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The impressive progress in fabricating and controlling superconducting devices for quantum information
processing has reached a level where reliable theoretical predictions need to account for quantum correlations
that are not captured by the conventional modeling of contemporary quantum computers. This applies particu-
larly to the qubit initialization as the process which crucially limits typical operation times. Here, we employ
numerically exact methods to study realistic implementations of a transmon qubit embedded in electromagnetic
environments focusing on the most important system-reservoir correlation effects such as the Lamb shift and
entanglement. For the qubit initialization we find a fundamental trade-off between speed and accuracy which sets
intrinsic constraints in the optimization of future reset protocols. Instead, the fidelities of quantum logic gates
can be sufficiently accurately predicted by standard treatments. Our results can be used to accurately predict the
performance of specific setups and also to guide future experiments in probing low-temperature properties of
qubit reservoirs.

DOI: 10.1103/PhysRevResearch.1.013004

I. INTRODUCTION

Precise control and preparation of pure quantum states
are pivotal in quantum technological applications of practical
interest [1,2]. For example, fast and high-fidelity initialization
of a qubit to its ground state is required to realize a large-
scale gate-based quantum computer since implementations of
quantum error correction codes [3–5] call for pure ancillary
qubits at each error correction cycle. However, satisfactory
qubit reset still remains a technological challenge. In the most
promising approaches, the qubit is steered towards the desired
state by coherent driving [6–9] or by using a specifically
tailored dissipative environment [10,11]. The latter has the
benefit that its theoretical modeling does not rely on rotating
frames which are often used in the case of time-dependent
driving and can cause inaccuracies in the predicted figures of
merit.

Fast initialization inherently calls for relatively strong en-
vironmental coupling, whereas coherent operations such as
quantum logic are error free only in the limit of isolated
quantum systems. This apparent conflict can be resolved
with a dissipative low-temperature environment and temporal
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control over the coupling strength [10–12], providing very
weak coupling during the coherent control and strong cou-
pling during fast initialization to the ground state. Recently,
superconducting-circuit realizations of the quantum-circuit
refrigerator [13,14] and the tunable heat sink [15,16] have
demonstrated that with the current technology, one can indeed
control the coupling strength between the quantum system
and the engineered bath over several orders of magnitude with
a minimal effect on the system frequency. Such components
can be conveniently integrated on the same chip with qubits,
allowing scalable fabrication and low circuit complexity.

Estimates of the speed and the fidelity of the initializa-
tion protocols based on qubit decay have been made in the
weak-coupling, i.e., Born-Markov, approximation [8,10,11].
Stationary states then arise from a detailed-balance condition
of the Born-Markov rates and, therefore, appear indepen-
dent of the coupling strength. However, experiments with
engineered quantum systems are entering a regime of high
accuracy [17,18], where higher-order corrections need to be
included. One such correction is the modification of equilib-
rium populations through a Lamb shift [19], which can be
sizable in the case of a broadband environment [14,20,21].
System-environment entanglement is another higher-order ef-
fect detrimental to the performance of reset protocols. Any
realistic analysis and optimization of the speed and fidelity
of the envisioned protocols thus calls for an exact analysis of
dissipation that goes beyond the conventional weak-coupling
formalism.
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Here, we examine nonperturbatively the open quantum
dynamics of both an ideal two-level quantum system and a
superconducting transmon qubit with N energy levels [22].
We focus on the figures of merit important to the quantum
information community and leave, e.g., more detailed studies
of non-Markovianity [23–28] for future work. We demon-
strate that the effects of entanglement and Lamb shift lead
to a decreasing ground-state occupation in the steady state
with increasing bath coupling. This indicates a potential need
to make a compromise between speed and accuracy in qubit
initialization protocols. We observe a further departure from
the behavior predicted by Born-Markov master equations in
the transient dynamics of an initially decoupled qubit, dis-
played as a rapid initial decoherence into a mixture of pointer
states [29,30]. For moderate and strong coupling, the initial
transient dynamics has a Gaussian temporal shape which is
independent of the qubit frequency, also referred to as univer-
sal decoherence. In addition, we find qubit-reservoir entangle-
ment to be the dominant source of initialization error at low
temperatures, whereas strong-coupling effects are minor for
quantum gates at experimentally relevant parameter values.
During initialization using strong coupling to an engineered
bath, effects of the intrinsic qubit dissipation are small and,
thus, can be neglected here (see Appendix C). Our findings
can be used to improve qubit schemes involving reservoir
engineering.

This paper is organized as follows. In Sec. II, we introduce
a prototype system for studies of strong bath-coupling effects,
consisting of a superconducting transmon qubit bilinearly
coupled to a thermal bath. We also describe the numerically
exact method used in our simulations. In Sec. III, we study the
decay dynamics of the qubit and give a detailed description
of the shortcomings of the Born-Markov master equations
in terms of universal decoherence. Section IV presents an
accurate calculation of the steady state. We compare the
numerically exact data against the Boltzmann distribution
of the bare qubit, and interpret the discrepancies analyti-
cally in terms of Lamb shift and entanglement with the
bath. In Sec. V, we study the gate error arising from the
weak-coupling approximation. We summarize our results in
Sec. VI.

II. TUNABLE ENVIRONMENT FOR QUBIT
INITIALIZATION

As a generic situation for the qubit reset through a dis-
sipative environment we consider, as shown in Fig. 1(a), a
superconducting qubit with bare angular frequency ωq capac-
itively coupled to a tunable resistor at temperature T . The
latter is realized using either a quantum-circuit refrigerator
or a tunable heat sink. A typical power spectral density S(ω)
of such an environment is also depicted in Fig. 1(a) with a
maximum around a cutoff frequency ωc and a zero-frequency
limit limω→0 S(ω) = κ/(h̄βωq ), where β = 1/(kBT ) and the
coupling parameter κ is identical to the zero-temperature qubit
relaxation rate in the Born-Markov approximation.

These features can be conveniently modeled (see
Appendix A) with a dissipative environment bilinearly cou-
pled to the N-level transmon qubit and consisting of an infinite

FIG. 1. (a) Circuit diagram (left) of a superconducting qubit
coupled to a tunable resistor, together with the corresponding spectral
densities (right). The bare qubit angular frequency is denoted by
ωq and the Lamb-shifted quantity by ωLS. The dynamic properties
of the bath are characterized by the power spectrum S(ω) of the
bath fluctuations, and the related mode spectral density J (ω) and the
bosonic occupation nβ (ω). (b) Initialization error for the decay of a
qubit excitation demonstrating initial universal decoherence, and the
Lamb shift and entanglement at long times for the SLN and SLED
methods (solid lines). The Redfield solution (dashed line) fails to
capture these effects. We show data for ideal (N = 2) and transmon
(N = 5) qubits. Inset: The early behavior of the initialization error.
We show the full universal decoherence (black circles) (see Ap-
pendix B), and the early-time approximation f (t ) ≈ 1

2 ω2
c t2 (dashed

yellow) given in the text. The green dashed line denotes the combined
effect of the thermal and asymptotic results in Eq. (2). The vertical
lines at ωqt = 0.1 and at ωct = 1 define the regions of validity for
the indicated approximations. Here, αr = −0.04, h̄βωq = 5, κ/ωq =
0.2, and ωc/ωq = 50.

set of harmonic oscillators, i.e.,

Ĥ = h̄
N−1∑
n=0

ωn|n〉〈n| + h̄
∑

k

�kâ†
k âk + h̄q̂

∑
k

gk (â†
k + âk ),

(1)

where q̂ = ∑
k,m〈k|n̂|m〉|k〉〈m|, n̂ is the Cooper-pair num-

ber operator of the transmon, ωn and |n〉 are the
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eigenfrequencies and eigenstates of the transmon, respec-
tively, and âk is the annihilation operator of oscillator mode
k. The transmon comprises a weakly nonlinear resonator
with ωq = ω1 − ω0 and relative anharmonicity αr = (ω2 −
ω1)/ωq − 1. We restrict our discussion to N lowest-energy
eigenstates. In the limit N = 2 (ideal qubit), Eq. (1) reduces to
the well-known spin-boson model [31,32] (see Appendix B)
which we use in our analytic calculations and in some numer-
ically exact simulations. We find that N = 5 (transmon qubit)
is enough for accurate studies of the low-energy dynamics at
low temperatures.

Within this model, the power spectrum is obtained as
S(ω) = J (ω)[nβ (ω) + 1] with the Bose occupation of the
bath modes nβ (ω) = 1/[exp(h̄βω) − 1] and the mode spec-
tral density J (ω) = 2π

∑
k g2

kδ(ω − ωk ), which becomes a
smooth function in the limit of a large reservoir. Accord-
ing to Fig. 1(a), a Drude model with J (ω) = (κ/ωq)ω/

[1 + (ω/ωc)2]2 for the tunable resistor captures the relevant
physics. Accordingly, the power spectrum gives rise to a
Markovian behavior (independent of frequency) only at high
temperatures, while at low T it displays a strong frequency
dependence inducing non-Markovian dynamics. Note that the
above definitions imply that the ratio κ/ωq is independent of
ωq for ωq � ωc.

Commonly, the quantum dynamics within this setting is
described with the reduced density operator ρ̂ the time evo-
lution of which is assumed to follow from weak-coupling
Redfield- or Lindblad-type master equations (LEs). However,
the subtle quantum correlations between a qubit and envi-
ronment require a more sophisticated theoretical treatment
that provides predictions which match the experimentally
achievable accuracy. Suitable methods, originally developed
in a condensed matter context [32], have found use in quantum
information [33]. Here, the Feynman-Vernon path-integral
formalism [34], underlying these methods, is replaced by
equivalent stochastic Liouville–von Neumann equation (SLN)
[35,36], unless analytic results exist (see Appendix D).

The SLN provides an exact nonperturbative treatment of
open quantum systems. It augments the Liouville equation
with two noise terms which are matched to the free quantum
fluctuations of the bath [37]. The physical reduced density
operator is obtained by averaging over many realizations of
the noise. For a high cutoff frequency ωc � ωq, the SLN
equation can be reduced to involve only a single real-valued
noise [stochastic Liouville equation with dissipation (SLED)]
[35,38].

III. DECAY DYNAMICS

In Fig. 1(b), we monitor the decay of the first excited
transmon state as it relaxes at low temperatures towards
thermal equilibrium. We observe that SLN and SLED results
substantially differ from the predictions of the LE during the
entire dynamics. Whereas the relaxation follows an expo-
nential decay according to LE, the exact dynamics exhibits
various time domains of peculiar behavior. Note that we
use in Fig. 1(b) a relatively strong environmental coupling,
κ = 0.2 × ωq, as realized in recent protocols for engineered
environments [13–15]. This is outside the strict applicability
of the LE.

For early times, t � 1/ωq, the ideal-qubit dynamics re-
mains frozen and the qubit is only affected by the high-
frequency reservoir modes [30]. As a consequence, the ini-
tialization error of the qubit decays as 1 − ρg(t ) = {1 +
exp[− f (t )κ/(πωq)]}/2, where ρg = 〈0|ρ̂|0〉, and both f (t )
and κ/(πωq) are system-independent quantities, determined
only by the reservoir (see Appendix B). Such decay, referred
to as universal decoherence, can more concisely be described
as dephasing in the pointer state basis of σ̂x = |0〉〈1| + |1〉〈0|
[29,30]. This behavior is depicted in the inset of Fig. 1(b),
where we observe a good agreement between the analytical
prediction and the numerically exact solution if ωqt � 0.1.
In particular, explicit expressions for f (t ) can be found for
an ideal qubit in limiting regimes, namely, f (t ) ≈ 1

2ω2
c t2 for

ultrashort times ωct < 1 and

f (t ) = 2

(
γ − 1

2
+ ln(ωct ) + ln

{
sinh[πt/(h̄β )]

πt/(h̄β )

})
, (2)

for times with min(t, h̄β ) � 1/ωc. Here, γ ≈ 0.577 denotes
the Euler constant. These results indicate that the decay of
a qubit excitation is superexponential at the timescale set by
ω−1

c . Later, there is an algebraic decay at low T , especially
for experimentally relevant cases of qubit initialization with
(h̄β )−1 � ωq � ωc. The superexponential and asymptotic
decays found above are shown in Fig. 1(b) and they agree
well with the exact solution in their regimes of validity. The
difference between the exact two- and multilevel dynamics
during the early evolution indicates a leakage to transmon
states |n〉 with n > 1 at low temperature with h̄βωq = 5.
This further validates the conclusion that the exact dynam-
ics cannot be reconciled with a simple detailed-balance rate
structure of the LE. We emphasize that the phenomenon of
universal decoherence is lost in the coarse-graining procedure
underlying the derivation of the LE.

IV. STEADY-STATE PROPERTIES

Accurate predictions for the qubit steady state are crucial
for the fidelity of initialization protocols. Figure 1(b) reveals
that the bath-coupling strength κ may affect the steady-
state occupation of the qubit substantially. In fact, the ideal
Boltzmann distribution at the bare qubit transition frequency
ωq is obtained only in the limit κ → 0. This deviation can
be attributed to both the downward Lamb shift of the qubit
transition frequency which leads to excess thermal population
and the entanglement of the qubit with the bath degrees of
freedom.

In Fig. 2, we study in more detail the impact of qubit-
reservoir quantum correlations and the role of entanglement as
the system approaches the steady state. We show in Figs. 2(a)
and 2(c) the dependence of the steady-state probability on κ

at an elevated temperature, h̄βωq = 1. The initialization error
in the steady state 1 − ρ∞

g with ρ∞
g = ρg(t → ∞) increases

with κ and the transmon qubit approaches a fully mixed
state already for κ/ωq > π/2. These numerical findings can
further be substantiated in the case of an ideal qubit by
calculating the partition function based on a diagrammatic
approach for κ/ωq � 1 and large cutoff, and projecting it
on the excited-state population (see Appendix B). This yields
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FIG. 2. (a) Initialization error of a transmon qubit as a function of time for a high bath temperature, h̄βωq = 1. In all main panels, the
transmon starts from the first excited state. Inset: Decaying Larmor precession, i.e., Re(ρeg) as a function of time, for an ideal qubit initially
in the pointer state with 〈σ̂x〉 = 1. We also show an exponentially decaying cosine fit to the SLED data and the corresponding result of the
LE. (b) As (a) but for a low temperature, h̄βωq = 10, showing the effect of qubit-bath entanglement. (c), (d) Initialization error in the steady
state as a function of the bath-coupling strength κ for (c) the high- and (d) low-temperature data. For (c) and (d), the simulation data for N = 5
(markers) are partly extracted from (a) and (b), respectively, and the analytic partition function result for N = 2 (solid line) is obtained with
Eq. (3). The color gradient in (b) and (d) indicates the region (blue) feasible for efficient quantum error correction. We have used αr = −0.04
and ωc/ωq = 50 in all panels. In (a) and (b), κT = κ coth(h̄βωq/2) is the weak-coupling transition rate from the excited state.

ρ∞
e = (1 − 〈σ̂z〉∞)/2, where σ̂z = |0〉〈0| − |1〉〈1| and [32]

〈σ̂z〉∞ = tanh(h̄β�/2)
∂�

∂ωq
, (3)

with the renormalized qubit frequency

� = ωeff

{
1 + 2K

[
Re ψ

(
i
h̄βωeff

2π

)
− ln

(
h̄βωeff

2π

)]}1/2

.

(4)

Here, ψ (x) is the digamma function, ωeff = G(ωq/ωc)K/(1−K )

ωq, K = κ/(πωq), G = [�(1 − 2K ) cos(πK )]1/[2(1−K )], and
�(x) is the gamma function. This result agrees well with
the exact solution up to κ ≈ 0.2 × ωq. The inset in Fig. 2(a)
shows that the decay of the Larmor precession of the pointer
state of an ideal qubit with 〈σ̂x〉 = 1 also occurs at this angular
frequency � < ωq, which is a signature of the reservoir-
induced Lamb shift. More specifically, we find that for κ =
0.1 × ωq the renormalized angular frequency � ≈ 0.9 × ωq

agrees within 2% compared to the Lamb-shifted Larmor
frequency extracted using a fit for the exact result in the inset.
This frequency renormalization reduces to the usual Lamb
shift given in the literature only in the ultraweak-coupling
limit [39] (see Appendix B). We also find that the inclusion
of transmon states |n〉 with n > 1 renders our system nearly

harmonic and, consequently, leads to a suppression of the
Lamb shift at high cutoff frequencies (data not shown, see
Appendix B).

Although one might expect that, at least for very small κ ,
the impact of the reservoir on the qubit can be captured solely
by a renormalized frequency and the Markovian decay rate,
this not the case. Namely, taking the zero-temperature limit of
Eq. (3), we obtain

ρ∞
e ≈ κ

2πωq
[−1 − γ + ln(ωc/ωq )], (5)

demonstrating the leading-order correction to the equilibrium
state of an ideal qubit originating from the system-reservoir
entanglement (see Appendix B). This is in full agreement
with our numerical results at a low temperature, h̄βωq = 10
[cf. Figs. 2(b) and 2(d)]. Note that this result may exceed
the corresponding exponentially small Boltzmann factor by
orders of magnitude even for κ small enough to leave the
transient dynamics virtually unaffected by dissipation. We
also show in Fig. 2(d) that the transmon states |n〉 with n > 1
do not contribute significantly to the initialization error at low
temperatures.

Our findings provide a powerful tool to estimate experi-
mentally achievable qubit initialization fidelities. For exam-
ple, efficient implementation of the surface code requires an
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FIG. 3. Evolution of the gate error for (a) moderate bath-
coupling strength κ during the application of a π rotation on the
excited state of an ideal qubit. Inset: As (a) but for weak coupling.
(b) Excited-state population after the gate operation as a function of
κ . We have used h̄βωq = 10, g/ωq = 0.0025, and the rise time of
π/(10g) for the π pulse.

error below 10−3 [5] which, according to our results, can
only be reached at sufficiently low temperatures and only
with coupling strengths κ/ωq � 10−3. This suggests that there
exists a trade-off between the speed and fidelity in reservoir-
induced qubit initialization. In fact, from the low-temperature
relaxation rate for weak coupling κ , the above restriction
determines a minimal reset time ωqtmin ≈ 104. Moreover,
with a typical angular frequency of superconducting qubits
ωq = 2π × 8 GHz and ωc < 2π × 400 GHz, one may use
a quantum-circuit refrigerator to tune to κ = 10−3 × ωq =
1/(20 ns), and hence to reset the qubit to 1 − ρg < 5 × 10−4

in less than 200 ns. This would manifest a clear improvement
to the current state-of-the-art experiments [8]. The fidelity
in this example cannot be improved by simply lowering the
reservoir temperature.

V. GATE ERROR

Given the above subtle qubit-reservoir correlations, the
question arises if they may influence also other qubit pro-
tocols, such as high-fidelity gate operations. We study this
for an ideal qubit in Fig. 3 for a π rotation about σ̂x, for
various bath-coupling strengths compared against the Rabi
angular frequency g of the gate. For κ/g = 4 × 10−5, the LE
provides very accurate predictions for the gate error, whereas
for κ/g = 0.1, the error is slightly affected by the qubit-
reservoir quantum correlations. The gate error as a function
of the bath-coupling strength is depicted in Fig. 3(b). Clearly,
the error increases with κ as the impact of the reservoir leads
to a mixing of the qubit state during the pulse. This effect
is maximized at κ/g = 1

2 since we consider only the excited
state as the initial state, and hence strong dissipation leads
to a fast increase of the desired ground-state population. For
our range of parameters, the discrepancies between LE and
SLED become relevant for κ ∼ g, a value beyond the practical
domain for the implementation of high-fidelity quantum gates.

VI. CONCLUSIONS

We have shown that the impressive progress in fab-
ricating and controlling devices for quantum information
processing calls for nonperturbative approaches beyond con-
ventional weak-coupling master equations to reliably predict
the impact of qubit-reservoir correlations for dissipative qubit

initialization. In steady state, this includes quantification of
the Lamb shift and bath entanglement effects, and the con-
sequent trade-off between initialization speed and accuracy.
Fortunately, our results indicate that this trade-off does not
seem to pose a fundamental problem on the route to scalable
quantum computers if taken properly into account in the
initialization protocol.

Furthermore, we have demonstrated that universal deco-
herence describes early qubit dynamics up to times of the
order of the environment correlation time. This phenomenon
is challenging to observe in typical Rabi-driven qubits, but
may be visible in cases where the qubit Hamiltonian can be
quickly controlled in the laboratory frame [40]. Finally, we
have observed that the exact dynamics and that given by the
Lindblad equation yield matching gate fidelities in parameter
ranges of actual implementations. Our findings may direct the
design of a new generation of state-of-the-art experiments.
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APPENDIX A: TRANSMON

In the main text, we have studied the system-bath correla-
tions of a superconducting transmon qubit [22]. The transmon
can be modeled with the Cooper-pair-box Hamiltonian

ĤS = 4ECn̂ − EJ cos ϕ̂, (A1)

where EC and EJ are the charging energy of a Cooper pair and
the Josephson energy, respectively, and ϕ̂ and n̂ = −i∂/∂ϕ are
the superconducting phase and Cooper-pair number operators
of the superconducting island. Contrary to a Cooper-pair box,
the transmon is operated in the regime EJ � EC which leads
to a suppression of charge noise. The charge noise depends
exponentially on −√

EJ/EC. As a consequence, the Hamil-
tonian in Eq. (A1) reduces to that of a harmonic oscillator
with a weak anharmonicity proportional to ϕ̂4. In our exact
simulations, we have used the numerically solved angular
eigenfrequencies ωn and the corresponding eigenvectors |n〉,
with non-negative integer n, of the Hamiltonian in Eq. (A1).
We have used EJ/EC = 100, resulting in the relative anhar-
monicity

αr = ω2 − ω1

ω1 − ω0
− 1 ≈ −0.04. (A2)

1. Coupling with a harmonic bath

We assume that the transmon is bilinearly coupled through
the Cooper-pair-number operator n̂ to a dissipative environ-
ment consisting of an infinite set of harmonic oscillators. We
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represent the total Hamiltonian of the transmon-bath system
in the eigenbasis of the transmon as

Ĥ = h̄
N−1∑
n=0

ωn|n〉〈n| + h̄
∑

k

�kâ†
k âk + h̄q̂

∑
k

gk (â†
k + âk ),

(A3)

where q̂ = ∑
k,m〈k|n̂|m〉|k〉〈m|, and âk are the annihilation

operators of the bath oscillators.

APPENDIX B: ANALYTIC EARLY DYNAMICS
AND STEADY STATE

In the main text, we have presented analytic results for the
early and asymptotic behavior of the reduced density operator
ρ̂S in the case of N = 2, i.e., an ideal qubit, the time evolution
of which is determined by the spin-boson Hamiltonian [N = 2
in Eq. (A3)]

Ĥ = − h̄ωq

2
σ̂z + h̄

∑
k

�kâ†
k âk + h̄σ̂x

∑
k

gk (â†
k + âk ), (B1)

where ωq = ω1 − ω0, and σ̂z = |g〉〈g| − |e〉〈e| and σ̂x =
|g〉〈e| + |e〉〈g| are Pauli matrices where |g〉= |0〉 and |e〉= |1〉
are the ground and excited states of the qubit. Here, we give a
detailed derivation of these results.

1. Early decoherence

In Fig. 1(b), we observe that the early evolution of the
initialization error determined by the excited-state occupation
ρe = 〈e|ρ̂S|e〉 displays a rapid nonexponential drop. The drop
occurs at a timescale that is shorter than the characteristic
timescale of the system, set by ω−1

q . In this early-time limit,
one can neglect the free evolution of the system and calculate
the decoherence analytically using the Hamiltonian

Ĥ ≈ ĤB + ĤI = h̄
∑

k

�kâ†
k âk + h̄σ̂x

∑
k

gk (â†
k + âk ). (B2)

The calculation of this so-called universal decoherence was
first carried out by Braun et al. [30] by employing the phase-
space representation of the density operator for the whole
derivation. Here, we give an alternative derivation using the
operator formalism.

We assume that initially the system and the bath are statis-
tically independent. Accordingly, the initial density operator
can be written as

ρ̂(0) = ρ̂S(0) ⊗ ρ̂B(0). (B3)

We further assume that the bath oscillators are initially in the
thermal state which is determined by the inverse temperature
β = 1/(kBT ) and can be expressed as

ρ̂B(0) =
⊗

k

ρ̂ th
k =

⊗
k

1

Zk
e−h̄β�k â†

k âk , (B4)

where Zk = TrB exp(−h̄�kâ†
k âk ). In the interaction picture,

the von Neumann equation can be written as

d ρ̂(t )

dt
= − i

h̄
[ĤI(t ), ρ̂(t )], (B5)

where

ĤI(t ) = h̄σ̂xQ̂(t ), (B6)

with Q̂(t ) = ∑
k gk (â†

kei�kt + âke−i�kt ). This has the formal
solution

ρ̂(t ) = T e− i
h̄

∫ t
0 dt ′HI (t ′ )ρ̂(0)T e

i
h̄

∫ t
0 dt ′HI (t ′ ), (B7)

where T denotes time ordering.
Here, we study the operator part ρ̂nm = Î ⊗ 〈n|ρ̂|m〉 ⊗ Î

of the joint density operator in the eigenbasis of operator σ̂x

formed by the pointer states |n〉 which obey σ̂x|n〉 = n|n〉.
Here, Î is an identity operator for the bath and hence ρ̂nm is
a density operator for the bath. As a consequence, one obtains

ρ̂nm = T e−in
∫ t

0 dt ′Q̂(t ′ )ρS
nm(0)ρ̂B(0)T eim

∫ t
0 dt ′Q̂(t ′ ). (B8)

We express

T eim
∫ t

0 dt ′Q̂(t ′ ) = lim
N→∞

0∏
k=N

eimQ̂(kδt )δt , (B9)

where δt = t/N . Iteratively applying the Baker-Campbell-
Hausdorff formula with [âk, â†

l ] = δkl and [âk, âl ] =
[â†

k, â†
l ] = 0, we obtain

T eim
∫ t

0 dt ′Q̂(t ′ ) = lim
N→∞

exp

[
im

N∑
k=0

Q(kδt )δt

− m2

2

N∑
k=0

k−1∑
�=0

[Q̂(kδt ), Q̂(�δt )]δt2

]
(B10)

= exp

[
im

∫ t

0
dt ′Q̂(t ′) − m2

2

∫ t

0
dt ′

×
∫ t ′

0
dt ′′[Q̂(t ′), Q̂(t ′′)]

]
(B11)

= exp

{
im

∑
k

gk

�k
[Dk (t )â†

k + D∗
k (t )âk]

− im2
∑

k

g2
k

�2
k

[�kt − sin(�kt )]

}
, (B12)

where we have denoted Dk (t ) = sin(�kt ) + i[1 − cos(�kt )].
The reduced density operator is obtained by tracing over

the bath degrees of freedom as

ρS
nm(t ) = TrB

[
T e−in

∫ t
0 dt ′Q̂(t ′ )ρS

nm(0)ρ̂B(0)T eim
∫ t

0 dt ′Q̂(t ′ )
]

(B13)

= TrB

[
e−i(n−m)

∫ t
0 dt ′Q̂(t ′ )ρ̂B(0)

]

× e
i(n2−m2 )

∑
�

g2
�

ω2
�

[ω�t−sin(ω�t )]
ρS

nm(0) (B14)

=
∏

k

Trk

{
e−i(n−m)

gk
�k

[Dk (t )â†
k+D∗

k (t )âk ]
ρ̂ th

k (0)
}

× e
ih̄(n2−m2 )

∑
�

c2
�

2m�ω3
�

[ω�t−sin(ω�t )]
ρS

nm(0), (B15)

where on the last line we have used the thermal initial state for
the bath, defined in Eq. (B4). Here, the trace can be simplified
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with the unitary rotation Û = e−i
∑

k αk (t )â†
k âk where αk (t ) are

chosen such that the imaginary part of Dk (t )â†
k + D∗

k (t )âk is
eliminated. We also note that the thermal-state density opera-
tor is diagonal in the eigenbasis of â†

k âk and, thus, unaffected
by the rotation. We obtain

Û †[Dk (t )â†
k + D∗

k (t )âk]Û = Dk (t )eiαk (t )â†
k

+D∗
k (t )e−iαk (t )âk =

√
2[1 − cos(�kt )](â†

k + âk ), (B16)

where in the last equality, we have set αk (t ) = −arg[Dk (t )].
As a consequence of the transformation, we can write the
reduced density operator as

ρS
nm(t ) =

∏
k

Trk

[
e−i(n−m)

gk
�k

√
2[1−cos(�kt )](â†

k+âk )
ρ̂ th

k

]

× e
i(n2−m2 )

∑
�

g2
�

ω2
�

[ω�t−sin(ω�t )]
ρS

nm(0). (B17)

Thus, we need to calculate 〈eick (â†
k+âk )〉 in the thermal state,

where

ck = −(n − m)
gk

�k

√
2[1 − cos(�kt )]. (B18)

This can be carried out in the phase-space representation,
where the Wigner function for the thermal density operator
ρ̂ th

k reads

Wβ (qk, pk ) = 1

2π

√〈
q̂2

k

〉〈
p̂2

k

〉e−q2
k /(2〈q̂2

k 〉)−p2
k/(2〈p̂2

k〉), (B19)

with the thermal averages 〈q̂2
k〉 = q2

k,0coth(h̄β�k/2) and
〈p̂2

k〉 = 〈q2
k〉h̄2/(4q2

k,0) and q2
k,0 being the ground-state width

of mode k.
As a consequence, one arrives with q̂k = qk,0(a†

k + ak ) at

〈
eick (â†

k+âk )
〉 = e− c2

k
2 coth[h̄β�k/2]. (B20)

Finally, we can write the elements of the reduced density
matrix as

ρS
nm(t ) = e−(n−m)2 f (t )κ/(4πωq )+i(n2−m2 )ϕ(t )κ/(4πωq )ρS

nm(0),

(B21)

where

f (t ) = 4πωq

κ

∑
k

g2
k

�2
k

coth(h̄β�k/2)[1 − cos(�kt )]

= 2ωq

κ

∫ ∞

0
dω

J (ω)

ω2
coth(h̄βω/2)[1 − cos(ωt )],

(B22)

ϕ(t ) = 4πωq

κ

∑
k

g2
k

ω2
k

[ωkt − sin(ωkt )]

= 2ωq

κ

∫ ∞

0
dω

J (ω)

ω2
[ωt − sin(ωt )], (B23)

and we have recalled that

J (ω) = 2π
∑

k

g2
kδ(ω − �k ) = κ (ω/ωq)(

1 + ω2

ω2
c

)2 , (B24)

where the latter equality holds for an ohmic bath with a
second-order Drude cutoff at ωc. We emphasize that these are
identical relations to those obtained previously by Braun et al.
[30].

In the main text, we show data for the excited-state occu-
pation of the operator σ̂z given by

ρS
e (t ) = 1

2 [1 + (ρ−+ + ρ+−)] (B25)

= 1
2 {1 + e− f (t )κ/(πωq )[ρ−+(0) + ρ+−(0)]} (B26)

= 1
2 [1 + e− f (t )κ/(πωq )], (B27)

where in the last equality we have assumed that initially
ρe(0) = 1. We have denoted

|e〉 = 1√
2

(|+〉 + |−〉), (B28)

where the pointer states |±〉 are the eigenstates of the σ̂x

operator obeying σ̂x|±〉 = ±|±〉.

a. Very early behavior

For very early times (ωct < 1), the argument in the expo-
nential reduces into

f (t ) = 2
∫ ∞

0
dω

1

ω
(

1 + ω2

ω2
c

)2 coth(h̄βω/2)[1 − cos(ωt )]

≈ t2
∫ ∞

0
dω

ω(
1 + ω2

ω2
c

)2 coth(h̄βω/2) (B29)

≈ ω2
c t2

2
, (B30)

where in the last equality we have also assumed zero tempera-
ture. We thus observe that, contrary to the Fermi’s golden rule,
the early dependence of the excited-state occupation is propor-
tional to t2. This implies that for times obeying ωct < 1, we
expect faster than exponential decay of the initial excited-state
occupation. This feature is demonstrated in Fig. 1(b).

b. Thermal part

In general, the function f (t ) that determines the early de-
coherence can be expressed as a sum of the zero-temperature
and finite-temperature parts as

f (t ) = 2ωq

κ

∫ ∞

0
dω

J (ω)

ω2
[1 + 2nβ (ω)][1 − cos(ωt )].

(B31)

One obtains an analytic solution for the thermal part by
noticing that the Drude cutoff can be neglected at the presence
of the thermal cutoff. Thus, one obtains for ohmic spectral
density that the finite-temperature part of f (t ) is given by

fβ (t ) = 4
∫ ∞

0
dω

nβ (ω)

ω
[1 − cos(ωt )] (B32)

= 2 ln

[
sinh(πt/h̄β )

πt/h̄β

]
. (B33)

This was obtained by first calculating the integral for the time
derivative of fβ (t ) and then integrating the result in time.
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c. Asymptotic behavior

We have calculated symbolically using MAPLE the asymp-
totic behavior of the zero-temperature part. The result can be
written as

f0(t ) = 2
[
γ − 1

2 + ln(ωct )
]
, for t → ∞, (B34)

where γ ≈ 0.577 . . . is the Euler constant. We emphasize that
for the experimentally relevant case with (h̄β )−1 < ωq � ωc,
the early decoherence is determined accurately by the zero-
temperature part of the function f (t ) because the thermal
timescale is longer than that of the system. The sum of
Eqs. (B34) and (B33) is equal to Eq. (2).

2. Partition function approach for the steady state

The qubit occupation in the steady state can be calculated
using the canonical partition function

Z = Tr(e−βĤ ) (B35)

of the whole qubit-bath system. For clarity, we study the
results in terms of the Kondo parameter K = κ/(πωq). If the
system depends on a parameter λ, one can write

∂

∂λ
ln Z = Tr

( − β ∂Ĥ
∂λ

e−βĤ
)

Z
, (B36)

and, consequently, 〈
∂Ĥ

∂λ

〉
= − 1

β

∂

∂λ
ln Z. (B37)

Due to the coupling, the expectation values of the qubit in the
steady state differ from those obtained with the partition func-
tion Z0 = exp(h̄βωqσ̂z) of the bare qubit. In the following, we
calculate these deviations in the regime of weak coupling with
K sufficiently smaller than 1, and show that they are caused by
the Lamb shift and the entanglement with the bath.

The equilibrium properties of an open quantum system can
be described by a reduced partition function [32] Zq with the
property

∂

∂λ
ln Zq = ∂

∂λ
ln Z (B38)

for any parameter λ which appears only in the system
Hamiltonian (∂HI/∂λ = ∂HR/∂λ = 0). By setting λ = ωq in
Eq. (B37), one obtains

〈σ̂z〉 = 2

h̄β

∂

∂ωq
ln Zq, (B39)

where σ̂z = |g〉〈g| − |e〉〈e| is a Pauli operator of the bare ideal
qubit. The reduced partition function of the dressed qubit can
be expressed in the weak-coupling regime as [32]

Zq = 2 cosh(h̄β�/2), (B40)

where

�2 = ω2
eff

{
1 + 2K

[
Re ψ

(
ih̄βωeff

2π

)
− ln

(
h̄βωeff

2π

)]}
,

(B41)

ψ (z) is the digamma function, and

ωeff = G

(
ωq

ωc

)K/(1−K )

ωq, (B42)

G = [�(1 − 2K ) cos(πK )]1/[2(1−K )], (B43)

with �(x) being the gamma function. The above result is
equivalent to Eq. (4) and valid for all values of β. It has been
derived using an exponential cutoff, but we will show later that
this assumption leads into minor deviations from the results
given by the Drude cutoff used in the numerical simulations.
Using the chain-rule of derivation in Eq. (B39), we obtain
Eq. (3),

〈σ̂z〉 = tanh (h̄β�/2)
∂�

∂ωq
. (B44)

The expectation value comprises two factors. We demonstrate
below that the first factor describes the Lamb shift due to
the renormalization of the qubit frequency by the bath. The
other factor, ∂�/∂ωq, of the expectation value is a measure
of entanglement between the qubit and the bath, and can be
written as ∂�/∂ωq = ∂�/∂ωeff (∂ωeff/∂ωq ), where

∂�

∂ωeff
= �

ωeff
− K

h̄βω2
eff

2π�

[
Im ψ ′

(
ih̄βωeff

2π

)
+ 2π

h̄βωeff

]
,

(B45)

∂ωeff

∂ωq
= G1−K

1 − K

(
ωeff

ωc

)K

. (B46)

a. Lamb shift

If one neglects the factor ∂�/∂ωq in the expression in
Eq. (B44), one obtains

〈σ̂z〉 = 2

h̄β

∂

∂�
ln Zq = tanh(h̄β�/2), (B47)

where the derivative is with respect to the renormalized fre-
quency � instead of the bare frequency ωq as in Eq. (B39).
This describes a qubit with only a frequency renormalization
ωq → � which is what one would expect for a system expe-
riencing only the Lamb shift and no entanglement with the
bath.

In the literature [39], the Lamb shift is typically derived
using the second-order perturbation theory with respect to the
couplings gk . As a consequence, the Lamb-shifted transition
frequency of the ideal qubit can be written as

ωLS = ωq

{
1 + 1

π
P

∫ ∞

0
dω

J (ω)

ω2
q − ω2

[1 + 2nβ (ω)]

}

= ωq{1 − K[−γ + ln(ωc/ωq )]}, (B48)

where P stands for principal value. In the second equality, we
have assumed zero temperature and ωc � ωq, and used the
spectral density J (ω) = πKω exp(−ω/ωc) with an exponen-
tial cutoff. For Drude cutoff, the Euler constant γ = 0.577 . . .

is replaced with 1
2 . On the other hand, one can make a linear

expansion in K for the renormalized qubit frequency given
in Eq. (B41). Note that at zero temperature and for ωc � ωq

the expression (B41) reduces to ωLS only under the much
stricter constraint K ln(ωc/ωq ) � 1. We also emphasize that
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FIG. 4. Renormalized qubit frequency � in Eq. (B41) and the
conventional perturbative result ωLS for the Lamb-shifted qubit fre-
quency defined in Eq. (B48) as functions of the Kondo parameter.
We have used h̄βωq = 5 and ωc/ωq = 50.

for a purely harmonic system with natural frequency of ωq,
the Lamb-shifted transition frequency is given by [14]

ωLS = ωq

{
1 + 1

π
P

∫ ∞

0
dω

J (ω)ω2
q

ω
(
ω2

q − ω2
)
}

= ωq

{
1 + K (1 − γ )

ωq

ωc

}
. (B49)

Thus, contrary to the logarithmic divergence of the Lamb shift
of a maximally anharmonic system in Eq. (B48), the Lamb
shift of a harmonic oscillator converges towards zero with
increasing ωc. Being only a weakly anharmonic system, we
thus expect that the Lamb shift of the transmon is also small
compared to that of a two-level system. This is also supported
by our numerical data (not shown) which display a negligible
shift of the Larmor frequency for N = 5 if compared against
the data for N = 2 shown in the inset of Fig. 2(a).

In Fig. 4, we compare the renormalized frequency � in
Eq. (B41) with the Lamb-shifted qubit frequency ωLS in
Eq. (B48). As expected, we observe that the perturbative result
follows closely the renormalized frequency in Eq. (B41) for
small values of the coupling constant K . At low temperatures
with β > 5, the deviations appear for K � 0.1. The perturba-
tive nature of ωLS is emphasized by the fact that it decreases
without a bound and becomes negative at K = [ln(ωc/ωq ) −
γ ]−1 ≈ 0.3, where the numerical value has been calculated
for the parameters used in Fig. 4. On the other hand, the
renormalized frequency � approaches zero asymptotically.

However, one cannot obtain Eq. (B47) as a limiting
case to Eq. (B44). This would require ∂�/∂ωeff → 1 and
∂ωeff/∂ωq → 1. These limits can be reached only at zero
temperature and zero K , i.e., when the bath can be neglected
altogether. Therefore, the steady-state occupation of a qubit
is never given by the Boltzmann distribution for the renor-
malized qubit frequency as the entanglement with the bath
generates a notable correction for all β and K . Especially,
when the temperature is zero, the excited-state occupation of
the qubit in the steady state is given solely by the entangle-
ment with the bath, as we will show in the following sections.

FIG. 5. Relative error of the renormalized frequency � in
Eq. (B41) with respect to the numerically obtained Larmor fre-
quency. The Larmor frequencies are obtained by using a pointer
state with 〈σ̂x〉 = 1 as the initial state of the SLED simulation. The
resulting decaying Larmor oscillations are fitted to a decaying cosine
function, similar to the inset of Fig. 2(a). We have calculated the
relative error numerically for five values of κ (dots). We also show
an interpolated curve (solid) that goes through the data points. We
have used the parameters h̄βωq = 1 and ωc/ωq = 50.

b. Comparison with numerically obtained Larmor frequency

We have compared the renormalized frequency � in
Eq. (B41) with the numerically obtained Larmor frequency
ω0. In Fig. 5, we show the relative error

ε = |�(κ ) − ω0(κ )|
ω0(κ )

. (B50)

The data show that for κ � 0.1 × ωq the relative error is
below 2%. This further justifies the interpretation of � as the
renormalized transition frequency of the qubit in the weak-
coupling limit. We also note that the data for κ = 0.1 × ωq

correspond to the decaying Larmor oscillations shown in the
inset of Fig. 2(a).

c. Zero-temperature occupation

Here, we show that the coupling to the bath gives rise to a
nonvanishing excited-state occupation of the ideal qubit in the
steady state, even in the zero-temperature limit h̄βωeff → ∞.
We assume a weak coupling (K � 1) and a high cutoff (ωc �
ωq). With these approximations, we obtain in Eq. (B44) that
tanh(h̄β�/2) ≈ 1 and � ≈ ωeff . Thus,

〈σ̂z〉 ≈ ∂ωeff

∂ωq
(B51)

≈
√

�(1 − 2K ) cos(πK )

1 − K

[
1 + K ln

(
ωeff

ωc

)]
(B52)

≈ [1 + (1 + γ )K]

{
1 + K ln

(
ωeff

ωc

)}
. (B53)

We are interested in the steady-state occupation ρ∞
e =

(1 − 〈σ̂z〉)/2 in the excited state |e〉 of the σ̂z operator. We
obtain up to the first order in K that

ρ∞
e ≈ K

2

[
−1 − γ + ln

(
ωc

ωeff

)]
. (B54)
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It should be noted that for K > 0, this result deviates from
the ρ∞

e = 0 prediction given by the Boltzmann distribution
for the bare qubit at T = 0. Thus, one can interpret that the
nonzero occupation of the excited state cannot be treated as a
Lamb shift and, thus, has to be generated by the entanglement
between the qubit and the bath.

3. Perturbative treatment of the zero-temperature
ground-state entanglement

We calculate perturbatively the reduced density operator of
the qubit in the steady state in the zero-temperature limit. We
assume that the system is described with the total Hamiltonian

Ĥ = − h̄ωq

2
σ̂z + h̄

∑
k

�kâ†
k âk + h̄σ̂x

∑
k

gk (â†
k + âk ),

(B55)
and obeys the Boltzmann distribution in the steady state.
Thus at zero temperature, the whole qubit-bath system is
in its ground state. Since the Jaynes-Cummings type terms

∝σ̂+âk + σ̂−â†
k conserve the occupation number, they do not

affect the ground state and are, thus, neglected in the follow-
ing. As a consequence, we can write the total Hamiltonian as

Ĥ ≈ − h̄ωq

2
σ̂z + h̄

∑
k

�kâ†
k âk + h̄

∑
k

gk (â†
k σ̂+ + âk σ̂−),

(B56)

where σ− = |g〉〈e| is the annihilation operator of the qubit.
This Hamiltonian can be approximately diagonalized up
to the second order in the couplings gk with the unitary
transformation

Û = e
∑

k Ŝ(k)
, (B57)

where Ŝ(k) = [gk/(ωq + �k )](â†
k σ̂+ − âk σ̂−) diagonalize the

interaction terms of the Hamiltonian in Eq. (B56). As a result,
we obtain the Hamiltonian

˜̂H = Û ĤÛ † ≈ − h̄ωq

2
σ̂z + h̄

∑
k

�kâ†
k âk + h̄

∑
k,�

gkg�

ωq + �k
[σ̂+σ̂−(â†

k â� + â†
� âk ) − σ̂−σ̂+(â�â†

k + âk â†
� )]. (B58)

We assume that in the transformed frame, the qubit-bath
system is in a thermal state at zero temperature, i.e., in the
ground state of the Hamiltonian in Eq. (B58). Since the
coupling terms in Eq. (B58) conserve the occupation number,
the ground state can be written as |g, 0, 0, . . .〉, where the first
quantum number labels the state of the dressed qubit and the
rest those of the dressed bath oscillators. The corresponding
density operator of the qubit-bath system can be written as

˜̂ρ = |g, 0, 0, . . .〉〈g, 0, 0, . . . |. (B59)

The bare qubit occupation can be obtained by transform-
ing the ground-state density operator back to the laboratory
frame as

ρ̂ = Û † ˜̂ρÛ ≈ ˜̂ρ + [ ˜̂ρ, Ŝ] − Ŝ ˜̂ρŜ + 1
2 { ˜̂ρ, Ŝ2}, (B60)

where Ŝ = ∑
k Ŝ(k), and the second equality holds up to the

second order in the coupling constants {gk}. The reduced
density operator for the qubit is obtained by tracing over the
bath, resulting in

ρ̂S = (1 − χ )|g〉〈g| + χ |e〉〈e|, (B61)

where

χ =
∑

k

g2
k

(ωq + �k )2
= 1

2π

∫ ∞

0
dω

J (ω)

(ωq + ω)2
(B62)

is a measure of the entanglement between the qubit and the
bath, i.e., hybridization of the reduced density operator of the
qubit even in the zero-temperature limit. Above, we have used
the definition for the mode spectral density given by

J (ω) = 2π
∑

k

g2
kδ(ω − �k ) = κ (ω/ωq)(

1 + ω2/ω2
c

)2 . (B63)

Finally, let us compare this result with Eq. (B54). For cutoff
with ωc � ωq, the excited-state occupation is given by

χ ≈ K

2

[
−3

2
+ ln

(
ωc

ωq

)]
. (B64)

The difference between the constant terms is caused by the
fact that Eq. (B54) was derived using an exponential cutoff
whereas here we used a Drude cutoff similar to our numerical
simulations. Thus, we observe that the ∂�/∂ωq factor in
Eq. (B44) arises due to entanglement. As a consequence, the
entanglement is the dominating source of initialization error
at low temperatures.

APPENDIX C: EFFECT OF INTRINSIC DISSIPATION

In addition to the low-temperature engineered environ-
ment described above, the transmon qubit is also coupled
to an intrinsic and uncontrollable environment characterized
by the zero-temperature dissipation rate γ and temperature
Ti. During an initialization protocol, we assume that κ � γ .
Consequently, the intrinsic environment has a negligible effect
on the steady-state occupation of the transmon.

We show this by studying a harmonic oscillator that is cou-
pled weakly to two thermal baths. We assume weak coupling
and, as a consequence, the quantum dynamics of the reduced
density operator is governed by the master equation

d ρ̂

dt
= κ

2
(Nee + 1)[2âρ̂â† − â†âρ̂ − ρ̂â†â]

+ κ

2
Nee[2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†]

+ γ

2
(Ni + 1)[2âρ̂â† − â†âρ̂ − ρ̂â†â]

+ γ

2
Ni[2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†], (C1)
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where Nee and Ni are the Bose-Einstein occupations of the
engineered and intrinsic baths, respectively. We denote the
occupation probabilities for the bare oscillator eigenstates
|n〉 with Pn = 〈n|ρ̂|n〉. Using the master equation (C1), one
obtains

Ṗn = [κ (Nee + 1) + γ (Ni + 1)]{(n + 1)Pn+1 − nPn}
+ [κNee + γ Ni]{nPn−1 − (n + 1)Pn}. (C2)

We assume that the steady state (Ṗn = 0) is given by the
thermal occupation with

Pn = 1

1 + N

(
N

1 + N

)n

, (C3)

where N is the effective Bose-Einstein occupation for the
harmonic oscillator interacting with two independent baths.
After straightforward algebra, we obtain

N = κNee + γ Ni

κ + γ
. (C4)

Clearly, in the limit κ � γ and for a relatively low intrinsic
thermal occupation Ni of the oscillator, one obtains that N ≈
Nee. In the main text, we assume that this holds also for rela-
tively large dissipation rate κ ∼ 0.1 × ωq. As a consequence,
we neglect the intrinsic bath in order to clarify our discussions
and to emphasize our main message.

APPENDIX D: SLN AND SLED METHODS

If the coupling between the qubit and the bath cannot be
treated as a weak perturbation, or the environmental corre-
lation time is long, the typical Born-Markov approximation
leading to Redfield and Lindblad master equations becomes
inaccurate [32]. In such situations, one has to rely on more ac-
curate methods, such as the formally exact Feynman-Vernon
path-integral formalism.

1. Stochastic Liouville–von Neumann equation

For bilinear coupling and the qubit-bath system starting
from a factorized initial state given in Eq. (B3), one can
show [36] that the path-integral representation for the reduced
density operator dynamics can be cast into the form of the
so-called stochastic Liouville–von Neumann (SLN) equation

ih̄
d ρ̂S

dt
= [ĤS, ρ̂S] − h̄ξ (t )[σ̂x, ρ̂S] − h̄ν(t ){σ̂x, ρ̂S}. (D1)

The SLN equation comprises a deterministic coherent part
given by the first term on the right-hand side of the equation,
followed by the stochastic dissipative part, the dynamical
properties of which are set by the complex-valued random
variables ξ and ν. The correlations between the qubit and the
bath are encoded into the correlations of the noise terms which
follow the equations

〈ξ (t )ξ (t ′)〉 = Re[L(t − t ′)], (D2)

〈ξ (t )ν(t ′)〉 = i�(t − t ′)Im[L(t − t ′)], (D3)

〈ν(t )ν(t ′)〉 = 0, (D4)

where �(t ) is the Heaviside step function and

L(t − t ′) = 〈ζ̂ (t )ζ̂ (t ′)〉 =
∫ ∞

0

dω

2π
J (ω){coth(h̄βω/2)

× cos[ω(t − t ′)] − i sin[ω(t − t ′)]} (D5)

is the autocorrelation function of the bath with ζ̂ =∑
k gk (â†

k + âk ). We note that the correlations 〈ξ (t )ξ ∗(t ′)〉,
〈ξ (t )ν∗(t ′)〉, and 〈ν(t )ν∗(t ′)〉 are not fixed by the bath cor-
relation function, and can be thus chosen to optimize the
efficiency of the numerical realization.

2. Stochastic Liouville equation with dissipation

In the case of ohmic dissipation with a high Drude cutoff
frequency ωc � ωq, the path integral formalism can be re-
duced into the form of so-called stochastic Liouville equation
with dissipation (SLED) [41,42]

d ρ̂S

dt
= − i

h̄
([ĤS, ρ̂S] − h̄ξ (t )[σ̂x, ρ̂S])

− κ

2h̄βωq
[σ̂x, [σ̂x, ρ̂S]] − i

κ

4
[σ̂x, {σ̂y, ρ̂S}]. (D6)

The above SLED has a stochastic part characterized by a
single real-valued noise term ξ (t ). The remaining terms form
the deterministic part of the SLED. The autocorrelation func-
tion of the noise term is given by the real part of the bath
correlation function as

〈ξ (t )ξ (t ′)〉 =
∫ ∞

0

dω

2π
J (ω)[coth(h̄βω/2)

− 2/(h̄βω)] cos[ω(t − t ′)]. (D7)

We emphasize that we have treated separately the classical
white-noise part in the bath correlation function, resulting in
convergence of the numerical implementation of the method
which is faster than is obtained without such separation.

APPENDIX E: IMPLEMENTATION OF THE SLN
AND SLED METHODS

The SLN equation (D1) and the SLED in Eq. (D6) can
be solved for each noise realization, i.e., sample, using
the conventional methods for deterministic differential equa-
tions. The samples are generated in a discretized time grid
[0, h, . . . , (N − 1)h] with the finite step size h, spanning from
the initial value at t = 0 over an interval lasting for several
relaxation times κ−1 � (N − 1)h.

1. Generation of correlated-noise samples

The numerical implementation of the correlated-noise
samples is the main difference from the corresponding
Lindblad algorithm. Here, we describe a numerical scheme
for the generation of such samples obeying the correlation
functions (D2)–(D4). We note that these correlation functions
arise in the SLN description of the exact path-integral formal-
ism where the bath correlation function L(t ) is defined as in
Eq. (D5). In the case of the SLED, one only needs to consider
Eq. (D2) where the real part of the bath correlation function is
defined in Eq. (D7). We give here the method of generating the
correlated complex-valued noise terms ξ and ν for the SLN
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equation, and then discuss in the end how the noise generation
is simplified for the case of the SLED.

We first divide the ξ noise into two parts as ξ (t ) = ξr(t ) +
ξc(t ), where ξr (t ) is assumed real and

〈ξr (t )ξr (t
′)〉 = Re[L(t − t ′)], (E1)

〈ξc(t )ν(t ′)〉 = i�(t − t ′)Im[L(t − t ′)]

= −iχR(t − t ′), (E2)

and 〈ξc(t )ξc(t ′)〉 = 〈ξr (t )ξc(t ′)〉 = 〈ξr (t )ν(t ′)〉 = 0. Moreover,
we denote ξc(t ) = ξR

c (t ) + iξ I
c (t ) and ν(t ) = νR(t ) + iνI(t ),

where the terms ξR,I
c and νR,I are assumed real. These noises

can be generated by filtering the independent Gaussian noise
samples x1(t ), x2(t ), and x3(t ) with appropriate window func-
tions W1(t ) and W2(t ) as

ξr (t ) =
∫ ∞

−∞
dt ′W1(t − t ′)x1(t ′)

= 1

2π

∫ ∞

−∞
dωW1(ω)x1(ω)e−iωt , (E3)

ξR
c (t ) =

∫ ∞

−∞
dt ′W2(t − t ′)x2(t ′)

= 1

2π

∫ ∞

−∞
dωW2(ω)x2(ω)e−iωt , (E4)

ξ I
c (t ) =

∫ ∞

−∞
dt ′W2(t − t ′)x3(t ′)

= 1

2π

∫ ∞

−∞
dωW2(ω)x3(ω)e−iωt , (E5)

νR(t ) =
∫ ∞

−∞
dt ′W2(t ′ − t )x3(t ′)

= − 1

2π

∫ ∞

−∞
dωW ∗

2 (ω)x3(ω)e−iωt , (E6)

νI(t ) =
∫ ∞

−∞
dt ′W2(t ′ − t )x2(t ′)

= − 1

2π

∫ ∞

−∞
dωW ∗

2 (ω)x2(ω)e−iωt , (E7)

where we have defined the Fourier transformation of a func-
tion f (t ) as

f (ω) =
∫ ∞

−∞
dt f (t )eiωt . (E8)

The window functions are determined by the correlation func-
tions in Eqs. (E1) and (E2), and can be expressed as

W1(ω) = [L(ω) − iLi(ω)]1/2, (E9)

W2(ω) = [
1
2χR(ω)

]1/2
, (E10)

where Li(ω) is the Fourier transform of Im[L(t )]. For odd
spectral densities, we can write

L(ω) = S(ω) = J (ω)[nβ (ω) + 1], (E11)

Li(ω) = −iJ (ω)/2, (E12)

χR(ω) = Re[χR(ω)] + i
J (ω)

4
(E13)

= J (ω)

4

[ ωc

2ω

(
1 − ω2/ω2

c

) + i
]
, (E14)

where the second equality in the last equation has been written
for the ohmic spectral density J (ω) defined in Eq. (B63).

Each noise term can be generated numerically by the
following protocol:

(1) Produce an array of N independent Gaussian variables
{x(t�)} corresponding to the grid points t� = �h with � =
0, . . . , N − 1.

(2) Use fast Fourier transformation on {x(t�)} to obtain
{x(�k )} where {�k = k2π/(Nh)} define a grid in the fre-
quency space.

(3) Take the inverse Fourier transformation of W (�k )x(�k )
to obtain the discretized samples of Eqs. (E3)–(E7).

In the case of SLED, one needs to do this procedure only
once, for ξr, whereas for the SLN equation all five real-valued
random variables ξr, ξ

R,I
c , and νR,I are needed.

2. Details about the numerical implementation

The individual solutions for a given sample do not have a
physical interpretation but, nevertheless, the density operator
can be obtained by taking an average over the solutions ob-
tained with different samples. We have solved the SLN/SLED
equations by representing the density operator using a vector
notation which allows writing the stochastic equations in
the form ρ̇S = LρS where L is the Liouvillian superoperator
of the SLN/SLED equation including both the determinis-
tic and the stochastic parts. For a given noise sample, the
“Liouvillian” equation is solved deterministically using the
Magnus integrator method up to the first order in the time
step h.

As both equations can be treated using deterministic meth-
ods for each noise sample, the solution for a given sample has
the same complexity as the corresponding Lindblad equation.
The difference with respect to the conventional Born-Markov
master equations arises from the fact that, for a given set
of parameters, one has to solve the dynamical equation for
many noise samples. The convergence of the averaging pro-
cedure depends heavily on the temperature of the bath as the
number of needed samples increases rapidly with decreasing
temperature.

For the parameters listed in the main text and Table I, our
simulation runs approximately 104 sample points per second
on a modern CPU. Because the noise samples are indepen-
dent, the SLN and SLED methods are easily parallelizable.

TABLE I. Benchmarks for the numerical solution of the SLN
equation and the SLED. We give examples for the data in Figs. 1 and
2 of the main text with fixed parameters κ/ωq = 0.2 and ωc/ωq =
50. The data have been obtained with the time step h = 2−7 × ω−1

q .
We denote the number of time steps, i.e., the sample length, with N
and the number of samples with NS. The standard deviation of σ in
the steady state is calculated in the interval t ∈ [9κ−1

T , 10κ−1
T ] for all

data sets.

Figure h̄βωq N NS σ Method

1 5 213 2 × 107 1.0 × 10−2 SLN
1 5 213 5 × 104 5.3 × 10−4 SLED
2(a) 1 212 2 × 104 3.0 × 10−4 SLED
2(c) 10 213 2 × 105 7.5 × 10−4 SLED
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We have exploited this property at low temperatures where
a large number of samples is needed. The parallelization
was implemented with supercomputers at CSC – the Finnish

IT Center for Science. The benchmarks for the numerical
solution are listed in Table I for the data relevant for Figs. 1
and 2.
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