunks, corresponding to 134 readings
at 25Hz. Throughout the experiments, we use the flex sensors
in each finger (5D vector), the accelerometer (3D vector) and
the pressure sensor (1D vector) for each hand, resulting in a
18-dimensional vector. This way each sample in the GloVid
dataset consists of a pair - (79× 224× 224× 3 and 134× 18),
that represents a video chunk and smart glove readings and
a one-hot encoded activity class.

4.2 Network Architectures

To obtain the video features we use the I3D network pre-
trained on the Kinetics dataset [7]. Each video sample is
represented by the feature of shape 10×7×7×832 extracted
from the ’Mixed 5b’ layer of the I3D network. The glove



Figure 4: A visual example for each of the eight activities in the new GloVid dataset. The examples show the
potential of recognition from multiple modalities, since the activities are determined by spatio-temporal hand dynamics and
visual context.
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Figure 5: Architecture of the glove network. Smart
gloves generate 1D sensory signals, which are used as input for
a network which performs several 1D convolutions, followed
by an LSTM and fully-connected layer to obtain video-level
representations.

subnetwork is trained from scratch on raw sensor readings
and follows the architecture similar to [65]: we use three
1D convolution+max-polling operations followed by a bidi-
rectional LSTM block, a fully-connected layer, and a final
soft-max classification layer. Figure 5 shows an overview of
the glove network architecture. For the feature extraction
we use the output of the LSTM layer of shape: 28 × 64,
where first number represents the time steps, and second -
dimensionality of the feature space.

4.3 Training and Evaluation Metrics

The Glovid dataset consists of recordings of 19 subjects. We
test all the models using cross-subject evaluation: each model
is trained 19 times, each time 16 subjects are in the training
set 2 in the validation set and the remaining one serves as a
test set. We use standard cross-entropy loss and RMSProp
optimization (learning rate: 0.001, exponentially weighted
average: 0.9) with batch size: 8. We terminate the training if
validation set accuracy does not improve for 20 epochs. The
mean accuracy across the 19 subject-specific initiations is
calculated for each model.

5 EXPERIMENTAL RESULTS

5.1 Comparative evaluation

First, we perform evaluations to (i) compare our fusion to
individual modalities, (ii) compare the three proposed fusion
variants, and (iii) compare our fusion with standard fusion
approaches.

Comparison to individual modalities. In the first eval-
uation, we compare our proposed non-local fusion to the

Accuracy (%) Subject SD

Single modality
2D ResNet50 [27] 46.4 8.5
Smart gloves 68.1 10.5
Videos (I3D [7]) 76.3 7.9

Non-local fusion
Asymmetric (glove-led) 80.1 8.2
Asymmetric (video-led) 80.8 7.7
Symmetric 80.2 8.0

Table 1: Evaluation of modalities on GloVid. All our
non-local fusion variants boost the performance over videos
and smart gloves individually. The 2D ResNet50 baseline
can not compete due to lack of temporal information. The
asymmetric fusion where smart gloves enforce the features of
the main video modality performs slightly better than the
other variants.

Accuracy (%) Subject SD

Average score fusion 78.9 8.2
Late feature concatenation 79.3 7.9
This paper 80.8 7.7

Table 2: Comparison of fusions on GloVid. Both stan-
dard fusion baselines do not perform as well as our approach,
highlighting the potential of our fusion for mulitmodal activ-
ity recognition.

performance of the individual modalities, to gain insight into
the effect of fusion. We compare our non-local fusion to three
individual modalities. The first two are the modalities that
are used in the fusion, namely the smart gloves and the video
deep network. We also compare to a 2D ResNet50 baseline
pretrained on Imagenet [14], which combines the 2D features
from the last convolution layer with 3D global pooling for
classification. This baseline serves to show whether the activ-
ities in the dataset can be recognized from static appearance
only.

We show the result in Table 1. Individually, the modal-
ities obtain an accuracy of 46.4% (2D ResNet50), 68.1%
(Smart gloves), and 76.3% (Video I3D). The video-based
model works best, which can partially be attributed to the
scale and pretraining in the I3D network. The 2D ResNet50



scores much lower, showing that this dataset can not easily
be solved with static representations, temporal understand-
ing is vital. We fuse the gloves and videos, resulting in an
accuracy of 80.8%, an improvement of 12.7 percent point
(p.p.) compared to smart gloves and 4.5 p.p. compared to
videos. These results clearly indicate that non-local fusion
provides a direct boost to the recognition performance, as the
complementary information from the heterogeneous sensors
is elevated. As we train all the models 19 times to get a
subject specific performance we compute the cross-subject
standard deviation (SD). The SD values are relatively high
(7.7-10.5) which shows that cross-subject differences, such as
camera position, hand size and preferred body pose have a
strong effect on the performance. Fusion helps to reduce this
effect.

Comparison of fusion variants. The non-local fusion
block is a non-symmetrical operation, it outputs activations
of the first modality re-weighted by the second. These leads
to 3 possible fusion setups: video-led, gloves-led, and a sym-
metrical fusion. Table 1 shows that all three variants outper-
form the individual modalities. The fusion led by the video
modality and augmented with smart gloves readings performs
slightly better and is therefore chosen for the future eval-
uation. This outcome follows the results for the individual
modalities, where the video-based approach performed best.

Comparison to standard fusion. Finally, we compare
our approach to two conventional fusion approaches, namely
average score fusion and late feature concatenation. For av-
erage score fusion, we train independent networks for both
modalities and average the activity probability scores for test
videos. For late feature concatenation, we flatten and concate-
nate features from the Mixed 5b layer of the video network
and LSTM layer of the glove network. On top of the concate-
nation, we add a fully-connected soft-max classification layer.
Table 2 shows that the proposed fusion method outperforms
the baselines achieving 80.8% accuracy, compared to 78.9%
and 79.3%. This result shows that for the same inputs and
network architectures, our approach is capable of learning
more complementary representations.

5.2 Quantitative analysis

To gain more insight into the workings of our approach, we
perform three quantitative evaluations, focused on per activ-
ity effect of the fusion, the effect of the embedding layer size,
and the effect of hand visibility.

Per activity improvement of our fusion. Figure 6 de-
picts the improvement of the fusion model over the glove
and video models with respect to activity categories. We find
that for all the categories the non-local fusion is equal or
better than the unimodal solutions. For the neutral activity,
the low improvement over videos and high improvement over
gloves can be explained by the non-information nature of the
glove readings for recognizing neutral behaviour. The high
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Improvement %
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assembling buttons
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Figure 6: Per activity improvement of our fusion. The
activities are sorted by their improvement over the video
modality. The improvement over gloves are bigger, while no
activity is negatively impacted by the fusion.
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Figure 7: Effect of embedding layer size. The x-axis
is in logarithmic scale and depicts the fraction of the input
number of channels (a fraction of the 832 input dimensions).
We find that the more dimensions in the embedding layer,
the better performance, although a low dimensionality can
already obtain high scores.

improvement of the using screwdriver category reasons that
both modalities require extra information that is learned by
the proposed fusion.

Effect of embedding layer size. We evaluate the model
performance by varying the embedding space dimensionality
K. Typically in a non-local block K is chosen to be half of
the number of channels in the input (which is 832 in our case)
[10, 59]. We test the following fractions of the number of input
channels: 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2.
Figure 7 shows the result. Even with a low dimensionality
in the embedding space, we obtain high activity recognition
scores. Note, that even with K = 3 for the embedding space
with 77.4% accuracy, we outperform the individual video
(76.3%) and glove (68.1%) modalities.

Effect of hand visibility. Every activity category is as-
sociated with a number of hands involved in the activity. Due
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Figure 8: The effect of hand visibility. The occluded
hands affect the performance of models differently: the video-
based model is strongly effected by the visibility of hands,
while the gloves-based is logically not effected by the hands
visibility. Our non-local fusion can more robustly deal with
all scenarios.

to occlusions and varying view points, the number of hands
visible in every video clip may be smaller than expected.
This might result in miss-classification of samples when using
videos only. Here, we investigate how hand visibility affects
the behaviour of the models. We do so by estimating the
number of missing hands for every sample, which is calcu-
lated with help of a RetinaNet [37] trained to detect gloves.
For each video frame, between 0 and 2 hands are detected
and we assign the most dominant number of hands over the
frames to the video. Then we compute the difference between
the estimated number of hands and the expected number of
hands for every video.

Figure 8 highlights that the biggest improvement in the
non-local fusion is achieved for the videos where both hands
are occluded, i.e. for two missing hands. Such occlusions can
happen due to the nature of the activity or due to the limits
of the camera scope. Visual absence of hands effects the
video-based model the most. Our non-local fusion improves
the most over the video-based model when more hands are
missing, highlighting the effect of heterogeneous fusion with
smart gloves. The fusion aims to get the best out of both
worlds.

5.3 Qualitative analysis

Lastly, we perform two qualitative analyses to show what
kind of attention is learned across the two modalities, as well
as highlighting success and failure cases of the fusion.

Visualizing cross-modal attention. Non-local fusion ex-
tends self-attention mechanism [53] to multiple modalities,
where the relations of two inputs exhibit the features of the
leading modality. To visualize that we compute activations of
the relation function in the embedding space. Figure 9 shows
examples of the most dominant relation regions between the
video and the smart gloves. We observe that the relevant

regions of hands and interactions are highlighted by the non-
local fusion and the time segments of low visual information
are suppressed.

Success and failure cases. We also show success and fail-
ure cases of our approach. Figure 10 provides three success
cases, showing that our fusion model can deal with samples
where one or both unimodal solutions failed to give a correct
prediction. For the first two examples of the using screwdriver
activity, the fusion model correctly recognizes the category
despite the fact that glove information (first example) or vi-
sual information (second example) can be insufficient on their
own for a correct prediction. The model can even successfully
obtain correct predictions when both individual modalities
give an incorrect prediction (third example).

The non-local fusion does not always get the best of both
worlds. Figure 11 shows two failure cases for Using screw-
driver. In both examples one of the two modalities obtain
the correct activity on their own. When fused however, the
combined model makes incorrect predictions, as the fusion is
persuaded by the incorrect modality. Overall, we conclude
that our non-local fusion can overcome mistakes induced by
individual modalities, but does not always predict the desired
activity.

6 CONCLUSION

In this work, we present a generalized method of fusing two
heterogeneous modalities in a non-local fashion - a step for-
ward from a unimodal non-local operation. We demonstrate
how our non-local fusion approach can accommodate repre-
sentations of various sizes and shapes. The effectiveness of
non-local fusion is demonstrated on a new dataset, dubbed
GloVid, which records both videos and readings from smart
gloves. Experimental evaluation shows that our heterogeneous
non-local fusion can capture the complementary nature of
the vastly different modalities, without compromising their
shapes and topologies. We see non-local fusion as a progres-
sion towards effective multi-input networks that operate on
various information domains.
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Figure 9: Examples of activations in the non-local fusion block. We show the activation matrix relative to video
(Y-axis: 10 time points) and smart gloves (X-axis: 14 time points) summed up across the 2D space dimensions of the video.
For each two time points we can access the visual information relevancy of the corresponding frame by fixing the time in the
output of the function f in Eq. 2 and mapping the activations to the frame. We expand some of the relation points into the
heatmaps to show the highlighted information. (Note that absolute values in the time-to-time matrices do not represent the full
interaction behaviour due to the summation operation.)

Prediction: (Glove: Using hammer, Video: Using screwdriver, Fusion: Using screwdriver)

Prediction: (Glove: Using screwdriver, Video: Disassembling buttons, Fusion: Using screwdriver)

Prediction: (Glove: Neutral activity, Video: Disassembling buttons, Fusion: Using screwdriver)
t

Figure 10: Success examples of the fusion visualized for the Using screwdriver samples. (top row) Hand-screwdriver
interaction is visible, but the glove-based network doesn’t recognize the grabbing action. (middle row) Interaction is missing
from the frame, but hands dynamics allows to correctly recognize the class. (bottom row) Interaction is visible in the first
samples, but missing in the remaining ones, fusion model successfully recognizes distributed features of the class.

Prediction: (Glove: Pressing buttons, Video: Using screwdriver, Fusion: Pressing buttons)

Prediction: (Glove: Using screwdriver, Video: Assembling buttons, Fusion: Plugging cables)

t

Figure 11: Failure examples of the fusion visualized for the Using screwdriver samples.(top row) The hand-
screwdriver interaction is recognized by the video-based network, but the fusion model is persuaded by the glove recordings.
(bottom row) Fusion model fails to use the hands dynamics.
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