
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Zhu, Chao; Chiang, Yi-Han; Xiao, Yu; Ji, Yusheng
FlexSensing

Published in:
IEEE Internet of Things Journal

DOI:
10.1109/JIOT.2020.3040615

Published: 01/05/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Zhu, C., Chiang, Y.-H., Xiao, Y., & Ji, Y. (2021). FlexSensing: A QoI and Latency Aware Task Allocation Scheme
for Vehicle-based Visual Crowdsourcing via Deep Q-Network. IEEE Internet of Things Journal, 8(9), 7625-7637.
https://doi.org/10.1109/JIOT.2020.3040615

https://doi.org/10.1109/JIOT.2020.3040615
https://doi.org/10.1109/JIOT.2020.3040615

1

FlexSensing: A QoI and Latency Aware Task
Allocation Scheme for Vehicle-based Visual

Crowdsourcing via Deep Q-Network
Chao Zhu, Yi-Han Chiang, Yu Xiao∗ and Yusheng Ji

Abstract—Vehicle-based visual crowdsourcing is an emerging
paradigm where the visual data collected from dash cameras
are analyzed with the aim of measuring phenomena of common
interest. To ensure the efficiency in vehicle-based visual crowd-
sourcing, there remain at least two technical challenges. First,
to maximize the quality of information (QoI), which measures
the amount of information extracted from the collected data, the
context of data collection (e.g., camera position and orientation)
must be taken into account in the process of task allocation.
Second, intensive data collection from dense measurement points
is key to ensure timely and accurate sensing of the targets of
interest, whereas there exists a trade-off between the amount
and rate of data collection and the computing and communication
resources required to fulfill the latency constraint. To solve these
challenges, we propose gathering and processing the collected
data at the edge of the network and design a context-aware
task allocation scheme, called FlexSensing, to jointly optimize
the QoI and processing latency. We target application scenarios
where commercial vehicles are turned into vehicular fog nodes
(VFNs). These nodes gather and process the visual data collected
from other vehicles within their coverage areas. The key idea of
FlexSensing is to determine the rate of data collection for each
sensing vehicle in the targeted area and to assign processing
tasks to VFNs based on the estimated QoI and the workload
of the VFNs. Given the excessive computational complexity of
task allocation in this context, we formulate task allocation as a
Markov decision process and apply a deep Q-network (DQN) to
learn the optimized task allocation strategies for increasing the
QoI of collected data while reducing the processing latency. To
evaluate the effectiveness of FlexSensing, we simulate the mobility
of different vehicles involved in the scenario at different times of
the day based on real-world traffic data collected from the city
of Helsinki and select a real-time object detection application
for a case study. As compared with the existing task allocation
strategies, the DQN-based task allocation strategies reduce the
average processing latency by up to 51% and increase the QoI
of the collected data by up to 34%.

Index Terms—Vehicular Fog Computing (VFC), Vehicle-based
Visual Crowdsourcing, Deep Q-network (DQN).

C. Zhu and Y. Xiao are with the Department of Communi-
cations and Networking, Aalto University, Espoo, Finland (e-mail:
{chao.1.zhu,yu.xiao}@aalto.fi).

Y.-H. Chiang is with the Department of Electrical and Information Sys-
tems, Osaka Prefecture University, Osaka, Japan (email: chiang@eis.osakafu-
u.ac.jp)

Y. Ji is with the Information Systems Architecture Science Research Divi-
sion, National Institute of Informatics, Tokyo, Japan (e-mail: kei@nii.ac.jp).

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 815191,
Academy of Finland under grant number 317432 and 318937, JSPS KAK-
ENHI under grant number JP18KK0279, JP20H00592, and JP20K19794.
∗The corresponding author is Yu Xiao.

I. INTRODUCTION

Vehicle-based visual crowdsourcing is an emerging com-
puting paradigm that utilizes the images/video collected from
vehicles to measure phenomena of common interest, such
as real-time traffic information and high-definition maps for
autonomous driving [1], [2]. To accurately sense the targets
of interest in a timely way, a widely adopted approach is to
frequently collect high-quality visual data from dense mea-
surement points. However, collecting and processing a large
amount of visual data from moving vehicles require a tremen-
dous number of communications and computing resources.
In addition, latency constraints on time-sensitive information
extraction require moving the computing resources closer to
where the data are generated.

This paper proposes FlexSensing, a task allocation scheme
that jointly optimizes the quality of information (QoI) and the
processing latency in the case of vehicle-based visual crowd-
sourcing. Here, the QoI measures the amount of information
extracted from the collected data [3]–[5]. It depends on the
context of the data collection, such as the position, orientation,
and moving speed of the cameras. In this paper, we take
object detection as an example of a visual-crowdsourcing-
based application and calculate the QoI as the number of pixels
covering the targeted objects in each image.

To provide low-latency processing for the collected vi-
sual data, we propose applying the concept of vehicular fog
computing (VFC) [6]. More specifically, we propose turn-
ing commercial vehicles into vehicular fog nodes (VFNs)
equipped with CPU/GPU and V2X modules and to utilize
these nodes for processing the visual data collected from
other vehicles within the range of one-hop communication. We
select commercial vehicles such as buses as carriers of VFNs
due to their large dimensions and sufficient power supply.

The core idea of FlexSensing is to minimize the data
collection rate for each sensing vehicle in the target area and to
optimize the task distribution among VFNs to reduce the pro-
cessing latency without degrading the QoI. We formulate this
optimization problem as a constraint-aware Markov decision
process (MDP) and leverage the advanced deep Q-learning
network (DQN) to solve the problem as described below.

First, we evenly divide an urban area into service zones
with a cellular base station in the center. The base station is
configured as the coordinator of the service zone and runs
a DQN agent. Second, we simulate the workload of VFNs
based on the spatiotemporal distribution of vehicular traffic,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

with the assumption that the VFN workload is proportional to
the density of vehicle traffic on the road. In the initial stage,
the DQN agents assign processing tasks to VFNs and select
the data collection rate for each sensing vehicle (i.e., data
collector) in a random manner. Gradually, based on the learned
variation pattern in the workload of VFNs and the observed
results of past decisions, the DQN agents learn and update the
task allocation strategies (i.e., the frame rate of data collection
for each sensing vehicle and the computing tasks assigned to
each VFN) toward specific application demands. Notably, the
learning process is purely based on experience, without any
predefined rules.

To evaluate the effectiveness of FlexSensing in terms of QoI
and processing latency, we simulate the scenario of vehicle-
based visual crowdsourcing using real-world vehicular traffic
data. We take an area of 1𝑘𝑚2 in the center of Helsinki for
the case study. Compared with the existing solutions, including
adaptive [7] and MUEECA [8] task allocation strategies, the
task allocation strategies provided by FlexSensing reduce the
processing latency by up to 51% and increase the QoI by up
to 34%. The contributions of this paper can be summarized as
follows.

• We develop FlexSensing, a DQN-based task allocation
scheme that jointly optimizes the QoI and processing
latency in vehicle-based visual crowdsourcing, taking
into account the spatiotemporal variation in the VFN
workload.

• We prove the effectiveness of FlexSensing through large-
scale simulation, using the profiles of a real-world object
recognition application and traffic data as the input.

The rest of the paper is organized as follows. Section II dis-
cusses the related works. Section III describes the system. The
system assumptions and problem formulation are presented in
Section IV. The methodology for seeking the optimal task
allocation strategies is described in Section V. We discuss
the evaluation configuration and the results in Section VI and
finally conclude this paper in Section VIII.

II. RELATED WORK

A. Vehicle-based Visual Crowdsourcing

With the wide adoption of dash cameras, several works
have been devoted to the study of collecting and processing
images/video from vehicles to measure common interests, such
as parking space detection [1], [9]–[16] and road surface
monitoring [17], [18]. Coric et al. [11] utilized ultrasonic
sensors and web cameras preinstalled on vehicles to identify
legal street parking spaces. Shi et al. [12] proposed a logistic-
regression-based method to evaluate the reliability of crowd-
sourced knowledge for real-time parking space information.
Grassi et al. [13] proposed parked-car localization algorithms
that fuse information from the camera, GPS and inertial
sensors of on-board mobile phones. Zhu et al. [14] analyzed
the feasibility of vehicle-based visual crowdsourcing based on
the exploration of the variation in parking space availability
and vehicular traffic in urban areas.

In addition to parking space detection, Qiu [15] et al.
proposed an augmented-reality-based system called AVR to

broaden a vehicle’s visual horizon by gathering and sharing
visual information from neighboring vehicles. Hara et al.
[16] identified street-level accessibility problems by combining
visual information from vehicle-based visual crowdsourcing
and Google Street View. Omer et al. [19] proposed a road
surface monitoring system based on GPS-tagged images for
distinguishing three types of snow coverage conditions: bare,
wheel track bare, and fully snow covered. Qian et al. [20]
presented a system for the classification of road conditions
using still frames taken from uncalibrated dashboard cameras.

Several works proposed applying vehicular fog comput-
ing (VFC) to the real-time analytics of crowdsourced dash
camera video. Zhu et al. [9] analyzed the feasibility of real-
time video crowdsourcing under the vehicular fog computing
architecture and tested VFC-based video crowdsourcing in
real-world vehicular traffic network scenarios in terms of
the network latency, packet loss ratio, and throughput. Ni
et al. [1] examined the architecture of fog-based vehicular
crowdsourcing with consideration of the security, privacy, and
fairness.

B. Task Allocation in VFC

Several research works have investigated task allocation
algorithms in fog/edge computing in terms of the minimization
of latency [21]–[26]. Qiao et al. [24] proposed utilizing the
graph-theory-based maximum weight independent set (MWIS)
to remove redundant tasks to guarantee low computational and
communication latency. Sun et al. [25] developed a multi-
armed bandit (MAB)-based task offloading framework to min-
imize the average offloading delay, in which vehicles are en-
abled to learn the potential task offloading performance of their
neighboring vehicles. Ning et al. [26] designed an Edmonds-
Karp-based algorithm to minimize the response delay for
traffic management by load balancing among the cloudlet and
fog nodes. Huang et al. [27] proposed an SDN-based vehicle-
to-vehicle (V2V) offloading method to solve computational
offloading problems in the highway environment, in which the
offloading performance, including offloading fraction, network
throughput and average lifetime, can be improved. To the best
of our knowledge, FlexSensing is the first joint optimization
method to provide QoI and data processing latency aware task
allocation strategies in vehicle-based visual crowdsourcing,
with consideration of the variation in fog node workload and
vehicular mobility.

III. SYSTEM DESCRIPTION

In this section, the related terms are defined, and an
overview of the process of FlexSensing is presented.

A. Related Terms

VFNs: The computing nodes carried by moving vehicles
(e.g., buses) with vehicle-to-everything (V2X) capacities. In
FlexSensing, the VFNs are responsible for visual data pro-
cessing.

Service Zones: Currently, urban areas in modern cities
are completely covered by cellular networks. Similar to [28],

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Zone HeadZone Head Data CollectorData Collector

PotholePothole

Dash Camera Coverage

VFNVFN

PotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholePotholeA

B

2

2

4

4

1

3

3

5

5

1 Geographic Information

Sensing Task & Processing Task

Task Allocation Strategy Update

Visual Data

Results Report

2

Fig. 1: Overview of FlexSensing.

[29], we divide an urban area into service zones of the same
size based on the locations of the base stations [30]. The
base station located in the center of each zone is selected to
coordinate all the VFNs within the zone. We call the coor-
dinator the zone head. With the existing cellular registration
mechanisms, vehicles always inform the zone head when they
enter or leave the zone. In addition, VFNs periodically report
their moving directions, locations, and available computing
and communication resources to the zone head. Note that the
locations of targets of interest are known beforehand and that
the locations and dynamics of other vehicles are monitored by
the system.

Data Collectors: In FlexSensing, we assume that all ve-
hicles are equipped with dash cameras and V2X modules.
Phenomena of common interest, such as the condition of the
road surface, can be measured by collecting and analyzing
the visual data captured by cameras installed on the vehicles.
We consider any vehicle whose view covers a specific target
of interest to be a data collector. For illustration, we choose
crowdsourced road surface monitoring as an example. As
shown in Fig.1, the pothole on the road surface is in the field
of view of the dash camera installed on red vehicle B. Thus,
red vehicle B becomes a data collector.

Customer Vehicles: A vehicle is defined as a customer
vehicle of a VFN within its communication range. Customer
vehicles running vehicle applications (e.g., real-time lane
changing assistance) can request computing services from
VFNs. Note that a vehicle can be a data collector and a
customer vehicle at the same time. As shown in Fig.1, both
green vehicle A and red vehicle B are customer vehicles of
the VFN on the left.

Crowdsourcing Tasks: We define two types of crowd-
sourcing tasks in FlexSensing: visual data collection and real-
time data processing. As shown in Fig.1, to monitor the
condition of a road surface, the zone head periodically assigns
crowdsourcing tasks to VFNs within the service zone. More
specifically, the visual data captured by data collectors within
the service zone are transferred to selected VFNs through V2V
connections and processed there in real time.

VFN Workload: For simplicity, we assume that all the
customer vehicles run the same visual processing tasks and
generate service demand at the same rate. Thus, the workload
of a VFN can be estimated by the number of customer vehicles

within the communication range, which is closely related to
the density of vehicle traffic on the road.

Processing Latency: The larger the amount and the higher
the rate of data collection are, the greater the number of
computing resources required to process the data. We assume
that multiple processes can be run in parallel on each VFN and
that the number of parallel processes depends on the number
of tasks to be processed simultaneously. Furthermore, the
parallel processes are allowed to share CPUs and other system
resources. Therefore, with a limited number of computing
resources, the larger the number of processes running on
the VFN is, the smaller the number of computing resources
allocated to each process and the longer the executing time
for each process. In FlexSensing, we use processing latency
to denote the average executing time of processes running on
the VFN.

Data Collection Rate and QoI of Data: To accurately
sense the targets of interest (e.g., road surface or parking
spaces) in a timely manner, a widely adopted approach is
to frequently collect high-quality visual data from dense
measurement points. In FlexSensing, we evaluate the frame
rate selected for transferring the visual data as a metric of the
data collection rate.

Depending on the moving speed, orientation and position of
the vehicle in question, the QoI, which depends on the quality
and content of the collected visual data, varies. The definition
of QoI is application-specific. In this work, we choose object
detection as an example processing task. In this case, we
propose measuring the QoI of crowdsourced visual data by
using the number of pixels covering the targets of interest in
each image frame. In practice, when the camera is closer to
the target, or when the resolution is higher, the number of
pixels covering the targets of interest is expected to increase.

System Reward: In FlexSensing, the QoI is highly likely to
increase when more data are collected, whereas the processing
latency will also increase with the data collection rate. To
address the balance, we define a system reward, which decays
along with the processing latency and increases with the
QoI. In FlexSensing, the system reward unifies the processing
latency and the QoI and can be tuned according to application-
specific requirements. For example, if an application running
on VFNs is more latency sensitive, the system reward will be
more heavily weighted in favor of the processing latency, and
vice versa.

B. Process of Vehicle-based Visual Crowdsourcing
Fig.III illustrates the vehicle-based visual crowdsourcing

process in FlexSensing. The whole process consists of four
operations.

• Information Collection. Once a crowdsourcing task ar-
rives, the zone head first collects the information of the
data collectors and VFNs within the service zone. The
geographic information of the involved vehicles, such as
the location, speed and driving direction, are collected and
gathered at the zone head. The VFNs are also required
to report their workload information.

• Task Allocation Strategy Update. Based on the collected
information, the zone head learns and updates the task

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

allocation strategy, in which each data collector in the
service zone is asked to transmit the camera-captured
visual data to a selected VFN with a proper frame rate.
Although desirable, it is challenging to achieve an optimal
task allocation strategy due to the massive scale of data
collectors, diversified variation of the VFN workload,
and uncertain movement of vehicles. To this end, we
make effective use of the advanced DQN to tackle the
key challenges therein. The zone head maintains a DQN
agent, which has no prior knowledge in the beginning
but progressively learns to optimize the task allocation
strategy based on the experienced observed performance.

• Visual Data Collection and Processing. Once the task
allocation strategy is confirmed, each data collector tries
to build a V2V connection with the selected VFN and
starts to transmit the visual data at a specific frame rate.

Once a frame is completely transferred, the VFNs
process it in real time using object detection technolo-
gies (e.g., CNN [31]). For example, parked vehicles are
recognized and calculated to detect free parking spots,
and faces of suspicious persons are featured for crime
scene reconstruction.

• Results Reporting. Due to the mobility of vehicles, VFNs
may leave the current service zone and enter another one
before a frame is completely processed. In this case, the
VFNs report the results to the new zone head, who then
hands over the results to the previous one through the X2
interface in LTE/LTE-A [32].

IV. SYSTEM ASSUMPTION AND PROBLEM FORMULATION

In this section, we first introduce the system assumptions.
Then, we model the FlexSensing system and present the
optimization framework. The notations and definitions are
summarized in Table I.

A. System Assumptions

1) Crowdsourcing Task and Task Allocation Strategy: In
this paper, we assume that the crowdsourcing tasks arrive at
the zone head one by one and at a fixed rate. We discretize a
day (24 hours) into decision epochs, each of which is of equal
duration 𝛿 (in seconds) and is indexed by an integer 𝑗 ∈ Z+.

During a decision epoch 𝑗 , we consider a service zone
including a set V 𝑗 = {1, ...,𝑉 } of VFNs and a set W 𝑗 =

{1, ...,𝑊 } of data collectors. A VFN is assigned to each data
collector. Data collectors transfer the collected visual data to
the assigned VFN, where the data are processed in real time.
Moreover, we assume that the frame rate for data collection
can be adjusted and include optional frame rates in a set
H = {1, ..., 𝐻 } and ℎ ∈ Z+. Without loss of generality, we
assume that the greater ℎ ∈ H is, the higher the frame rate
for data transfer.

As illustrated in Section III, at the beginning of decision
epoch 𝑗 , the zone head collects the relevant information of
vehicles and sends a joint control command (𝑐𝑤, ℎ𝑤) to each
data collector, where 𝑐𝑤 ∈ V 𝑗 denotes the VFN responsible
for collecting visual data from data collector 𝑤 and ℎ𝑤 ∈ H
is the selected frame rate level. Specifically, the data collector

TABLE I: Notations and definitions

Notations Definitions
𝑗 decision epoch

𝑤,W 𝑗 data collector at decision epoch 𝑗 , set
𝑣,V 𝑗 VFN at decision epoch 𝑗 , set
𝑡, T 𝑗 target of interest at decision epoch 𝑗 , set
ℎ,H frame rate level, set
𝑐𝑤 VFN responsible for collecting the visual data

from data collector 𝑤

ℎ𝑤 frame rate level selection for data collector 𝑤

(𝑐𝑤 , ℎ𝑤),Y 𝑗 joint command for data collector 𝑤, set
(𝑥𝑤 , 𝑦𝑤), 𝜃𝑤 , 𝑠𝑤 coordinates, driving direction and speed of the

data collector 𝑤

(𝑥𝑣, 𝑦𝑣), 𝜃𝑣, 𝑠𝑣 coordinates, driving direction and speed of the
VFN 𝑣

R effective transmission range between the VFN
and data collector

(𝑥𝑡 , 𝑦𝑡) coordinates of target of interest 𝑡
𝑔𝑤𝑡 effective travel distance of the data collector 𝑤

on the target of interest 𝑡
𝔻𝑤𝑣 connected duration between the data collector 𝑤

and the VFN 𝑣

𝔻𝑤𝑡 effective coverage duration between the data col-
lector 𝑤 and the target of interest 𝑡

𝑟, 𝜂 effective range, field-of-view of the data collector
dash camera

𝑓 , F𝑤 effective frame transferred by the data collector
𝑤, set

𝑙𝑓 depth of 𝑓 𝑡ℎ frame transferred by the data col-
lector 𝑤

𝜃 𝑓 orientation of 𝑓 𝑡ℎ frame transferred by the data
collector 𝑤

P𝑤 total number of pixels on a target of interest in
all frames collected from the data collector 𝑤

𝑃
𝑗
𝑣 total number of processes executed by VFN 𝑣

𝐶
𝑗
𝑣 number of customer vehicles surrounding VFN 𝑣

at decision epoch 𝑗

𝑁𝑣 (ℎ𝑤) number of processes occupied by the crowdsourc-
ing task when the frame rate level is ℎ𝑤

ζ𝑣 (𝑃 𝑗
𝑣) processing latency when 𝑃

𝑗
𝑣 processes are being

executed on VFN 𝑣

𝑃 (𝑙𝑓 , 𝜃 𝑓) number of pixels on a specific target of interest
in the 𝑓 𝑡ℎ frame

𝑣 average distance between vehicles surrounding
the target of interest

𝐵 (𝑣) block probability when the average distance be-
tween vehicles surrounding the target of interest
is 𝑣

𝑤 transfers its captured visual data to VFN 𝑐𝑤 at a frame rate
ℎ𝑤 .

2) Connected Duration: We assume that all vehicles in the
service zone have their clocks synchronized (e.g., by using
the Network Time Protocol or their GPS clocks). Therefore,
if the motion parameters of a specific data collector and a VFN
(such as the speed and direction) are known, we can determine
the period of time during which the two vehicles remain
connected. Assume the data collector 𝑤 and the VFN 𝑣 are
within the transmission range R of the other. At the beginning
of decision epoch 𝑗 , let (𝑥𝑤, 𝑦𝑤) be the GPS coordinates
of the data collector 𝑤 and (𝑥𝑣, 𝑦𝑣) be that of the VFN 𝑣 .
Additionally, let 𝑠𝑤 and 𝑠𝑣 be the speeds and 𝜃𝑤 and 𝜃𝑣

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

(0 < 𝜃𝑣, 𝜃𝑤 < 2𝜋) be the moving directions of 𝑤 and 𝑣 ,
respectively. Then, during decision epoch 𝑗 , the amount of time
in seconds that the data collector and VFN stay connected,
D𝑤𝑣 , is calculated by:

D𝑤𝑣 =
−(𝑎𝑏 + 𝑐𝑑) +

√︁
(𝑎2 + 𝑐2)R2 − (𝑎𝑑 − 𝑏𝑐)2

𝑎2 + 𝑏2 , (1)

where

𝑎 = 𝑠𝑤 cos𝜃𝑤 − 𝑠𝑣 cos𝜃𝑣,
𝑏 = 𝑥𝑤 − 𝑥𝑣,

𝑐 = 𝑠𝑤 sin𝜃𝑤 − 𝑠𝑣 sin𝜃𝑣,
𝑑 = 𝑦𝑤 − 𝑦𝑣 .

Note that when 𝑠𝑤 = 𝑠𝑣 and 𝜃𝑤 = 𝜃𝑣 , 𝔻𝑤𝑣 becomes ∞.
3) Effective Coverage Duration: We use 𝑟 to denote the ef-

fective range of the dash cameras and 𝜂 to denote the field-of-
view (FoV, represented as an angle) of the camera lens. Then,
as illustrated in Fig.2, the tuple {(𝑥𝑤, 𝑦𝑤), 𝑟 , 𝜂, 𝜃𝑤} defines the
effective coverage in meters of the dash camera installed on
data collector 𝑤 . To simplify the notation, we use 𝑡 = (𝑥𝑡 , 𝑦𝑡)
and �̊� = (𝑥𝑤, 𝑦𝑤) to denote the location of the target of interest
𝑡 and the data collector 𝑤 , respectively. Therefore,

−→
�̊�𝑡 denotes

the view direction from the data collector to the target of
interested.

The target of interest 𝑡 is said to reside in the FoV of the
dash camera installed on data collector 𝑤 when two criteria
are satisfied. First, the distance between 𝑡 and 𝑤 should not
exceed the effective range of the dash camera:

|
−→
�̊�𝑡 | ≤ 𝑟 . (2)

Second, the angle between
−→
�̊�𝑡 and the vehicle driving direction

should be smaller than the FoV of the camera lens:

∠(
−→
�̊�𝑡,

−→
𝜃𝑤) ≤ 𝜂, (3)

where
−→
𝜃𝑤 is the unit vector in the direction 𝜃𝑤 .

We use T 𝑗 = {1, ...,𝑇 } to denote the set of targets of interest
at decision epoch 𝑗 . After knowing the location, speed and
direction of a specific data collector and the location of a
target of interest, we can estimate the effective travel distance
of the data collector toward the target of interest. Within the
effective travel distance, the target of interest should always
be included in the sight of the data collector. According to the
sine rule, the effective travel distance 𝑔𝑤𝑡 of the data collector
𝑤 on interested target 𝑡 can be calculated as:

𝑔𝑤𝑡 =
|
−→̊
𝑡�̊� | · sin (𝜂 − ∠(

−→̊
𝑡�̊�,

−→
𝜃𝑤))

sin𝜃𝑤
. (4)

To simplify the system model, we suppose that data collectors
will not change their driving direction and speed during a
specific decision epoch. Thus, the effective coverage duration
of data collector 𝑤 for target of interest 𝑡 can be calculated
as:

D𝑤𝑡 =
𝑔𝑤𝑡

𝑠𝑤
. (5)

Notably, in a real-world environment, more than one target
of interest may simultaneously reside in the FoV of a dash

Effective Coverage

of a Dash Camera

{

{

Blocked View

Fig. 2: Effective Coverage Duration.

camera installed on a data collector. In this case, we estimate
the effective coverage duration of the data collector based on
the location of the target of interest with the shortest distance
and neglect the others.

B. Problem Formulation
1) QoI: In FlexSensing, a data collector keeps sending

the captured visual data to the selected VFN at a required
frame rate since the connectivity with the VFN is established.
The transmission stops when the connection drops or when
the target of interest is out of the effective coverage of the
data collector’s dash camera. We use F𝑤 to denote the set of
effective frames transferred by the data collector w in a certain
data collection task. After the effective coverage duration D𝑤𝑡 ,
the connected duration D𝑤𝑣 and the selected frame rate ℎ𝑤 are
determined, the number of transferred frames |F𝑤 | from a data
collector 𝑤 can be calculated as:

|F𝑤 | = min{D𝑤𝑣,D𝑤𝑡 } · ℎ𝑤 . (6)

We use 𝑓 ∈ {1, ..., |F𝑤 |} to denote the sequence of frames
from the first frame captured at the beginning of the decision
epoch to the last one captured before the end of the effective
coverage duration or the end of the connected duration. The
data collector keeps collecting data when it is approaching the
target of interest defined in the data collection task. The index
𝑓 increases as the data collector approaches the target, which
also means that the number of pixels covering the target in
the image frames increases with 𝑓 .

To calculate the number of pixels covering the target of
interest in a specific frame, we need to estimate the frame
depth, which is the distance between the data collector and
the target of interest at the time when the frame is captured.
As illustrated in Fig.2, once the data collector speed 𝑠𝑤 and
the selected frame rate ℎ𝑤 are known, the depth 𝑙𝑓 of the 𝑓 𝑡ℎ

frame can be calculated as:

𝑙𝑓 =

√︄
|
−→̊
𝑡�̊� |2 + (𝑓 · 𝑠𝑤

ℎ𝑤
)2 − 2|

−→̊
𝑡�̊� | 𝑓 · 𝑠𝑤

ℎ𝑤
cos(∠(

−→̊
𝑡�̊�,

−→
𝜃𝑤)). (7)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

In addition to the captured distance, we can also obtain the
𝑓 𝑡ℎ frame’s orientation 𝜃 𝑓 , which is the angle between the
data collector and the target of interest at the time when the
frame is captured:

𝜃 𝑓 = sin−1
(
|
−→̊
𝑡�̊� | sin(∠(

−→̊
𝑡�̊�,

−→
𝜃𝑤))

𝑙𝑓

)
. (8)

We assume that there is only one type of target of interest
with a similar size (e.g., parking lots) and use 𝑃 (𝑙𝑓 , 𝜃 𝑓) to
denote the number of pixels on a specific target of interest in
the 𝑓 𝑡ℎ frame. Furthermore, in a real-world road scenario, the
FoV of the dash camera installed on a data collector may be
blocked by the vehicles in front, which reduces the number of
pixels covering the target of interest. As shown in Fig.2, a part
of the FoV of the black vehicle is blocked by the blue vehicle.
We define the block probability 𝐵(𝑣) ∈ [0, 1], where 𝑣 is the
average distance between vehicles surrounding the target of
interest. Then, the number of pixels on the target of interest
P𝑤 in all the transferred frames from data collector 𝑤 can be
calculated as:

P𝑤 = (1 − 𝐵(𝑣))
|F𝑤 |∑︁
𝑓 =1

𝑃 (𝑙𝑓 , 𝜃 𝑓). (9)

We explore 𝐵(𝑣) and 𝑃 (𝑙𝑓 , 𝜃 𝑓) by profiling the characteristics
of a dash camera in Section VI.

2) Processing Latency: The workload of VFNs increases
with the density of customer vehicles as well as the frame rate
of data collection. With a higher workload, more processes can
be created and run simultaneously on a selected VFN, resulting
in longer processing latency. We use 𝐶

𝑗
𝑣 to denote the number

of customer vehicles surrounding the VFN 𝑣 at decision epoch
𝑗 and assume that the VFN will create one process for every
𝑃𝑁 customer vehicles. Furthermore, we use 𝑁𝑣 (ℎ𝑤) to denote
the number of processes created for processing the visual data
collected from data collector 𝑤 . Therefore, the total number
of processes 𝑃

𝑗
𝑣 running on VFN 𝑣 is:

𝑃
𝑗
𝑣 = 𝐶

𝑗
𝑣/𝑃𝑁 +

∑︁
𝑤∈W 𝑗

𝑁𝑣 (ℎ𝑤) · 1{𝑐𝑤=𝑣 }, (10)

where 1{𝑐𝑤=𝑣 } = 1 if the data collector 𝑤 is assigned to the
VFN 𝑣 and 0 otherwise.

Finally, we use ζ𝑣 (𝑃 𝑗
𝑣) to denote the processing latency

when 𝑃
𝑗
𝑣 processes are simultaneously executed on VFN 𝑣 .

We explore 𝑁𝑣 (ℎ𝑤) and ζ𝑣 (𝑃 𝑗
𝑣) by profiling a visual object

recognition application in Section VI.
3) Optimization Objectives: In FlexSensing, we aim at

maximizing the QoI (defined as the number of pixels covering
targets of interest in the case of object detection) while
reducing the processing latency on VFNs. We use Y 𝑗 to denote
the set of joint control commands for all data collectors at
decision epoch 𝑗 . Thus, we formulate the optimization problem
as follows:

𝜉1 : max
(𝑐𝑤 ,ℎ𝑤) ∈Y 𝑗

𝜙
∑︁

𝑤∈W 𝑗

P𝑤 − (1 − 𝜙)
∑

𝑣∈V 𝑗 ζ𝑣 (𝑃 𝑗
𝑣)

|V 𝑗 | , 1 (11)

1By decoupling the maximization of QoI and the minimization of process-
ing latency, E.q. 11 becomes a bi-objective optimization problem and then a
Pareto-optimal solution is desirable.

where 𝜙 ∈ [0, 1] is a scalar weight.
Due to the massive number of participants, the time-varying

traffic situation and the diversified geographical information
of vehicles, it is difficult to solve the optimization problem
defined in Eq. 11 by model-driven approaches. Instead, we
prefer a data-driven solution, in which an optimized task
allocation strategy can be learned from experience.

V. CONSTRAINT-AWARE MDP AND DQN APPROACH

To maximize the QoI and reduce the processing latency
on VFNs, we adopt the constraint-aware Markov decision
process (MDP) framework proposed in [33]. In this section, we
first introduce the formulation of the constraint-aware MDP,
including its basic elements and the recursion function. Then,
we illustrate the methodology for seeking the optimal task
allocation strategy via the DQN.

A. MDP Formulation

1) State Space: We consider the practical online scenario
where data collectors and VFNs enter and leave a specific
service zone dynamically. Within a specific decision epoch 𝑗 ,
we assume that the numbers of vehicles involved (i.e., |W 𝑗 |
and |V 𝑗 |) remain the same.

Recall the system assumptions in Section IV. The state of an
individual data collector 𝑤 includes the geographical informa-
tion (e.g., location, speed and direction) and the configuration
of its dash camera (e.g., effective range and FoV) and is
denoted by a vector 𝒃𝒘 = {(𝑥𝑤, 𝑦𝑤), 𝜃𝑤, ϑ𝑤, 𝑟 , 𝜙}. Similarly,
the state of a VFN 𝑣 is presented by 𝒃𝒗 = {(𝑥𝑣, 𝑦𝑣), 𝜃𝑣, ϑ𝑣,𝐶 𝑗

𝑣 },
where the geographical information and the number of neigh-
boring customer vehicles are included. For a specific target of
interest 𝑡 , we use 𝒃𝒕 = {(𝑥𝑡 , 𝑦𝑡)} to denote its location state.
Then, the state information at decision epoch 𝑗 is included in
the set {{𝒃𝒘}, {𝒃𝒗}, {𝒃𝒕 }}, where 𝑤 ∈ W 𝑗 , 𝑣 ∈ V 𝑗 and 𝑡 ∈ T 𝑗 ,
respectively.

If we allow the system to assign |W 𝑗 | data collectors
simultaneously, the action space becomes |W 𝑗 | (|V 𝑗 |∗ |H |) and
increases exponentially with the increase of the data collectors.
It is extremely difficult for the model to converge during
training when |W 𝑗 | and |V 𝑗 | are large. Hence, we disjunct
the state information set {{𝒃𝒘}, {𝒃𝒗}, {𝒃𝒕 }} by splitting the
data collector set {𝒃𝒘}. Specifically, we divide the state at
a decision epoch into substates 𝑠𝑤 = {𝒃𝒘, {𝒃𝒗}, {𝒃𝒕 }}, where
one and only one data collector’s information is included in
a substate. Therefore, the state at a decision epoch 𝑗 can be
presented as X 𝑗 = {𝑠𝑤}, and the set X = {X 𝑗 }, 𝑗 ∈ [1, +∞) is
defined as the state space, which includes all possible states.

2) Action Space: As mentioned in Section IV, the zone
head makes a joint control command (𝑐𝑤, ℎ𝑤) for the data
collector 𝑤 at decision epoch 𝑗 , in which 𝑐𝑤 = 𝑣 (𝑣 ∈ V 𝑗)
indicates that the data collector 𝑤 transfers its visual data
to VFN 𝑣 under a frame rate ℎ𝑤 . With a higher frame rate,
the number of pixels covering the targets of interest in the
collected images will increase, and the computational cost will
grow. By training the substates one by one, we can obtain
a set of joint control commands Y 𝑗 = {(𝑐𝑤, ℎ𝑤)} for all
the data collectors at the decision epoch 𝑗 . We use the set

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Y = {Y 𝑗 }, 𝑗 ∈ [1, +∞) to denote the action space, which
includes all possible joint control commands.

3) Task Allocation Strategy: A task allocation strategy 𝚽

is defined as a mapping: 𝚽 : X 𝑗 ⇒ Y 𝑗 . More specifically,
the zone head determines a joint control command 𝚽(X 𝑗) =
(Φ(𝑐𝑤) (X 𝑗),Φ(ℎ𝑤) (X 𝑗)) = (𝑐𝑤, ℎ𝑤) ∈ Y 𝑗 for a data collector
𝑤 according to 𝚽 after observing the network state X 𝑗 at the
beginning of each decision epoch 𝑗 , where 𝚽 = (Φ(𝑐𝑤) ,Φ(ℎ𝑤)),
with Φ(𝑐𝑤) and Φ(ℎ𝑤) being, respectively, the crowdsourcing
task assignment and the frame rate selection.

4) System Reward: When applying joint actions Y 𝑗 to the
state X 𝑗 , an immediate system reward 𝑢 (X 𝑗 ,Y 𝑗) at epoch 𝑗

is received to quantify the task allocation experience for the
system. Considering the optimization problem 𝜉1 in Section
IV, we have two objectives, i.e., maximizing the QoI (in terms
of the total number of pixels covering the targets of interest
during object detection) while reducing the average processing
latency.

We define the immediate system reward of a substate as
follows:

𝑢 (𝑠𝑤, (𝑐𝑤, ℎ𝑤)) =

𝐴𝑊𝑟 , if 𝑐𝑤 > |V 𝑗 |,
𝜙P𝑤 − (1 − 𝜙) ∑

𝑣∈V 𝑗

ζ𝑣 (𝑃 𝑗
𝑣), otherwise.

(12)
Notably, during the training of MDP models, the dimensions

of the input states need to be fixed. However, due to the
mobility of VFNs, the dimensions of the states vary over
time. To address this problem, we set a constant number
𝐵 = max{V 𝑗 }, 𝑗 ∈ Z+ as the number of VFNs in the input
at each training step. Once a VFN is invalid (𝑐𝑤 > |V 𝑗 |),
a punishment 𝐴𝑊𝑟 is added, and this decision epoch is
terminated.

The reward of each decision epoch can be defined as the
summation of the rewards of the involved substates:

𝑢 (X 𝑗 ,Y 𝑗) =
∑︁

𝑤∈W 𝑗

(𝑠𝑤, (𝑐𝑤, ℎ𝑤)). (13)

Taking the expectation with respect to the per-epoch im-
mediate reward {𝑢 (X 𝑗 ,𝚽(X 𝑗)) : 𝑗 ∈ Z+} over the sequence
of states {X 𝑗 : 𝑗 ∈ Z+}, the expected long-term utility on an
initial state X1 can be expressed as:

U(X,𝚽) = 𝐸𝚽

[
(1−𝛾) ·

∞∑︁
𝑗=1

𝛾 𝑗−1 ·𝑢 (X 𝑗 ,𝚽(X 𝑗)) |X1 = X
]
, (14)

where X ∈ X, 𝛾 ∈ [0, 1) is the discount factor, and 𝛾 𝑗−1

denotes the discount factor to the (𝑗 − 1)𝑡ℎ power.

B. DQN Approach

According to Bellman’s optimality equation [34], the ex-
pected long-term reward can be obtained by solving the
following equation:

∀X ∈ X,U(X) = max
Y

{
(1 − 𝛾) · 𝑢 (X,Y)

+𝛾 ·
∑︁
X′

𝑃𝑟 {X′ |X,Y} · U(X′)
}
,

(15)

where 𝛾 ∈ [0, 1) is the discount factor, 𝑢 (X,Y) is the
immediate reward when a set of joint control actions Y ∈ Y
are performed under the state X, and X′ ∈ X is the subsequent
state of X.

The traditional solutions for Eq. 15 are based on the value
iteration or the policy iteration, which need the complete
knowledge of the state transition probability of the data
collectors, VFNs and targets of interest. However, due to
the complexity of vehicular application scenarios (e.g., high
mobility and large scale), it is impractical to obtain the
complete knowledge of the involved vehicles and targets of
interest. Therefore, we adopt an offline algorithm called Q-
learning2, which can learn a task allocation strategy purely
based on experience without any predefined rules. Different
from Bellman equation, Q-learning extends the definition of
state-value function to state-action pairs, defining a value
for each state-action pair, which is called the action-value
function.

We define the right-hand side of Eq. 15 as:

𝑄 (X,Y) = (1 − 𝛾) · 𝑢 (X,Y)
+𝛾 ·

∑︁
X′

𝑃𝑟 {X′ |X,Y} · U(X′). (16)

Accordingly, Eq. 15 can be converted to Eq. 17:

U(X) = max
Y

𝑄 (X,Y). (17)

By substituting Eq. 17 into Eq. 16, we obtain

𝑄 (X,Y) = (1 − 𝛾) · 𝑢 (X,Y)
+𝛾 ·

∑︁
X′

𝑃𝑟 {X′ |X,Y} · max
Y′

𝑄 (X′,Y ′), (18)

where Y ′ ∈ Y is a joint control action performed under the
state X′.

With the Q-learning approach, the zone head learns task
allocation strategies 𝑄 (X,Y) in a recursive way according to
Eq. 19 [36].

𝑄 𝑗+1 (X,Y) = 𝑄 𝑗 (X,Y) + 𝛽 𝑗 ·
(
(1 − 𝛾) · 𝑢 (X,Y)

+𝛾 · max
Y′

𝑄 𝑗 (X′,Y ′) −𝑄 𝑗 (X,Y)
)
,

(19)

In decision epoch 𝑗 , the agent in the zone head first observes
its current state X, and selects and performs a set of joint
actions Y. Then, the agent would observe the subsequent state
X′ and receives an immediately utility 𝑢 (X,Y). The value of
𝑄 𝑗+1 (X,Y) would be adjusted using 𝛽 𝑗 ∈ [0, 1), which is a
time-varying learning rate.

The standard Q-learning rule suffers from poor scalability
and is not applicable to high-dimensional scenarios with
extremely large state or action spaces. In our scenario, given
continuous values of the geographical information of vehicles
(e.g., location, driving speed and direction) and VFN com-
puting resource usage, there is an infinite number of {X,Y}
pairs; thus, we cannot store them in tabular form and solve

2Note that, policy iteration based reinforcement approaches, such as
SARSA, also can be used. However, Q-learning has no delayed reward, which
tends to facilitate an earlier convergence than SARSA [35].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

...

...

DQN

...

M
em

o
ry

Loss &

Gradient
Updating

Policy

R
u

n
ti

m
e

E
n

v
ir

o
n

m
en

t

Observe

Joint Control Commands

Reward

Observe

Zone Head

(One Agent in A Service Zone)

Fig. 3: DQN Approach.

the problem using the standard Q-learning method. To address
the scalability problem, we apply an advanced algorithm, the
DQN, to approach the optimal task allocation strategy, where
the adjustable parameters of the neural network are referred
to as the task allocation strategy parameters 𝛿 . Specifically,
the Q-function, expressed as in Eq. 16, is approximated by
𝑄 (X,Y) ≈ 𝑄 (X,Y;𝛿), where (X,Y) ∈ X × Y and 𝛿 denotes
a vector of parameters associated with the DQN. Instead of
finding the optimal Q-function, the DQN parameters can be
learned iteratively.

To store the experience state, we assume that each zone
head is equipped with a replay memory of finite size 𝑀 . As
illustrated in Fig.3, we use 𝑚 𝑗 = (X 𝑗 ,Y 𝑗 , 𝑢 (X 𝑗 ,Y 𝑗),X 𝑗+1) to
denote the transition between two adjacent decision epochs 𝑗

and 𝑗 + 1, and the set M 𝑗 = {𝑚 𝑗−𝑀+1, ...,𝑚 𝑗 } denotes the ex-
perience pool at decision epoch 𝑗 during the learning process.
A policy DQN 𝑄 (X,Y;𝛿 𝑗) and a target DQN 𝑄 (X,Y; ˆ𝛿 𝑗) are
maintained in the zone head, where 𝛿 𝑗 represents the param-
eters at decision epoch 𝑗 and 𝛿 𝑗 represents the parameters at
the previous epochs before 𝑗 .

At each decision epoch, according to the experience replay
technique [37], the zone head randomly samples a batch M̂ 𝑗 ⊆
M 𝑗 from the experience pool to train the DQN. In the training
process, a loss function is defined in Eq. 20. By derivating
the loss function with respect to 𝛿 𝑗 , the parameters 𝛿 𝑗 in the
policy DQN are updated toward minimizing the mean-squared
measure of equation error as shown in Eq. 20 at decision epoch
𝑗 by replacing 𝑄 𝑗 (X,Y) and its corresponding target (1−𝛾) ·
𝑢 (X,Y) +𝛾 ·maxY′ 𝑄 𝑗 (X′,Y ′) with 𝑄 (X,Y;𝛿 𝑗) and (1−𝛾) ·
𝑢 (X,Y) + 𝛾 · 𝑄 (X′, arg maxY′ 𝑄 (X′,Y ′;𝛿 𝑗);𝛿 𝑗), respectively.
The agent in the zone head regularly resets the target DQN
parameters with the updated parameters in the policy DQN.

C. Time Complexity Analysis

In training phase, the time complexity is governed by
both of the forward and backward propagation of the DQN.
Suppose the DQN has 𝐿 layers and there are 𝑑𝑖 neurons in
the 𝑖-th layer. We denote the number of multiplications and
the number of activation function performed in the forward

propagation as 𝑁𝑚𝑢𝑙 and 𝑁𝜌 , respectively. According to [38],
𝑁𝑚𝑢𝑙 = 𝑑0𝑑1+

∑𝐿
𝑖=2 (𝑑𝑖𝑑𝑖−1𝑑𝑖−2) and 𝑁𝜌 =

∑𝐿
𝑖=1 𝑑𝑖 , and the time

spent in the forward propagation is given by

O(𝑇𝑓 𝑤𝑑) = O(𝑁𝑚𝑢𝑙 + 𝑁𝜌)

= O
(
𝑑0𝑑1 +

𝐿∑︁
𝑖=2

(𝑑𝑖𝑑𝑖−1𝑑𝑖−2) +
𝐿∑︁
𝑖=1

𝑑𝑖

)
.

(21)

In the backward propagation, the gradient operation at the 𝑖-
th layer requires O(1). We denote the time complexity of delta
error in the backward propagation as O(𝑇𝛿). According to [38],
O(𝑇𝛿) = O(𝐿(𝐿 − 1) +∑𝐿

𝑖=2 (𝑑𝑖𝑑𝑖−1𝑑𝑖−2)). As a result, the time
complexity for updating all weights in backward propagation
for one iteration can be obtained as

O(𝑇𝑏𝑤𝑑) = O(𝑇𝛿 + 𝑁𝑚𝑢𝑙)

= O
(
𝐿(𝐿 − 1) + 𝑑0𝑑1 +

𝐿∑︁
𝑖=2

(𝑑𝑖𝑑𝑖−1𝑑𝑖−2)
)
.

(22)

Suppose that we operate 𝜏 iterations for training. Then, the
time complexities in the training phase can be expressed as

O(𝑇𝑡𝑟𝑎𝑖𝑛) = O
(
𝜏 (𝑇𝑓 𝑤𝑑 +𝑇𝑏𝑤𝑑)

)
. (23)

VI. EVALUATION

In this section, we evaluate the effectiveness of FlexSensing.
We first investigate the impact of the data collection configu-
ration on the QoI in terms of the number of pixels covering
a specific target of interest. Moreover, we profile the resource
usage of a visual object recognition application and measure
the processing latency with different numbers of processes
running in parallel. Second, we configure a microscopic traf-
fic simulator, SUMO, to generate routes of the vehicles in
question, based on the profiles of real-world vehicular traffic
data [39]. Finally, we compare the performance of the DQN
approach with that of several reference approaches [40].

A. Application Profiling

1) Characteristics of Visual Crowdsensing: The camera
view of one vehicle may be blocked by another vehicle in
front. The proportion of the camera view blocked depends
on the distance between the vehicles, given a fixed FoV. To
quantify the effect, we ran the following experiment with two
vehicles in an outdoor open space. The parked vehicle was
considered an obstacle blocking the view of the other vehicle,
which was equipped with a Garmin 55 dash camera with a
122 degree FoV and drove away from the parked vehicle at
a constant speed. Images were captured periodically, with 2.5
meters between every two sequential measurement points. We
used YOLO [31] for real-time object detection and calculated
the number of pixels covering the detected vehicle in front in
each image. As shown in Fig.4c, we obtained the following
approximate formulation by fitting the recorded data into a
polynomial regression model:

𝐵(𝑣) = 0.101−2.104×10−2𝑣 +1.524×10−3𝑣2−3.607×10−5𝑣3,
(24)

where 𝐵(𝑣) is the block probability, indicating the percentage
of the view that is blocked by the vehicle in front, and 𝑣 is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

𝐿(𝛿 𝑗) = 𝐸 (X,Y,𝑢 (X,Y),X′) ∈M̂ 𝑗

[(
(1 − 𝛾) · 𝑢 (X,Y) + 𝛾 ·𝑄 (X′, arg max

Y
Q(X′,Y ′;𝛿 𝑗);𝛿 𝑗) −𝑄 (X,Y;𝛿𝑘)

)2]
(20)

2.5 m 5 m 7.5 m 10 m

12.5 m 15 m 17.5 m 20 m

(a) Occupation of The Vehicle
in Front in Photos Taken from
Different Distances Away

5m 10m 15m 20m 25m

30m 35m 40m 45m 50m

(b) Occupation of The Target of
Interest in Photos Taken from
Different Distances Away

●

●

●

●
●

●
● ●

0

2

4

6

5 10 15 20
Distance between Camera and Obstacle

Bl
oc

ke
d

Pr
ob

ab
ilit

y
(%

)

(c) Blocked Probability

l

l

l

l
l l l l l l l l l l l l l l l l0

50

100

150

200

10 20 30 40 50
Distance between Camera and Object

N
um

be
r o

f P
ix

el
s

(x
10

00
)

(d) Number of Pixels per Image

Fig. 4: Vehicle-based Visual Crowdsourcing Application Pro-
files.

TABLE II: Processing Latency vs. Number of Processes

Number of Processes 1 2 3 4 5

Processing Latency (ms) 39 45 50 61 74

the average distance between vehicles surrounding the target
of interest.

We ran another experiment to figure out the relationship
between the QoI (i.e., the number of pixels covering a specific
target of interest) and the frame depth (i.e., the distance
between the data collector and the target of interest at the
time when the frame is captured). To simplify the system
model, we consider that the angle between the data collector
and the target of interest is equal to the data collector’s moving
orientation. As shown in Fig.4b, we turn the parked vehicle
into a target of interest and the other vehicle into a data
collector. We saved the image taken by the dash camera every
5 𝑚 while the data collector was driving away from the target
of interest. As shown in Fig.4d, we obtain the following the
approximate relationship between the number of pixels on the
target of interest and the frame depth:

𝑃 (𝑙𝑓 , 0) = 200395 − 19754 ∗ 𝑙𝑓 + 617 ∗ 𝑙2
𝑓
− 6 ∗ 𝑙3

𝑓
, (25)

where 𝑙𝑓 is the depth of the 𝑓 𝑡ℎ frame.

20

30

40

50

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

Time (One Day)

Av
er

ag
e

Sp
ee

d
(k

m
/h

) 36th
37th
38th
39th

(a) Average Speed over Time

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
Number of Buses

C
D

F

(b) Number of Buses within the
Communication Range

0.00

0.05

0.10

0.15

10 20 30 40 50
Number of Customer Vehicles

KD
E

(c) Number of Customer Vehi-
cles within the Communication
Range of a VFN

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

Proportion of Blocked Vision (%)

C
D

F

(d) Proportion of the Camera
View Blocked by the Vehicle in
Front

Fig. 5: Traffic Flow Variation.

2) Visual Object Recognition Application Profiling: As-
sume that the data collected from vehicles can be processed
in parallel on VFNs. The processing latency depends on
the number of processes executed simultaneously, since the
underlying resources, such as the CPU, GPU and memory,
are shared between processes. We took YOLO as an example
to measure the processing latency and ran it on a GPU server
(NVIDIA Corporation GV100, 16 GB of memory) for image
processing. The test dataset includes 1000 720p dash camera
images.

Because of the memory limitations, up to five YOLO
processes can be simultaneously executed on the GPU server.
Table II lists the average processing latency per process when
different numbers of processes were executed simultaneously.
In FlexSensing, we assume that the processing capacity of one
process is 10 fps and that the input from each customer vehicle
is 1 fps (𝑃𝑁 = 10). Furthermore, we consider three optional
frame rates for visual crowdsourcing: 10 fps, 20 fps and 30
fps. In addition, based on the measurements listed in Table
II, we assume that up to five processes can be simultaneously
executed on a VFN.

B. Simulation Setup
1) Datasets: Concerning the vehicle mobility, we simulated

the routes of different vehicles, including data collectors,
customer vehicles and VFNs, using the following real-world
traffic datasets.

(i) Traffic flow dataset. We selected the city of Helsinki as
the test area and collected the traffic message channel

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Fig. 6: Locations of Targets of Interest.

(TMC) data using HERE APIs [41] from September 3 to
October 6, 2018. The TMC data contain the traffic flow
information, including the driving directions, average
speeds, and identities of the road segments traversed by
the vehicles.

The TMC data generally describe the congestion level
of city traffic, where the detailed routes of individual
vehicles cannot be obtained. To address this problem,
we utilize the microscopic road traffic simulator SUMO
[39] to generate routes, including the time stamp, speed,
direction and location, of each data collector and cus-
tomer vehicle. Notably, the number of these vehicles is
estimated based on the average speed of traffic flows
following the approach proposed in [42], and the moving
patterns of these vehicles are generated following the
method used in [43].

(ii) Bus trajectories dataset. Through the open high-rate po-
sitioning (HFP) API provided by HSL [44], we collect
the trajectories of buses running in the same region and
during the same period as that of the traffic flow dataset.
By exploring this dataset, we can identify the location,
driving direction and speed of any bus operated in the
Helsinki region. In the simulation, these buses are turned
into VFNs.

We selected an area of 1 𝑘𝑚2 in Helsinki, with the latitude
ranging between 24◦53′16′′ and 24◦54′25′′ and the longitude
ranging between 60◦12′16′′ and 60◦12′49′′. As shown in
Fig.5a, the temporal variation of the average speed exhibits a
repetitive pattern on a weekly basis. Furthermore, as illustrated
in Fig.6, we place 8 targets of interest, which are located along
the roads in that area.

Fig.5b shows the cumulative distribution function (CDF)
of the number of VFNs surrounding the data collectors in a
typical week (36th week, September 3 ∼ 9, 2018). We can
see that most of the data collectors (more than 70%) are
not located within the communication range of any VFN. In
addition, less than 10% of the data collectors are reachable by
more than 3 VFNs at any given time.

Fig.5c shows the kernel density estimation (KDE) of the
number of customer vehicles located within the communi-
cation range of at least one VFN on a typical working day
(September 3, 2018). On average, 10 customer vehicles are

−10

−5

0

5

0 2500 5000 7500 10000
Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

Batch Size
32
64
128
256

(a) Batch Size vs. Convergence

−10

−5

0

5

0 2500 5000 7500 10000
Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

Learning Rate
5e−04
0.001
0.005
0.01

(b) Learning Rate vs. Convergence

Fig. 7: Batch Size and Learning Rate.

covered by the communication range of a VFN wherever one
exists.

Based on Eq. 4d, we calculate the blocked view based on the
distance between vehicles. As shown in Fig.5d, more than 50%
of the data collectors have more than 7.5% of their camera
views blocked by vehicles in front of them.

2) Learning Episodes and Training Setup: According to the
application profiles shown in Fig.4d, we set the dash camera
effective coverage 𝑟 to 50 𝑚. Furthermore, according to the
measurements in [45], we set the effective transmission range
between a VFN and data collector R to 50 𝑚.

We implement the DQN learning network using PyTorch.
The default neuron numbers in the hidden layer are 4096
plus 2048 [46]. We consider one minute as the length of a
decision epoch, and trajectories of the participants involved
in this decision epoch are put into the model and trained as
an episode. We set the default parameters of the rewards as
𝐴𝑊𝑟 = −10.

To determine the value of batch size and learning rate, we
set 𝜙 = 1 and train the DQN network with 10000 iterations. As
shown in Fig.7, we can see DQN would converge after 3000
iterations when the batch size is larger than 64, whereas DQN
would not converge when the batch size is 32. This is because
updating the weights based on a small batch will be more
noisy. However, sometimes the noise can help the DQN jerk
out of local optima. On the other hand, using a smaller value
of learning rate can help the stability of learning processes in
DQNs, but selecting an adequate learning rate is heuristic and
application dependent. Fig.7b demonstrates that using learning
rate 0.001 can achieve the most stable performance compared
with other values. Therefore, we set the batch size and learning
rate in the actor-critic training phase as |M 𝑗 | = 64 and 𝛾 =

0.999, respectively.

C. Evaluation Results and Analysis

1) System Reward and Huber Loss: For comparison, we
train the policy DQN using the traffic data captured from
September 3 to September 9, 2018 (i.e., the 36th week of
2018) and train the target DQN with three weeks of traffic
data from September 3 to September 23, 2018 (i.e., 36th∼38th
week, 2018). Fig.8a shows the system reward variation of each
episode during the training of the target DQN. From the figure,
we can see that the system reward shares a similar variation
pattern with the vehicle average speed, as shown in Fig.5a.
This occurs because the higher the density of the traffic is, the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Episode

Re
w
ar
d

(a) Episode vs. System Reward

Episode

H
u

b
e

r
L

o
ss

(b) Episode vs. Huber Loss

Fig. 8: System Reward and Huber Loss.

higher the number of data collectors and the larger the amount
of information regarding the targets of interest available in the
collected data. Fig.8b shows the computed Huber loss variation
during the DQN training. The Huber loss acts similar to the
mean squared error when the error is small but similar to the
mean absolute error when the error is large. From the figure,
we can see that the computed Huber loss remains stable after
approximately 2500 episodes.

2) Policy Network vs. Target Network: According to Fig.5a,
we select two time periods to represent the times of high and
low vehicular traffic density:

* Time Period I: 11 : 00 ∼ 13 : 05, September 3, 2018,
* Time Period II: 19 : 00 ∼ 21 : 05, September 3, 2018.

We then evaluate the performance of the policy and target
DQN with the traffic data collected from these two periods.

Fig.9 compares the distribution of the selected frame rates
for each data collector when the workload of the VFN (i.e.,
the number of the processes available for serving customer
vehicles) varies. Fig.9a shows the selected frame rate distri-
bution in Time Period I. We can see that 18.5% of the data
collectors select an invalid VFN (𝑐𝑤 > |V 𝑗 |) according to the
task allocation strategy learned from the policy DQN, while
all the data collectors select a valid VFN according to that
learned from the target DQN. This outcome occurs because
the policy DQN has not converged, unlike the target DQN,
due to the limited number of training episodes.

From Fig.9a, we can see that the task allocation strategy
learned from the target DQN prefers to select a higher frame
rate when the VFN workload is lower, and vice versa. For
example, 42% of the data collectors select 30 fps for data
transmission when the VFN workload is 1, while only 28%
of the data collectors select the highest frame rate when the
VFN workload is 4. This result occurs because the density of
traffic is higher in Time Period I and because the processing
latency will increase with the amount of data to be processed.

Fig.9b illustrates the distribution of the selected frame rates
in Time Period II. Compared with the policy DQN, the task
allocation strategy learned from the target DQN tends to
select a higher frame rate because more resources become
available for collecting and processing visual data to obtain
more information about the targets of interest when the density
of traffic is lower.

3) Processing Latency vs. Number of Pixels: We define
3 variants of task allocation strategies that are learned from

the target DQN based on the value of the scalar weight 𝜙

mentioned in Section IV.

* DQN-T: Processing Latency Sensitive with 𝜙 = 0.1.
* DQN-Q: QoI Sensitive with 𝜙 = 0.9.
* DQN-B: Balanced with 𝜙 = 0.5.

For comparison, two other task allocation strategies, i.e.,
MUEECA and Adaptive, are implemented. The MUEECA
task allocation strategy has been investigated in the recent
publication [8]. According to the MUEECA task allocation
strategy, the data collector selects a VFN with the maximum
QoI and meanwhile satisfies the latency constraints. If the
processing latency exceeds the constraint, the data collector
would choose the minimum QoI for task offloading. Here, we
set the latency constraint as 50𝑚𝑠. The Adaptive task allocation
strategy uses a probability distribution method to scale the
frame rate selection linearly with the VFN workload [7]. In
our case, the data collector transmits data at a frame rate of
30 fps when the workload of the VFN (i.e., the number of
the processes available to serve customer vehicles) is 1 and at
a frame rate of 10 fps when the workload of the VFN is 4.
Otherwise, the data collector transfers data at a frame rate of
20 fps.

To unify the metrics, we normalize the number of pixels
covering the targets of interest. As shown in Fig.4d, we select
200000 as the maximum number of collected pixels (i.e.,
when the distance between the data collector and the target of
interest is 0). By dividing the achieved QoI by the maximum
number of collected pixels, we can obtain the normalized QoI
of each episode. Furthermore, to unify the magnitude scale, we
divide the processing latency by 50 𝑚𝑠. Fig.10a illustrates the
average normalized reward and the average scaled processing
latency for the different task allocation strategies in use during
Time Period I. The system achieves the highest QoI with
MUEECA. Compared with MUEECA, DQN-Q only reduces
the QoI by 2% whereas shortens the processing latency by
18%. Moreover, DQN-Q increases the QoI by 34% compared
with the Adaptive task allocation strategy. In DQN-B, the
average processing latency is shortened by 10%, but the QoI
is also reduced by 4% compared with the Adaptive task
allocation strategy. In DQN-T, the visual data are transferred
with greater emphasis on reducing the processing latency. In
this case, the average processing latency on VFNs is shortened
by 51% and 37% compared with the MUEECA and Adaptive
task allocation strategies, respectively. In addition, the QoI
decreases by 62% and 49%. These results indicate that the
task allocation strategies learned from the target DQN can
reduce the processing latency or increase the QoI depending
on the specific demand of the application.

As shown in Fig.10b, in Time Period II, DQN-Q increases
the QoI by 18% and DQN-T shortens the average processing
latency by 27% compared with the Adaptive task allocation
strategy. The differences are smaller than in Time Period
I. This outcome indicates that the task allocation strategies
learned from the target DQN are more effective in reducing the
processing latency and increasing the QoI when the vehicular
traffic is denser. Moreover, the DQN-Q task allocation strategy
improves both the average processing latency and the QoI.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

21%
21%

34%

24%

9%
19%

49%

23%

10%
26%

40%

24%

34%

26%

37%
3%

42%

44%

13%

38%

42%

20%

32%

54%

14%

28%

50%

22%

DQN: Policy DQN: Target

1 2 3 4 1 2 3 4
0.0

0.5

1.0

VFN Workload

Pe
rc

en
ta

ge
 o

f F
ra

m
e

R
at

e 10fps
20fps
30fps
Invalid VFN

(a) Time Period I

12%

47%

41%

33%

28%

39%

36%

36%

27%

53%

32%

16%

DQN: Policy DQN: Target

1 2 1 2
0.0

0.5

1.0

VFN Workload

Pe
rc

en
ta

ge
 o

f F
ra

m
e

R
at

e

10fps
20fps
30fps

(b) Time Period II

Fig. 9: Distribution of Selected Frame Rates.

0.0

0.5

1.0

1.5

DQN−T DQN−B DQN−Q MUEECA Adaptive
Task Allocation Strategies

N
or

m
al

iz
ed

 R
ew

ar
d

Pixels
Latency

(a) Time Period I

0.0

0.5

1.0

DQN−T DQN−B DQN−Q MUEECA Adaptive
Task Allocation Strategies

N
or

m
al

iz
ed

 R
ew

ar
d

Pixels
Latency

(b) Time Period II

Fig. 10: Comparison of QoI and Processing Latency between
Task Allocation Strategies.

TABLE III: Data collection frequency requirements

Applications Data collection rate

Driving assistance High

Local map generation High

Parking navigation Moderate

Construction detection Moderate

Improvement recommendation Low

Specifically, it reduces the average processing latency by 1%
and 6%, and increases the QoI by 11%and 18% compared
with the MUEECA and Adaptive task allocation strategies,
respectively.

In summary, DQN-based task allocation strategies moderate
the frame rate for visual data transmission, taking into account
the variation in fog node workload. Specifically, DQN-T re-
duces the average processing latency by up to 51%, and DQN-
Q increases the QoI by up to 34%. FlexSensing could reduce
the data processing latency or increase the QoI according
to the specific demands of individual vehicle-based visual
crowdsourcing applications.

VII. LIMITATION AND FUTURE WORK

In this section, we discuss the limitation of our work and
present the future plan. In FlexSensing, the data collectors
do not have the ability to detect objectives. Therefore, we
only take into account the targets of interest with fixed
locations. The locations of targets would be known by the zone
head in advance, and data collectors can obtain the location
information either from an off-line map or from messages sent
by the zone head.

We focus the scheduling of task allocation in a single
service zone and place only one DQN agent in the zone head.
However, in the real-world mobile edge computing (MEC)
scenarios, there may exist several edge servers in a service
zone. Therefore, performing learning process in a distributed
manner (e.g., federated and parallelized learning) over multiple
edge servers connected via wireless networks would help
reduce the training time and the need for centralized parameter
server.

Moreover, we design task allocation schemes based on
the assumption that the learning problem can be cast as
Markov Decision Process (MDP). However, in reality, the task
allocation problem resists being treated as a MDP because
it is impractical to obtain the system state in real time. In
the future, we would like to deprive the learner of perfect
information about the state of the environment and replace
the MDP with the mathematic models that could address
task allocation under uncertainty, such as partially observable
Markov decision processes (POMDPs) and hidden Markov
models (HMMs).

From the communication perspectives, the data processors
in our system are assumed to be moving buses which commute
on specified trajectories. As an alternative solution particularly
in situations when there are no regular buses available in the
vicinity of data collectors, the moving drones can act as relay
nodes which establish the communication between the data
collectors and the data processors [47]. In order to ensure the
autonomous and continuous task offloading service, the system
design for drones should take into account the limitation of
high energy consumption.

In our simulation, we consider one minute as the length
of a decision epoch. However, the length of decision epoch
of different crowdsourcing applications can be determined on
various update cycles, such as daily, hourly, or continuous
basis. We have listed the requirements of the data collection
rate of different vehicular crowdsourcing applications in Table
III. For example, applications that relate to driving assistance
(e.g., real-time situational awareness) involve data-intensive
and latency-sensitive computing tasks, and have an extremely
strict requirement for the validity period of crowdsourced
video. On the other hand, applications that relate to city traffic
regulation, such as the change in speed limitation on freeways,
allow longer update cycles (e.g., hourly or daily). Furthermore,
the requirements of QoI may vary from application to ap-
plication. For example, crowdsourcing applications that only
consider targets of interest with unified appearance, such as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

traffic signs, have a lower QoI requirement than that involving
targets of interest with various appearances.

VIII. CONCLUSIONS

In this paper, we propose FlexSensing, a QoI- and
processing-latency-aware task allocation scheme for vehicle-
based visual crowdsourcing. It aims at increasing the QoI
while reducing the processing latency of crowdsourced visual
data, taking into account the variation in the VFN workload
and vehicle mobility. We address the problem of seeking the
optimal task allocation strategy via the formulation of an MDP
and solve it through the DQN. Compared with previous works,
our solution reduces the average processing latency by up to
51% and increases the QoI by up to 34%.

REFERENCES

[1] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, Privacy, and
Fairness in Fog-Based Vehicular Crowdsensing,” IEEE Communications
Magazine, vol. 55, no. 6, pp. 146–152, 2017.

[2] B. Guo, Q. Han, H. Chen, L. Shangguan, Z. Zhou, and Z. Yu, “The
Emergence of Visual Crowdsensing: Challenges and Opportunities,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2526–2543,
2017, conference Name: IEEE Communications Surveys Tutorials.

[3] C. H. Liu, J. Fan, P. Hui, J. Crowcroft, and G. Ding, “QoI-Aware Energy-
Efficient Participatory Crowdsourcing,” IEEE Sensors Journal, vol. 13,
no. 10, pp. 3742–3753, Oct. 2013, conference Name: IEEE Sensors
Journal.

[4] M. Noreikis, Y. Xiao, J. Hu, and Y. Chen, “SnapTask: Towards Efficient
Visual Crowdsourcing for Indoor Mapping,” in 2018 IEEE 38th Inter-
national Conference on Distributed Computing Systems (ICDCS), Jul.
2018, pp. 578–588, iSSN: 2575-8411.

[5] D. Pal, V. Vanijja, C. Arpnikanondt, X. Zhang, and B. Papasratorn,
“A Quantitative Approach for Evaluating the Quality of Experience of
Smart-Wearables From the Quality of Data and Quality of Information:
An End User Perspective,” IEEE Access, vol. 7, pp. 64 266–64 278, 2019,
conference Name: IEEE Access.

[6] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,”
in 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Mar. 2017, pp. 6–9.

[7] C. Huang, Y. P. Fallah, R. Sengupta, and H. Krishnan, “Adaptive
intervehicle communication control for cooperative safety systems,”
IEEE Network, vol. 24, no. 1, pp. 6–13, Jan. 2010.

[8] H. Liu, L. Cao, T. Pei, Q. Deng, and J. Zhu, “A fast algorithm for
energy-saving offloading with reliability and latency requirements in
multi-access edge computing,” IEEE Access, vol. 8, pp. 151–161, 2019.

[9] C. Zhu, G. Pastor, Y. Xiao, and A. Ylajaaski, “Vehicular Fog Computing
for Video Crowdsourcing: Applications, Feasibility, and Challenges,”
IEEE Communications Magazine, vol. 56, no. 10, pp. 58–63, Oct. 2018.

[10] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi,
“Mobeyes: smart mobs for urban monitoring with a vehicular sensor
network,” IEEE Wireless Communications, vol. 13, no. 5, pp. 52–57,
Oct. 2006.

[11] V. Coric and M. Gruteser, “Crowdsensing Maps of On-street Parking
Spaces,” in 2013 IEEE International Conference on Distributed Com-
puting in Sensor Systems, May 2013, pp. 115–122.

[12] F. Shi, D. Wu, D. I. Arkhipov, Q. Liu, A. C. Regan, and J. A.
McCann, “ParkCrowd: Reliable Crowdsensing for Aggregation and
Dissemination of Parking Space Information,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–13, 2018.

[13] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An In-vehicle,
Edge-based Video Analytics Service for Detecting Open Parking Spaces
in Urban Environments,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, ser. SEC ’17. New York, NY,
USA: ACM, 2017, pp. 16:1–16:14, event-place: San Jose, California.
[Online]. Available: http://doi.acm.org/10.1145/3132211.3134452

[14] C. Zhu, A. Mehrabi, Y. Xiao, and Y. Wen, “CrowdParking: Crowdsourc-
ing Based Parking Navigation in Autonomous Driving Era,” in 2019
International Conference on Electromagnetics in Advanced Applications
(ICEAA), Sep. 2019, pp. 1401–1405.

[15] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “AVR:
Augmented Vehicular Reality,” in Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’18. New York, NY, USA: ACM, 2018, pp. 81–95.
[Online]. Available: http://doi.acm.org/10.1145/3210240.3210319

[16] K. Hara, V. Le, and J. Froehlich, “Combining crowdsourcing and
google street view to identify street-level accessibility problems,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems - CHI ’13. Paris, France: ACM Press, 2013, p. 631. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2470654.2470744

[17] S. Sattar, S. Li, and M. Chapman, “Road Surface Monitoring
Using Smartphone Sensors: A Review,” Sensors, vol. 18, no. 11,
p. 3845, Nov. 2018, number: 11 Publisher: Multidisciplinary Digital
Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-
8220/18/11/3845

[18] K. Yagi, “A Measuring Method of Road Surface Longitudinal Profile
from Sprung Acceleration, and Verification with Road Profiler,” Journal
of Japan Society of Civil Engineers, Ser. E1 (Pavement Engineering),
vol. 69, no. 3, pp. I 1–I 7, 2013.

[19] R. Omer and L. Fu, “An automatic image recognition system for
winter road surface condition classification,” in 13th International IEEE
Conference on Intelligent Transportation Systems, Sep. 2010, pp. 1375–
1379, iSSN: 2153-0017.

[20] Y. Qian, E. J. Almazan, and J. H. Elder, “Evaluating features and clas-
sifiers for road weather condition analysis,” in 2016 IEEE International
Conference on Image Processing (ICIP), Sep. 2016, pp. 4403–4407,
iSSN: 2381-8549.

[21] J. Wang, C. Jiang, K. Zhang, T. Q. Quek, Y. Ren, and L. Hanzo,
“Vehicular sensing networks in a smart city: Principles, technologies
and applications,” IEEE Wireless Communications, vol. 25, no. 1, pp.
122–132, 2017.

[22] Y. Wang, C. Xu, Z. Zhou, H. Pervaiz, and S. Mumtaz, “Contract-Based
Resource Allocation for Low-Latency Vehicular Fog Computing,” in
2018 IEEE 29th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), Sep. 2018, pp. 812–816,
iSSN: 2166-9589.

[23] K. Zhang, J. Wang, C. Jiang, T. Q. Quek, and Y. Ren, “Content aided
clustering and cluster head selection algorithms in vehicular networks,”
in 2017 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2017, pp. 1–6.

[24] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative Task Offloading
in Vehicular Edge Multi-Access Networks,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 48–54, Aug. 2018, conference Name:
IEEE Communications Magazine.

[25] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-
Based Task Offloading for Vehicular Cloud Computing Systems,”
arXiv:1804.00785 [cs, math], Apr. 2018, arXiv: 1804.00785. [Online].
Available: http://arxiv.org/abs/1804.00785

[26] Z. Ning, J. Huang, and X. Wang, “Vehicular Fog Computing: Enabling
Real-Time Traffic Management for Smart Cities,” IEEE Wireless Com-
munications, vol. 26, no. 1, pp. 87–93, Feb. 2019, conference Name:
IEEE Wireless Communications.

[27] X. Huang, R. Yu, J. Kang, and Y. Zhang, “Distributed Reputation
Management for Secure and Efficient Vehicular Edge Computing and
Networks,” IEEE Access, vol. 5, pp. 25 408–25 420, 2017, conference
Name: IEEE Access.

[28] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski, “Fog Following
Me: Latency and Quality Balanced Task Allocation in Vehicular Fog
Computing,” in 2018 15th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON), Jun. 2018, pp. 1–
9.

[29] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and
A. Ylä-Jääski, “Folo: Latency and Quality Optimized Task Allocation in
Vehicular Fog Computing,” IEEE Internet of Things Journal, pp. 1–1,
2018.

[30] F. Richter, A. J. Fehske, and G. P. Fettweis, “Energy Efficiency Aspects
of Base Station Deployment Strategies for Cellular Networks,” in 2009
IEEE 70th Vehicular Technology Conference Fall, Sep. 2009, pp. 1–5,
iSSN: 1090-3038.

[31] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”
arXiv:1612.08242 [cs], Dec. 2016, arXiv: 1612.08242. [Online].
Available: http://arxiv.org/abs/1612.08242

[32] K. Alexandris, N. Nikaein, R. Knopp, and C. Bonnet, “Analyzing X2
handover in LTE/LTE-A,” in 2016 14th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), May 2016, pp. 1–7.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

[33] P. Geibel and F. Wysotzki, “Risk-Sensitive Reinforcement Learning
Applied to Control under Constraints,” Journal of Artificial Intelligence
Research, vol. 24, pp. 81–108, Jul. 2005, arXiv: 1109.2147. [Online].
Available: http://arxiv.org/abs/1109.2147

[34] R. Bellman, “Dynamic Programming,” Science, vol. 153, no. 3731,
pp. 34–37, Jul. 1966, publisher: American Association for the
Advancement of Science Section: Articles. [Online]. Available:
https://science.sciencemag.org/content/153/3731/34

[35] R. S. Sutton, A. G. Barto et al., “Introduction to reinforcement learning.
vol. 135,” 1998.

[36] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992698

[37] S. Mahadevan and J. Connell, “Automatic programming of behavior-
based robots using reinforcement learning,” Artificial Intelligence,
vol. 55, no. 2-3, pp. 311–365, 1992.

[38] Y.-H. Chiang, T.-W. Chiang, T. Zhang, and Y. Ji, “Deep dual learning-
based cotask processing in multi-access edge computing systems,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9383–9398, 2020.

[39] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Devel-
opment and Applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, Dec. 2012.

[40] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in
Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling,” IEEE Transactions on Communications, vol. 65, no. 8, pp.
3571–3584, Aug. 2017.

[41] “Here API.” [Online]. Available:
https://developer.here.com/documentation/traffic/ [Accessed Sep.
01, 2018]

[42] R. Sen, A. Cross, A. Vashistha, V. N. Padmanabhan, E. Cutrell,
and W. Thies, “Accurate Speed and Density Measurement for Road
Traffic in India,” in Proceedings of the 3rd ACM Symposium
on Computing for Development, ser. ACM DEV ’13. New
York, NY, USA: ACM, 2013, pp. 14:1–14:10. [Online]. Available:
http://doi.acm.org/10.1145/2442882.2442901

[43] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario: 24 hours of mobility for vehicular networking research,” in
2015 IEEE Vehicular Networking Conference (VNC), Dec. 2015, pp.
1–8.

[44] “HSL API.” [Online]. Available:
https://digitransit.fi/en/developers/apis/4-realtime-api/vehicle-positions/
[Accessed Sep. 01, 2018]

[45] C. Zhu, Y. Chiang, A. Mehrabi, Y. Xiao, A. Yla-Jaaski, and Y. Ji,
“Chameleon: Latency and Resolution Aware Task Offloading for Visual-
based Assisted Driving,” IEEE Transactions on Vehicular Technology,
pp. 1–1, 2019.

[46] F. Wang, C. Zhang, F. wang, J. Liu, Y. Zhu, H. Pang,
and L. Sun, “Intelligent Edge-Assisted Crowdcast with Deep
Reinforcement Learning for Personalized QoE,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications. Paris,
France: IEEE, Apr. 2019, pp. 910–918. [Online]. Available:
https://ieeexplore.ieee.org/document/8737456/

[47] J. Wang, C. Jiang, Z. Han, Y. Ren, R. G. Maunder, and L. Hanzo,
“Taking drones to the next level: Cooperative distributed unmanned-
aerial-vehicular networks for small and mini drones,” IEEE Vehicular
Technology Magazine, vol. 12, no. 3, pp. 73–82, 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JIOT.2020.3040615

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

