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An Approximation of Theta Functions with Applications to Communications\ast 

Amaro Barreal\dagger , Mohamed Taoufiq Damir\ddagger , Ragnar Freij-Hollanti\ddagger , and Camilla Hollanti\ddagger 

Abstract. Computing the theta series of an arbitrary lattice, and more specifically a related quantity known
as the flatness factor, has been recently shown to be important for lattice code design in various
wireless communication setups. However, the theta series is in general not known in closed form,
excluding a small set of very special lattices. In this article, motivated by the practical applications
as well as the mathematical problem itself, a simple approximation of the theta series of a lattice
is derived. A rigorous analysis of its accuracy is provided. In relation to this, maximum-likelihood
decoding in the context of compute-and-forward relaying is studied. Following previous work, it is
shown that the related metric can exhibit a flat behavior, which can be characterized by the flatness
factor of the decoding function. Contrary to common belief, we note that the decoding metric can
be rewritten as a sum over a random lattice only when at most two sources are considered. Using a
particular matrix decomposition, a link between the random lattice and the code lattice employed
at the transmitter is established, which leads to an explicit criterion for code design, in contrast
to implicit criteria derived previously. Finally, candidate lattices are examined with respect to the
proposed criterion using the derived theta series approximation.

Key words. arbitrary lattices, compute-and-forward protocol, flatness factor, geometry of lattices, lattice codes,
theta series approximation, wireless communications, wiretap channels
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1. Introduction. Lattices are mathematical objects which have become indispensable for
code design in many areas of wireless communications, as many design criteria for reliable
performance rely on the discrete and algebraic structure of lattices. Despite their deceptively
simple structure, many computational problems related to lattices are extremely challenging,
such as the famous shortest vector problem or related closest vector problem. In particular,
as the same lattice can be generated by distinct bases, a natural problem is to find a basis
consisting of shortest vectors, a problem so hard that cryptographic protocols have been
developed around it. Moreover, even enumerating vectors of certain lengths is very difficult.
The generating function for the number of elements in a lattice of a given norm is known
as the theta series of the lattice. This is an interesting object in its own right, and it is
not surprising that it is known only in closed form for a very small set of highly structured
lattices.
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472 BARREAL, DAMIR, FREIJ-HOLLANTI, AND HOLLANTI

From an applications perspective, it has been recently shown that code design in various
areas of wireless communications and cryptography can profit from studying the theta series
of certain involved lattices, e.g., for wiretap code design [1, 2], dither avoidance in lattice noise
quantization [3], or compute-and-forward relaying [4]. Compute-and-forward relaying is a
promising physical layer network coding protocol proposed in the award-winning paper [4] and
exploits the natural effects of interference by decoding linear combinations of the transmitted
messages at the intermediate relays to achieve high computation rates. It will be the main
applicational focus in this paper. For more details, see section 4.

Originally, a relay operating under the compute-and-forward protocol would first scale
the received signal before applying a minimum-distance decoder to obtain an estimate of the
desired linear combination of the codewords. The decoding error probability for this decoding
procedure was studied in [5]. It was later in [6] where maximum-likelihood (ML) decoding at
the relay was first considered. An approach to lattice code design for compute-and-forward
was simultaneously derived therein, as well as in [10], and the first efficient decoding algorithm
was proposed in dimension 1. The subsequent work [12] builds upon those innovative articles
and continues the investigation toward efficient decoding algorithms, an example of which is
derived for Gaussian channels without fading. The fundamental work carried out in [6, 10]
is essential for code design considerations, as it introduces the notion of the flatness factor
of a lattice and utilizes it to derive an implicit lattice code design criterion. This criterion is
indirect in the sense that it relates to an uncontrollable sum of random lattices and not to
the code lattices themselves, where the randomness is enabled by the physical channel. It is
also noteworthy that following the work [6], the common belief has been that this sum can
be rewritten as a sum over elements of a lattice for any number of transmitters. This is, as
shown in this article, the case only if at most two sources are considered, the case studied
empirically in [6, 10]. More recently, the compute-and-forward protocol has been extended to
more general rings of algebraic integers [13].

The article is structured as follows. We start by recalling the most important results
related to lattices in section 2. The concepts of theta series and flatness factor are subsequently
introduced in section 3, wherein we derive a simple but accurate approximation of the theta
series and, consequently, the flatness factor of a lattice (cf. Definition 17 and the equations
beneath). We provide a rigorous study on the accuracy of the approximation, along with
some illustrating plots and discussion. In section 4, we summarize the compute-and-forward
protocol and, following [6, 10], investigate the behavior of the ML decoding metric in terms
of its flatness factor. Adopting certain restrictions, we establish a link between the resulting
random lattice and the code lattice, allowing for an explicit lattice code design criterion.
Namely, we show that in order to maximize the flatness factor of the random lattice, it
suffices to maximize that of the code lattice. We then make use of the derived theta series
approximation to investigate different lattices in varying dimensions with respect to the design
criterion. The main contributions are the following.

\bullet In Theorem 4 we derive a simple but accurate approximation of the theta series of a
lattice. For a fixed dimension, the approximation is merely a rational function and
in most cases significantly outperforms a mere series truncation approximation. Such
an easy-to-compute approximation is important, as approximating the theta series is
crucial in many lattice related applications as closed form expressions are unknownD
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AN APPROXIMATION OF THETA FUNCTIONS 473

even for most deterministic lattices. In particular, the approximation also yields an
approximation of the lattice flatness factor via Definition 17, which relates to, e.g.,
compute-and-forward decoding, wiretap coset code design, smoothing parameter in
cryptography, and dither avoidance in lattice noise quantization as mentioned above.

\bullet We provide a rigorous analysis on the accuracy of the approximation as well as some
intuition and discussion on its qualities (sections 3.1 and 3.2.). More precisely,

-- we show that our approximation is, on average (over the space of all lattices),
below the value of the complete theta series, and furthermore, we show that
the error term, on average, goes to zero both when q \rightarrow 1 (resp., \sigma \rightarrow \infty ) and
when q \rightarrow 0 (resp., \sigma \rightarrow 0);

-- we show that for any fixed j, there is a threshold \sigma j such that our approxima-
tion is larger than \Theta j (the jth term truncation) for any \sigma > \sigma j ;

-- we show that we are better than the first term truncation, except possibly for
some small values of \sigma for some lattices, depending on the kissing number of
the lattice.

Combining these results as well as our numerical examples, we are convinced that
there is a very strong basis for using this approximation.

\bullet We provide a simple explicit formula for computing the approximation for even di-
mensions. An explicit formula can be also derived for odd dimensions.

\bullet We provide an alternative description of the error term that now more explicitly de-
pends on the first minimum and not on the Lipschitz constant.

\bullet As a special case, we motivate the accuracy by a heuristic on the minimality of the
error term when the lattice is chosen to be well-rounded of dimension 2 or 3. This
case is of particular interest for wireless communications.

\bullet The compute-and-forward ML decoding framework is slightly generalized in Proposi-
tion 20 to allow for more general lattices than in previous work. While the analysis of
the function can become more difficult depending on the matrix decomposition used,
the decoding procedure can nonetheless be executed by the relay also in this more
general setting.

\bullet In Lemma 21, we note that the decoding metric can be rewritten as a sum over elements
of a lattice only for two sources, rectifying the common belief that this holds for any
number of transmitting sources.

\bullet Theorem 23 establishes a link between the code lattice and the random lattice involved
in the ML-decoding metric, allowing us to state an explicit design criterion for the code
lattice, in contrast to previous implicit criteria.

\bullet Finally, various lattices are examined using the explicit design criterion and derived
theta series approximation.

2. Lattices. This section is dedicated to acquainting the reader with basic concepts in
lattice theory. In this article, a vector is labeled in bold, v, and is always represented as a
column vector.

Definition 1. A lattice \Lambda \subset \BbbR n is a discrete subgroup of \BbbR n with the property that there
exists a basis \{ b1, . . . ,bt\} of \BbbR n such thatD
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474 BARREAL, DAMIR, FREIJ-HOLLANTI, AND HOLLANTI

\Lambda =
t\bigoplus 

i=1

bi\BbbZ .(1)

We say that \{ b1, . . . ,bt\} is a \BbbZ -basis of \Lambda , thus \Lambda \sim = \BbbZ t as Abelian groups. We call t =
rk(\Lambda ) \leq n the rank, and n the dimension of \Lambda . A lattice \Lambda \prime \subset \BbbR n such that \Lambda \prime \subset \Lambda is called
a sublattice of \Lambda .

By discrete we mean that the metric on \BbbR n defines the discrete topology on \Lambda . Note also
that if dim(\Lambda ) = dim(\Lambda \prime ), then the index | \Lambda /\Lambda \prime | is finite.

More conveniently, we can define a generator matrix M\Lambda :=
\bigl[ 
b1 \cdot \cdot \cdot bt

\bigr] 
, so that every

point x \in \Lambda can be expressed as x = Mz for some vector z \in \BbbZ t. Henceforth we will only
consider full lattices, that is, where t = n.

Remark 1. Given a pair of full lattices \Lambda 1 \subseteq \Lambda 2, we will say that \Lambda 1 is nested in \Lambda 2. We
refer to \Lambda 2 as the fine lattice and to \Lambda 1 as the coarse lattice. Similarly, a sequence \Lambda 1, . . . ,\Lambda s

of lattices is nested if \Lambda 1 \subseteq \Lambda 2 \subseteq \cdot \cdot \cdot \subseteq \Lambda s.

Given a full lattice \Lambda \subset \BbbR n, the ith successive minimum of \Lambda , for i = 1, . . . , n, is defined
as

\lambda i = \lambda i(\Lambda ) := (inf \{ r| dim(span(\Lambda \cap \scrB \bfzero (r))) \geq i\} )2 ,(2)

where \scrB \bfzero (r) is the sphere of radius r centered at the origin. The first minimum, \lambda 1 =
min\bfx \in \Lambda | | x| | 2 is referred to as the (square) minimal norm of \Lambda , which exists due to the dis-
creteness property of the lattice. If all successive minima are equal, \lambda 1 = \cdot \cdot \cdot = \lambda n, the lattice
is called well-rounded.

Consider now a lattice \Lambda with generator matrix M\Lambda = [bi]1\leq i\leq n. The fundamental paral-
lelotope of \Lambda is defined as

\scrP \Lambda :=

\Biggl\{ 
n\sum 

i=1

bizi

\bigm| \bigm| \bigm| \bigm| \bigm| 0 \leq zi < 1

\Biggr\} 
,(3)

and we define the volume of \Lambda to be the volume of \scrP \Lambda ,

vol \Lambda := vol\scrP \Lambda = | det(M\Lambda )| .(4)

Note that vol \Lambda is independent of the choice of the generator matrix M\Lambda . We can easily
compute the volume of a sublattice \Lambda \prime \subset \Lambda as vol \Lambda \prime = vol\Lambda | \Lambda /\Lambda \prime | .

A further useful function, not only for coding-theoretic purposes, is a lattice quantizer
Q\Lambda , a function that maps every point y \in \BbbR n to its closest point in the lattice. This function
allows us to define a modulo-lattice operation, y (mod \Lambda ) := y  - Q\Lambda (y). Given a lattice \Lambda 
and a lattice quantizer Q\Lambda , we can associate to each lattice point x \in \Lambda its Voronoi cell, the
set

\scrV \Lambda (x) := \{ y \in \BbbR n| Q\Lambda (y) = x\} .(5)

The Voronoi cell around the origin, \scrV (\Lambda ) := \scrV \Lambda (0), is called the basic Voronoi cell of \Lambda .
With the above definitions, we can now define the notion of a nested lattice code, an object

widely used for code construction in different communications scenarios.D
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AN APPROXIMATION OF THETA FUNCTIONS 475

Figure 1. Nested lattices \Lambda C \subset \Lambda F = 3\Lambda C with the Voronoi cells around each lattice point of the coarse
(solid) and fine (dashed) lattices. On the left figure we fix \Lambda C = A2, the hexagonal lattice, and on the right
figure \Lambda C = \Psi (\scrO \BbbQ (

\surd 
5)), the lattice obtained via the canonical embedding \Psi of the ring of integers of the algebraic

number field \BbbQ (
\surd 
5). The centered Voronoi cell \scrV (\Lambda C) (red) contains a set of representatives for a nested lattice

code \scrC (\Lambda C ,\Lambda F ) of cardinality | \scrC (\Lambda C ,\Lambda F )| = | \Lambda F /\Lambda C | = 9.

Definition 2. Let \Lambda C \subset \Lambda F be a pair of nested lattices. We define a nested lattice code
\scrC (\Lambda C ,\Lambda F ) as the set of representatives

\scrC (\Lambda C ,\Lambda F ) := \{ [x] \in \Lambda F (mod \Lambda C)| x \in \Lambda F \} = \Lambda F \cap \scrV (\Lambda C).(6)

The code rate of \scrC (\Lambda C ,\Lambda F ) in bits per dimension is

\scrR =
1

n
log2 | \scrC (\Lambda C ,\Lambda F )| =

1

n
log2

vol \Lambda C

vol \Lambda F
=

1

n
log2 | \Lambda F /\Lambda C | .(7)

Note that some coset representatives fall on the boundary of \scrV (\Lambda C) and need to be selected
systematically. We illustrate the introduced concepts in Figure 1.

3. The theta series and flatness factor of a lattice. In this section, we introduce the
objects of main interest for this article: the theta series, and a related quantity, the flatness
factor of a lattice.

Definition 3. Let \Lambda \subset \BbbR n be a full lattice. For each r \in \BbbR , define

\Omega \Lambda (r) :=
\bigm| \bigm| \bigm| \Bigl\{ x \in \Lambda | | | x| | 2 = r

\Bigr\} \bigm| \bigm| \bigm| ,(8)

\Sigma \Lambda (r) :=
\bigm| \bigm| \bigm| \Bigl\{ x \in \Lambda | | | x| | 2 \leq r

\Bigr\} \bigm| \bigm| \bigm| = \sum 
0<i\leq r

\Omega \Lambda (i).(9)

The theta series of \Lambda is the generating function

\Theta \Lambda (q) := 1 +
\sum 
r>0

\Omega \Lambda (r)q
r =

\sum 
\bfx \in \Lambda 

q| | \bfx | | 
2

.(10)
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476 BARREAL, DAMIR, FREIJ-HOLLANTI, AND HOLLANTI

Remark 2. The theta series converges absolutely if 0 \leq q < 1. We further note that

argmin
r>0

\{ \Omega \Lambda (r) > 0\} = \lambda 1, min
r>0

\{ \Omega \Lambda (r) > 0\} = \kappa (\Lambda ),(11)

where \kappa (\Lambda ) is the kissing number of \Lambda . It is thus clear that \Theta \Lambda (q) encodes important features
of \Lambda .

More generally, the theta series is defined in terms of a complex variable q = e\pi iz, where
z \in \BbbC . In this case, \Theta \Lambda (q) is a holomorphic function for \Im (z) \geq 0. For the purposes of this
article, however, it suffices to view \Theta \Lambda (q) as a formal power series in a real variable q.

Although of great importance, the theta series is unfortunately known only in closed form
for a handful of lattices, for example, those tabulated in Table 1, and is usually given in terms
of the Jacobi theta functions

\theta 2(q) =
\infty \sum 

k= - \infty 
q(k+

1
2)

2

, \theta 3(q) =
\infty \sum 

k= - \infty 
qk

2
, \theta 4(q) =

\infty \sum 
k= - \infty 

( - q)k
2
.(12)

Even so, the Jacobi theta functions are by no means simple functions, but rather hard.
The reason for this small set of lattices with known closed form theta series is that efficient
counting of lattice points in domains in arbitrary dimensions is still an open problem. While
many results have been obtained over the last two decades, such as the results in [15, 16, 18],
the settings are so general that the upper bounds on the number of lattice points in bounded
domains are far from being tight, even for very simple lattices and domains. Thus, being able
to efficiently compute even an approximated version of the theta series of an arbitrary lattice
is a problem which is interesting in its own right.

As additional motivation, and as we shall see in later parts of this article, recent work
on lattice code design in different wireless communication scenarios [1, 3, 6, 10] has led to
considering the flatness factor of a lattice, which itself is directly related to the theta series
of the lattice---see Definition 17 and the equations beneath in section 3.4.

Table 1
Various important lattices and their basic attributes.

Lattice Dim \lambda 1 vol \Lambda \Theta \Lambda (q)

\BbbZ n

\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r} n \geq 1 1 1 \theta n3 (q)

Dn
\mathrm{C}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}\mathrm{b}\mathrm{o}\mathrm{a}\mathrm{r}\mathrm{d} n \geq 3 2 2 1

2
(\theta n3 (q) + \theta n4 (q))

A2
\mathrm{H}\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l} 2 1

\sqrt{} 
3
4

\theta 2(q)\theta 2(q
3) + \theta 3(q)\theta 3(q

3)

E8
\mathrm{G}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{t} 8 2 1 1

2
(\theta 82(q) + \theta 83(q) + \theta 84(q))

K12
\mathrm{C}\mathrm{o}\mathrm{x}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}-\mathrm{T}\mathrm{o}\mathrm{d}\mathrm{d} 12 4 27 9

32
\theta 62(q)\theta 

6
2(q

3) +
\bigl( 
\theta 2(q

4)\theta 2(q
12) + \theta 3(q

4)\theta 3(q
12)

\bigr) 6
+ 45

16
\theta 42(q)\theta 

4
2(q

3)
\bigl( 
\theta 2(q

4)\theta 2(q
12) + \theta 3(q

4)\theta 3(q
12)

\bigr) 2
L24
\mathrm{L}\mathrm{e}\mathrm{e}\mathrm{c}\mathrm{h} 24 4 1 1

2
(\theta 82(q) + \theta 83(q) + \theta 84(q))

3  - 45
16
(\theta 2(q)\theta 3(q)\theta 4(q))

8
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AN APPROXIMATION OF THETA FUNCTIONS 477

We define the gamma function and the incomplete gamma function for a \in \BbbR , x > 0,
respectively, as

\Gamma (a) :=

\int \infty 

0
ta - 1e - tdt, \Gamma (a, x) :=

\int \infty 

x
ta - 1e - tdt.

For an integer argument a = n \in \BbbN , we have \Gamma (n) = (n - 1)! .

Theorem 4. Let \Lambda \subset \BbbR n be a full lattice with volume vol \Lambda and minimal norm \lambda 1. The
theta series \Theta \Lambda (q), where 0 \leq q < 1, can be expressed as

\Theta \Lambda (q) = (1 - q\lambda 1) - log(q)\lambda 
n
2
+1

1 \pi 
n
2

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

\int \infty 

1
t
n
2 q\lambda 1tdt+ \Xi (\Lambda , n, L, q),(13)

where

\Xi (\Lambda , n, L, q) =  - C(\Lambda , n, L) log(q)\lambda 1

\int \infty 

1
t
n - 1
2 q\lambda 1tdt.(14)

The constant C(n,\Lambda , L) depends on n, \Lambda , and a Lipschitz constant L.

We will build up the proof using a series of propositions.

Proposition 5. Let \Lambda \subset \BbbR n be a full lattice with minimal norm \lambda 1. Then,

\Theta \Lambda (q) =
\Bigl( 
1 - q\lambda 1

\Bigr) 
 - log(q)\lambda 1

\int \infty 

1
\Sigma \Lambda (\lambda 1t)q

\lambda 1tdt.(15)

Proof. Using the elementary fact
\int \infty 
a qtdt =  - qa

\mathrm{l}\mathrm{o}\mathrm{g}(q) for a \geq 0, we write

\Theta \Lambda (q) =
\sum 
\bfx \in \Lambda 

q| | \bfx | | 
2
=
\sum 

\bfx \in \Lambda 

\infty \int 
| | \bfx | | 2

 - log(q)qtdt(16)

=  - 
\int \infty 

0

\bigm| \bigm| \bigl\{ x \in \Lambda | | | x| | 2 \leq t
\bigr\} \bigm| \bigm| log(q)qtdt(17)

=  - 
\int \infty 

0
\Sigma \Lambda (t) log(q)q

tdt.(18)

We observe that \Sigma \Lambda (\lambda 1t) \equiv 1 for t \in [0, 1); thus by substituting t \mapsto \rightarrow \lambda 1t and splitting the
integration range, we have

\Theta \Lambda (q) =  - 
\int 1

0
\Sigma \Lambda (\lambda 1t) log(q)\lambda 1q

\lambda 1tdt - 
\int \infty 

1
\Sigma \Lambda (\lambda 1t) log(q)\lambda 1q

\lambda 1tdt(19)

=
\Bigl( 
1 - q\lambda 1

\Bigr) 
 - log(q)\lambda 1

\int \infty 

1
\Sigma \Lambda (\lambda 1t)q

\lambda 1tdt.(20)

The next step is to estimate the quantity \Sigma \Lambda (r), which counts the number of lattice points
in an n-sphere of radius

\surd 
r. To that end, we first need the following technical definition and

a related lemma.D
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Definition 6. Let S \subset \BbbR n be a bounded convex set. We say that S is (n  - 1)-Lipschitz
parametrizable, and write S \in Lip(n, T, L), if there are T maps \phi 1, . . . , \phi T : [0, 1]n - 1 \rightarrow S,
the union of images of which cover S, and satisfying for all 1 \leq i \leq T the Lipschitz condition

| \phi i(x) - \phi i(y)| \leq L | x - y| .(21)

Lemma 7 (see [19, Thm. 2, p. 128]). Let D \subset \BbbR n be such that \partial D is (n  - 1)-Lipschitz
parametrizable, that is, \partial D \in Lip(n, T, L), and let \Lambda \subset \BbbR n be a full lattice of volume vol \Lambda .
Then,

| \{ x| x \in \Lambda \cap rD\} | = volD

vol \Lambda 
rn +O(rn - 1),(22)

where the error term O(rn - 1) depends on \Lambda , n, and the Lipschitz constant L.

Using the above lemma, we can now prove the next result.

Proposition 8. Let \Lambda \subset \BbbR n be a full lattice with minimal norm \lambda 1 and volume vol \Lambda . Let
\Sigma \Lambda (r) :=

\bigm| \bigm| \bigl\{ x \in \Lambda | | | x| | 2 \leq r
\bigr\} \bigm| \bigm| , r \in \BbbR >0 sufficiently large. Then,

| \Sigma \Lambda (\lambda 1r) - 
(\pi \lambda 1r)

n
2

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

| \leq C(\Lambda , n, L)r
n - 1
2(23)

for some constant C(\Lambda , n, L) that depends on the lattice, dimension, and a Lipschitz constant
L.

Proof. We use Lemma 7 with D\lambda 1 := \scrB \bfzero (
\surd 
\lambda 1), a sphere of radius

\surd 
\lambda 1 centered at the

origin. Since D\lambda 1 is bounded and convex, by [15, Thm. 2.6] we have \partial D\lambda 1 \in Lip(n, 1, L).
We can now write

\Sigma \Lambda (\lambda 1r) =
\bigm| \bigm| \bigl\{ x \in \Lambda | | | x| | 2 \leq \lambda 1r

\bigr\} \bigm| \bigm| (24)

=
\bigm| \bigm| \bigm| \Bigl\{ x \in 

\Bigl( 
\Lambda \cap \scrB \bfzero 

\Bigl( \sqrt{} 
\lambda 1r
\Bigr) \Bigr) \Bigr\} \bigm| \bigm| \bigm| (25)

=
\bigm| \bigm| \bigl\{ x \in \Lambda \cap 

\bigl( \surd 
rD\lambda 1

\bigr) \bigr\} \bigm| \bigm| .(26)

Using the relation volD\lambda 1 = vol\scrB \bfzero (
\surd 
\lambda 1) =

(\pi \lambda 1)
n
2

\Gamma (n
2
+1)

, we have

\Sigma \Lambda (\lambda 1r) =
(\pi \lambda 1r)

n
2

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

+O(r
n - 1
2 ),(27)

where by Lemma 7, the error term O(r
n - 1
2 ) is bounded by C(\Lambda , n, L)r

n - 1
2 for some constant

C(\Lambda , n, L) that depends on the lattice, dimension, and a Lipschitz constant L.

We can now prove Theorem 4 using the above results.

Proof of Theorem 4. By Proposition 5 we start by writing

\Theta \Lambda (q) = (1 - q\lambda 1) - log(q)\lambda 1

\int \infty 

1
\Sigma \Lambda (\lambda 1t)q

\lambda 1tdt.(28)
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AN APPROXIMATION OF THETA FUNCTIONS 479

Using the estimate for \Sigma \Lambda (r) derived in Proposition 8, we can now further manipulate the
expression to read

\Theta \Lambda (q) + q\lambda 1  - 1 =  - log(q)\lambda 1

\infty \int 
1

\Sigma \Lambda (\lambda 1t)q
\lambda 1tdt(29)

=  - log(q)\lambda 1

\int \infty 

1

\Biggl( 
(\pi \lambda 1t)

n
2

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

+ C(\Lambda , n, L)t
n - 1
2

\Biggr) 
q\lambda 1tdt(30)

=  - log(q)\pi 
n
2 \lambda 

n
2
+1

1

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

\int \infty 

1
t
n
2 q\lambda 1tdt - C(\Lambda , n, L) log(q)\lambda 1

\int \infty 

1
t
n - 1
2 q\lambda 1tdt(31)

=  - log(q)\pi 
n
2 \lambda 

n
2
+1

1

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

\int \infty 

1
t
n
2 q\lambda 1tdt+ \Xi (\Lambda , n, L, q).(32)

We will henceforth write \Theta \frakA 
\Lambda (q) for the approximation \Theta \Lambda (q) - \Xi (\Lambda , n, L, q). The following

corollary will be of use later.

Corollary 9. Let \sigma 2 \in \BbbR >0, and q(\sigma 2) := e - 
1

2\sigma 2 . Then, as a function of \sigma 2, we have

\Theta \frakA 
\Lambda (q(\sigma 

2)) =

\biggl( 
1 - e - 

\lambda 1
2\sigma 2

\biggr) 
+

(\lambda 1\pi )
n
2 \lambda 1

2\sigma 2\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

\int \infty 

1
t
n
2 e - 

\lambda 1t

2\sigma 2 dt.(33)

Let q = q(\sigma ) = e - 1/2\sigma 2
. An elementary change of variable t = \lambda 1

2\sigma 2 z yields

\Gamma 
\Bigl( n
2
+ 1, x

\Bigr) 
=

\biggl( 
\lambda 1

2\sigma 2

\biggr) n
2
+1 \int \infty 

2\sigma 2x
\lambda 1

z
n
2 e - 

\lambda 1
2\sigma 2 zdz.

Let x = \lambda 1
2\sigma 2 . Then\int \infty 

1
zn/2e - 

\lambda 1
2\sigma 2 zdz =

\biggl( 
2\sigma 2

\lambda 1

\biggr) n
2
+1

\Gamma 

\biggl( 
n

2
+ 1,

\lambda 1

2\sigma 2

\biggr) 
.(34)

Thus, the approximation in Theorem 4 becomes

\Theta (q) = \Theta (e - 1/2\sigma 2
) = 1 - e - \lambda 1/2\sigma 2

+

\Bigl( \surd 
2\sigma 2\pi 

\Bigr) n
vol(\Lambda )

\Gamma 
\Bigl( 
n/2 + 1, \lambda 1

2\sigma 2

\Bigr) 
\Gamma 
\Bigl( 
n/2 + 1, 0

\Bigr) + \Xi = \Theta \frakA 
\Lambda (q) + \Xi ,(35)

where \Xi = \lambda 1
2\sigma 2C(n,\Lambda , L)\Gamma (n2 + 1

2 , \lambda 1).
The following corollary provides a recursive formula for calculating the main term \Theta \frakA 

\Lambda (q)
in Theorem 4 whenever the dimension n is even.

Corollary 10. Let q = e
 - 1

2\sigma 2 and n even. Then \Theta \frakA 
\Lambda (q(\sigma )) in (35) becomes

\Theta \frakA 
\Lambda (q) = 1 + q\lambda 1

\left(   - 1 +
\pi 

n
2

vol(\Lambda )

n
2\sum 

i=0

\lambda i
12

n
2
 - i\sigma n - 2i

i!

\right)  .
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Proof.

\Theta \frakA 
\Lambda (q) = 1 - q\lambda 1 +

\pi 
n
2

vol(\Lambda )

\biggl( 
 - 1

log(q)

\biggr) n
2

q\lambda 1

\left(  n
2\sum 

i=0

( - \lambda 1 log(q))
i

i!

\right)  
= 1 - q\lambda 1 +

\pi 
n
2

vol(\Lambda )
2

n
2 \sigma nq\lambda 1

n
2\sum 

i=0

\lambda i
1

i!2i\sigma 2i

= 1 + q\lambda 1

\left(   - 1 +
\pi 

n
2 2

n
2 \sigma n

vol(\Lambda )

n
2\sum 

i=0

\lambda i
1

i!2i\sigma 2i

\right)  
= 1 + q\lambda 1

\left(   - 1 +
\pi 

n
2

vol(\Lambda )

n
2\sum 

i=0

\lambda i
12

n
2
 - i\sigma n - 2i

i!

\right)  .

3.1. Analysis for the accuracy of \Theta \bffrakA 
\bfLambda . From Corollary 10, we get the following result,

showing that \Theta \frakA 
\Lambda is indeed larger than any truncation of the theta series for values of \sigma 

sufficiently large.

Proposition 11. Let \Lambda be a lattice of even dimension n, and let j be a positive integer.
Then there is a threshold value \sigma j \geq 0 such that \Theta \frakA 

\Lambda (q(\sigma )) \geq \Theta j,\Lambda (q(\sigma )) for all \sigma \geq \sigma j. If the

lattice \Lambda satisfies (\kappa + 1) vol(\Lambda ) \leq \lambda 
n
2
1 vol(\scrB \bfzero (1)), then \Theta \frakA 

\Lambda (q(\sigma )) \geq \Theta 1,\Lambda (q(\sigma )) for all \sigma \geq 0.

Proof. For simplicity, we only present the proof for even n. For odd n, it goes analogously
but will look messier due to the more complicated form of the gamma function.

Let \lambda i be the ith successive minimum norm of \Lambda , and let \kappa i be the number of vectors in
\Lambda of norm \lambda i. By definition, we then have

\Theta j,\Lambda (q(\sigma )) = 1 +

j\sum 
i=1

q\lambda i\kappa i \leq 1 + q\lambda 1

j\sum 
i=1

\kappa i.

By Corollary 10, it thus suffices to show that

 - 1 +
\pi 

n
2

vol(\Lambda )

n
2\sum 

i=0

\lambda i
12

n
2
 - i\sigma n - 2i

i!
\geq 

j\sum 
i=1

\kappa i(36)

for large enough \sigma . But the left-hand side (lhs) of (36) is a continuous and strictly increasing
function in \sigma \geq 0 and tends to infinity as \sigma \rightarrow \infty . As

\sum j
i=1 \kappa i is constant, the inequality (36)

holds for all large enough \sigma .
To prove the second part of the theorem, it is now enough to show that (36) holds for

\sigma = 0, j = 0. But when \sigma = 0, the only nonvanishing term in the sum is when i = n
2 , so (36)

is equivalent to

\pi 
n
2 \lambda 

n
2
1

vol(\Lambda )n2 !
\geq \kappa + 1.D
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AN APPROXIMATION OF THETA FUNCTIONS 481

Observing that

(\kappa + 1) vol(\Lambda ) \leq \lambda 
n
2
1 vol(\scrB \bfzero (1))) =

\pi 
n
2

n
2 !

,

the statement of the proposition follows.

It is worth noting that there is a nice geometric interpretation of the above inequality,

(\kappa + 1) vol(\Lambda ) \leq \lambda 
n
2
1 vol(\scrB \bfzero (1)).(37)

Namely, the rhs of (37) is the volume of the ball centered around the origin with the shortest
vectors of \Lambda on its boundary. The lhs of (37) is the volume of the union of the \kappa + 1 Voronoi
cells centered at the origin and at the shortest vectors of \Lambda . Depending on which of these
volumes is the largest, the inequality \Theta \frakA 

\Lambda \geq \Theta 1 holds either for all q or only for large enough q.
To prove that the approximation \Theta \frakA 

\Lambda is indeed closer to the actual theta function \Theta than
the jth truncation \Theta j for \sigma > \sigma j , it would be enough to show that \Theta \frakA 

\Lambda (q) \leq \Theta \Lambda (q) holds for
all lattices \Lambda and all 0 \leq q < 1. While this inequality holds for all lattices for which we can
do explicit calculations, we are not able to prove it in full generality. However, it holds on
average in the sense of the following theorem.

Theorem 12. Let \Lambda be a random lattice with distribution given by the Haar measure on
SL(n,\BbbR )/ SL(n,\BbbZ ). Then, for every 0 \leq q < 1, it holds that

\BbbE [\Theta \frakA 
\Lambda (q)] \leq \BbbE [\Theta \Lambda (q)].

Proof. A straightforward application of Siegel's mean value theorem [8] implies that for
any t > 0, we have

\BbbE (\Sigma \Lambda (t)) = 1 + vol(\scrB \bfzero (t)),

where \scrB \bfzero (1) is the Euclidean ball of radius r. For any fixed lattice \Lambda , we can thus write

\Theta \frakA 
\Lambda (q) = (1 - q\ell ) - log q

\int \infty 

\ell 
qt\BbbE [\Sigma \Lambda (t) - 1]dt(38)

=  - log q

\int \ell 

0
qtdt - log q

\int \infty 

\ell 
qt\BbbE [\Sigma \Lambda (t) - 1]dt(39)

=  - log q

\int \infty 

0
qt (It\leq \ell + It>\ell \BbbE [\Sigma \Lambda (t) - 1]) dt,(40)

where \ell is the (deterministic) shortest norm of \Lambda , and IE denotes the indicator function of
the event E. Observing that

\Theta \Lambda (q) =  - log(q)

\int \infty 

0
\Sigma \Lambda (t)q

tdt,

we get by linearity of the expectation and by Fubini's theorem thatD
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\BbbE [\Theta \Lambda (q)] - \BbbE [\Theta \frakA 
\Lambda (q)] =  - log q \BbbE 

\biggl[ \int \infty 

0
\Sigma \Lambda (t)q

tdt - 
\int \infty 

0
qt (It\leq \lambda + It>\lambda \BbbE [\Sigma \Lambda (t) - 1]) dt

\biggr] 
=  - log q

\int \infty 

0
qt\BbbE [\Sigma \Lambda (t) - (It\leq \lambda + It>\lambda (\BbbE (\Sigma \Lambda (t)) - 1))] dt

=  - log q

\int \infty 

0
qt\BbbE [\BbbE [\Sigma \Lambda (t)] - (It\leq \lambda + It>\lambda (\BbbE (\Sigma \Lambda (t)) - 1))] dt

=  - log q

\int \infty 

0
qt (\BbbE [\BbbE [\Sigma \Lambda (t)] (1 - It>\lambda )] - \BbbE [It\leq \lambda  - It>\lambda ]) dt

=  - log q

\int \infty 

0
qt (\BbbE [\Sigma \Lambda (t)]\BbbP [t \leq \lambda ] - \BbbP [t \leq \lambda ] + \BbbP [t > \lambda ]) dt

=  - log q

\int \infty 

0
qt(\BbbP [t \leq \lambda ]\BbbE [\Sigma \Lambda (t) - 1] + \BbbP [t > \lambda ])dt,

where \lambda is the (random) shortest norm of \Lambda . The integrand is now readily seen to be a
nonnegative real function, wherefore we get

\BbbE [\Theta \Lambda (q)] \geq \BbbE [\Theta \frakA 
\Lambda (q)].

3.2. Error term analysis for the point counting function. The proof of Theorem 4 relied
on an estimate (Proposition 8) of the number of lattice points in \scrB \bfzero 

\bigl( \surd 
\lambda 1r
\bigr) 
. For the sake of

completeness, we sketch an alternative proof of Proposition 8 with a slightly different error
term.

Let \Lambda = M \cdot \BbbZ n for some M \in GLn(\BbbR ). Then

\Sigma \Lambda (\lambda 1r) =
\bigm| \bigm| \bigm| M \cdot \BbbZ n \cap \scrB \bfzero 

\Bigl( \sqrt{} 
\lambda 1r
\Bigr) \bigm| \bigm| \bigm| (41)

=
\bigm| \bigm| \bigm| \BbbZ n \cap M - 1\scrB \bfzero 

\Bigl( \sqrt{} 
\lambda 1r
\Bigr) \bigm| \bigm| \bigm| ,(42)

where M - 1\scrB \bfzero 

\bigl( \surd 
\lambda 1r
\bigr) 
=
\bigl\{ 
M - 1x : x \in \scrB \bfzero 

\bigl( \surd 
\lambda 1r
\bigr) \bigr\} 

.
Consider the tiling of \BbbR n with unit cubes centered at the points of \BbbZ n. We interpret

\Sigma \Lambda (\lambda 1r) as the number of unit cubes in this tiling with centers lying inside M - 1\scrB \bfzero 

\bigl( \surd 
\lambda 1r
\bigr) 
.

Hence,

\Sigma \Lambda (\lambda 1r) = vol
\Bigl( 
M - 1\scrB \bfzero 

\Bigl( \sqrt{} 
\lambda 1r
\Bigr) \Bigr) 

+ \scrE \Lambda (
\sqrt{} 

\lambda 1r)(43)

=
(\pi \lambda 1r)

n
2

\Gamma 
\bigl( 
n
2 + 1

\bigr) 
vol \Lambda 

+ \scrE \Lambda (
\sqrt{} 
\lambda 1r),(44)

where \scrE \Lambda (
\surd 
\lambda 1r) is bounded by the volumes of cubes that intersect the boundary \partial M - 1\scrB \bfzero (

\surd 
\lambda 1r).

This volume is proportional to the (Hausdorff) surface measure of M - 1\scrB \bfzero (
\surd 
\lambda 1r). Thus, for

r large enough, the dominant term in \Sigma \Lambda (\lambda 1r) is vol(M
 - 1\scrB \bfzero (

\surd 
\lambda 1r)).

Let
\Sigma \Lambda (t) = vol

\Bigl( 
M - 1\scrB \bfzero 

\Bigl( \surd 
t
\Bigr) \Bigr) 

+ \scrE \Lambda (
\surd 
t).

In the following, we will consider the order of magnitude of \scrE \Lambda (
\surd 
t) and its relation with the

error term in Theorem 4.D
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Let C be a positive constant, f a real valued (integrable) function, and t0 a positive real
number such that

| \scrE \Lambda (
\surd 
t)| < Cf(t) for all t \geq t0,

i.e., \scrE \Lambda (
\surd 
t) = O(f(t)).

With the notation above, we rewrite the error term in Theorem 4 in the following form:

\Xi (\Lambda , n, q) = O

\biggl( 
log(q)\lambda 1

\int \infty 

1
f(\lambda 1r)q

\lambda 1rdr

\biggr) 
(45)

= O

\biggl( 
log(q)

\int \infty 

\lambda 1

f(t)qtdt

\biggr) 
(46)

\leq O

\biggl( 
log(q)

\int t0

\lambda 1

f(t)qtdt

\biggr) 
+ C log(q)

\int \infty 

t0

f(t)qtdt.(47)

Note that in the proof of Theorem 4 we implicitly assume that t \geq \lambda 1. Thus, t0 \geq 
\lambda 1. Equation (45) shows that any improvement on the order of magnitude of \scrE \Lambda (

\surd 
\lambda 1r) will

necessarily imply an improved error term \Xi (\Lambda , n, q).

Remark 3. With this new interpretation of \Sigma \Lambda (t), the main term in Theorem 4 remains
the same, but the term \Xi (\Lambda , n, q) depends on \lambda 1 rather than the Lipschitz constant L.

In [9], G\"otze showed that \scrE \Lambda (
\surd 
t) = O(t

n - 2
2 ) for every lattice \Lambda \subset \BbbR n with n \geq 5. This

bound is tight in the sense that \scrE \Lambda (
\surd 
t) \not = o(t

n - 2
2 ) for \Lambda = \BbbZ n.

Assuming that n \geq 5, we get

\Xi (\Lambda , n, q) \leq O

\biggl( 
log(q)

\int t0

\lambda 1

t
n - 2
2 qtdt

\biggr) 
+ C log(q)

\int \infty 

t0

t
n - 2
2 qtdt.(48)

Let q = e
 - 1

2\sigma 2 . Then inequality (48) becomes

\Xi 
\Bigl( 
\Lambda , n, e

 - 1

2\sigma 2

\Bigr) 
\leq O

\biggl( 
log(q)

\int t0

\lambda 1

t
n - 2
2 qtdt

\biggr) 
 - C

2\sigma 2

\int \infty 

t0

t
n - 2
2 e - 

t
2\sigma 2 dt.(49)

Thus, using the same argument as in (34) we get

\Xi 
\Bigl( 
\Lambda , n, e

 - 1

2\sigma 2

\Bigr) 
= O

\biggl( 
(2\sigma 2)

n
2
 - 1\Gamma 

\biggl( 
n

2
,
t0
2\sigma 2

\biggr) \biggr) 
.(50)

Finally, we write the approximation in Theorem 4 as

\Theta 
\Bigl( 
e - 1/2\sigma 2

\Bigr) 
 - 1 + e - \lambda 1/2\sigma 2

=

\Bigl( \surd 
2\sigma 2\pi 

\Bigr) n
vol(\Lambda )

\Gamma 
\Bigl( 
n/2 + 1, \lambda 1

2\sigma 2

\Bigr) 
\Gamma 
\Bigl( 
n/2 + 1, 0

\Bigr) + \Xi 
\Bigl( 
\Lambda , n, e

 - 1

2\sigma 2

\Bigr) 
.(51)

Using integration by parts, one can prove that the incomplete gamma function satisfies
the following recurrence relation:

\Gamma 

\biggl( 
n

2
+ 1,

\lambda 1

2\sigma 2

\biggr) 
=

n

2
\Gamma 

\biggl( 
n

2
,
\lambda 1

2\sigma 2

\biggr) 
+

\biggl( 
\lambda 1

2\sigma 2

\biggr) n
2

e - 
\lambda 1
2\sigma 2 .(52)
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Assume, for instance, that t0 = \lambda 1; then using (52), the ratio of the main and error terms
in (51) is

\scrR =

\Bigl( \surd 
2\sigma 2\pi 

\Bigr) n
vol(\Lambda )

\Gamma 
\Bigl( 
n/2 + 1, \lambda 1

2\sigma 2

\Bigr) 
\Gamma 
\Bigl( 
n/2 + 1, 0

\Bigr) \times 1\Bigl( 
(2\sigma 2)

n
2
 - 1\Gamma 

\bigl( 
n
2 ,

t0
2\sigma 2

\bigr) \Bigr) (53)

= n\sigma 2vol(\scrB 0(1))

vol(\Lambda )
+ h(\lambda 1, n, \sigma ),(54)

where h(\lambda 1, n, \sigma ) is a positive constant depending on n, \lambda 1, and \sigma .
The last equality shows that under the above assumptions, the ratio \scrR is greater than one

whenever \sigma >
\sqrt{} 

\mathrm{v}\mathrm{o}\mathrm{l}(\Lambda )
n \mathrm{v}\mathrm{o}\mathrm{l}(\scrB 0(1))

.

As a last part of this section, we mention further results on the magnitude of \scrE \Lambda (
\surd 
t).

Let \scrL n be the set of determinant 1 lattices with Haar measure \mu n. We call a random
variable sampled from \scrL n with respect to \mu n a random lattice.

Let \delta > 0 be a small arbitrary constant. Schmidt [17] proved that \scrE \Lambda (
\surd 
t) = O(t

n
4
+\delta ) for

almost every lattice.

It is conjectured [7] that \scrE \Lambda (
\surd 
t) = O(t

n - 1
4

+\delta /2). In [11], the author showed that the bound

\scrE \Lambda (
\surd 
t) = O(t

n - 1
4

+\delta /2) holds in average for lattices of dimensions n = 2, 3, where the average
is taken over any compact subset Y of the space of all lattices (not necessarily of volume 1).

In the following, we will give an example of a compact subset of \scrL n. Compact subsets of
\scrL n can be obtained by the so-called Mahler's compactness criterion.

Theorem 13 (Mahler). The set of lattices \Lambda \in \scrL n whose shortest vector is of a fixed length
\geq r > 0 is compact.

Definition 14. A lattice \Lambda \subset \BbbR n is well-rounded (abbreviated WR) if

span\BbbR (S(L)) = \BbbR n.

We denote by \scrW \scrR n the set of well-rounded lattices in \scrL n.

Proposition 15. The set \scrW \scrR n is compact in \scrL n.

Proof. Let \Lambda be a lattice in \scrW \scrR n, and let vi \in \Lambda such that | | vi| | = \lambda i(\Lambda ) for 1 \leq i \leq n.
Taking \Lambda \prime = span\BbbZ (vi | 1 \leq i \leq n), then \Lambda \prime is a full-rank sublattice of \Lambda . Hence, vol(\Lambda \prime ) =
[\Lambda : \Lambda \prime ] \geq 1.

On the other hand
n\prod 

i=1

| | vi| | =
n\prod 

i=1

\lambda i(\Lambda ) = \lambda 1(\Lambda )
n.

Recalling the Hadamard's inequality
\prod n

i=1 | | vi| | \geq vol(\Lambda \prime ), we conclude that

\lambda 1(\Lambda ) \geq 1.

The result follows from Mahler's compactness criterion.

Combining Proposition 15 with the main result in [11], we get the following result.D
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Proposition 16. The bound

\Xi 
\Bigl( 
\Lambda , n, e

 - 1

2\sigma 2

\Bigr) 
= O

\biggl( 
(2\sigma 2)

n - 5
4

+\delta /2\Gamma 

\biggl( 
n - 1

4
+ \delta /2,

t0
2\sigma 2

\biggr) \biggr) 
holds on average over \scrW \scrR 2 and \scrW \scrR 3.

Landau [25] proved that \scrE \Lambda (
\surd 
t) \not = o(t

n - 1
4 ) for any lattice of dimension n \geq 3. Conse-

quently, for n \geq 3 we have

\Xi 
\Bigl( 
\Lambda , n, e

 - 1

2\sigma 2

\Bigr) 
\not = o

\biggl( 
(2\sigma 2)

n - 5
4

+\Gamma 

\biggl( 
n - 1

4
,
t0
2\sigma 2

\biggr) \biggr) 
.

Proposition 16 shows that heuristically, the error term in Theorem 4 achieves the conjec-
tured bound over the sets \scrW \scrR 2 and \scrW \scrR 3.

In the next section, we analyze the accuracy of our approximation for some well-rounded
lattices, i.e., \BbbZ 2, D3, D4, E8, and K12. In fact, most of the known lattices are well-rounded.
To name just a few, we mention the local maxima of the sphere packing problem, the lattices
Dn, An, and the orthogonal lattice \BbbZ n.

3.3. Empirical study and discussion. We first depict the accuracy of the approximation

\Theta \frakA 
\Lambda (q) for some of the well-known lattices tabulated in Table 1. We choose q = e - 

1
2\sigma 2 and

interpret \Theta \frakA 
\Lambda (e

 - 1
2\sigma 2 ) as a function in the variable \sigma 2. The choice of this specific indeterminate

q will be clarified in the subsequent sections of this article.
From Figure 2 it is visible that the approximation is accurate in the considered cases,

even as the dimension increases. A naive way of approximating the theta series is by simply
considering the first term in the power series expression, that is, \Theta \Lambda (q) \approx 1 + \kappa (\Lambda )q\lambda 1 . In
Figure 3, we compare the derived approximation \Theta \frakA 

\Lambda (q) with this truncated sum on the Leech
lattice \Lambda 24. While our approximation accurately approximates the theta series \Theta \Lambda 24(q), the
truncated sum very quickly diverges from the actual function, as is to be expected.

Remark 4. The error term in the expression from Theorem 4 arises from the estimation
of lattice points in an n-sphere, i.e., the estimation of \Sigma \Lambda (r). In its full generality, this is a

Figure 2. Comparison of the theta function of various lattices and the derived approximation. The lhs
picture depicts the theta series of low-dimensional, the rhs picture higher-dimensional lattices as a function of
\sigma 2.D
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Figure 3. Comparison of \Theta \frakA 
\Lambda (q) and a truncated sum 1 + \kappa (\Lambda )q\lambda 1 of the Leech lattice \Lambda = L24.

hard problem. For instance, the original proof of Lemma 7 in [19] is not constructive and does
not offer any insight into the involved constant. Accurately counting lattice points in more
general domains is a topic of the utmost interest in lattice theory. In [18], an upper bound
on the quantity | \Lambda \cap P | , where \Lambda \subset \BbbR n is a full lattice and P \subset \BbbR n an arbitrary polytope
of dimension n\prime \leq n, is given. Further, [15] gives an upper bound on | \Lambda \cap S| , where S \subset \BbbR n

is a bounded domain, of general narrow class s \geq 1. Both mentioned results are, however,
so general that the upper bounds are not tight, even for low-dimensional, well-conditioned
lattices.

3.4. The flatness factor. Having introduced the theta series \Theta \Lambda (q) of a lattice, we now
define a related quantity---the flatness factor \varepsilon \Lambda (q) of \Lambda . Consider the usual n-dimensional
zero-mean Gaussian PDF with variance \sigma 2, given by

f(t, \sigma 2) =
1

(
\surd 
2\pi \sigma 2)n

e - 
| | \bft | | 2

2\sigma 2 .(55)

We are interested in the case where the variable t ranges over points over a (possibly
shifted) full lattice \Lambda , yielding for y \in \BbbR n the sum of Gaussian functions

f(\Lambda + y, \sigma 2) :=
\sum 
\bfx \in \Lambda 

f(x+ y, \sigma 2).(56)

As a function of y, f(\Lambda + y, \sigma 2) is a \Lambda -periodic function and defines a PDF on the basic
Voronoi cell \scrV (\Lambda ) of \Lambda , which we refer to as the lattice Gaussian PDF. For the centered sum
f(\Lambda , \sigma 2), we have the useful identity

f(\Lambda , \sigma 2) =
\sum 
\bfx \in \Lambda 

f(x, \sigma 2) =
1

(
\surd 
2\pi \sigma 2)n

\sum 
\bfx \in \Lambda 

e - 
| | \bfx | | 2

2\sigma 2(57)

=
1

(
\surd 
2\pi \sigma 2)n

\Theta \Lambda 

\Bigl( 
e - 

1
2\sigma 2

\Bigr) 
.(58)

Introduced in [1] as an information theoretic tool in the context of fading wiretap channels,
the flatness factor is a quantity which measures the deviation of the lattice Gaussian PDF
from the uniform distribution on the Voronoi cell \scrV (\Lambda ). Formally, it can be defined as follows.D
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Definition 17. Let \Lambda \subset \BbbR n be a full lattice, and for y \in \BbbR n, let f(\Lambda + y, \sigma 2) denote the
lattice Gaussian PDF of the lattice \Lambda + y. The flatness factor of \Lambda is defined as

\varepsilon \Lambda (\sigma 
2) := max

\bfy \in \BbbR n

\bigm| \bigm| \bigm| \bigm| f(\Lambda + y, \sigma 2)

1/ vol \Lambda 
 - 1

\bigm| \bigm| \bigm| \bigm| .(59)

It is easy to show (see [20]) that the maximum of f(\Lambda + y, \sigma 2) is achieved for y \in \Lambda .
Hence, an explicit representation of \varepsilon \Lambda (\sigma 

2) is immediate,

\varepsilon \Lambda (\sigma 
2) =

vol \Lambda 

(
\surd 
2\pi \sigma 2)n

\Theta \Lambda 

\Bigl( 
e - 

1
2\sigma 2

\Bigr) 
 - 1.(60)

If we define the volume-to-noise ratio1 (VNR) \gamma \Lambda (\sigma 
2) := \mathrm{v}\mathrm{o}\mathrm{l} \Lambda 

2
n

2\pi \sigma 2 , then we can equivalently
express the flatness factor as [6]

\varepsilon \Lambda (\sigma 
2) = \gamma \Lambda (\sigma 

2)
n
2 \Theta \Lambda 

\Bigl( 
e - 

1
2\sigma 2

\Bigr) 
 - 1.(61)

From the definition of the flatness factor, it is clear that a small flatness factor implies a
more uniform distribution.

4. Theta series and the compute-and-forward relaying strategy. In this section, we
consider a protocol known as compute-and-forward relaying [4]. This protocol was proposed
to harness the interference in an advantageous way. Namely, in wireless communications, a
single transmission is heard by all near-enough receivers. Similarly, a receiver will hear all
signals transmitted in the vicinity, not only the signals intended for them. This is referred to
as interference, which degrades the reception quality. Several protocols have been proposed in
the literature to remedy this degradation. The most prominent ones are decode-and-forward,
compress-and-forward, and amplify-and-forward. For more details on these protocols, we re-
fer to [4] and references therein. The compute-and-forward strategy simultaneously aims at
protection against noise and exploitation of interference for cooperative gains. In contrast to
compress-and-forward and amplify-and-forward, which can be seen as converting a network
into a set of noisy linear equations, the compute-and-forward converts it into a set of reli-
able linear equations. The compute-and-forward protocol has been shown to be superior at
moderate signal quality levels, where both noise and interference play a nonnegligible role.

Analyzing the ML metric in the compute-and-forward context, we show how the flatness
factor of a certain lattice enters the picture [6], and we relate this random lattice to the code
lattice at the transmitter. We then utilize the derived theta series approximation to analyze
the performance of various lattices with respect to an explicit design criterion. Namely, we
show that in order to maximize the flatness factor of the random lattice, it suffices to maximize
that of the code lattice.

In this article we will only consider real valued channels, which are also studied in the
original article [4] and additionally assumed in [6, 10]. We refer to [4] for the complex alter-
native.2 Assume that K > 1 transmitters want to communicate to a single destination, aided

1The VNR is usually defined without the term 2\pi in the denominator. Here, the definition is chosen to
agree with [6].

2As shown in [4], a complex channel output can be treated as two separate real equations.D
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Relay 1

...

Relay M

...

T1
h11

hM1

TK

h1K

hMK

Dest.

First Hop Second Hop

Figure 4. System model with K > 1 transmitters and M > K relays connected to a destination.

by M intermediate relays which, operating under the original compute-and-forward strategy,
attempt to decode an integer linear combination of the transmitted messages. We assume that
each user, relay, and destination is equipped with one antenna only. The model is depicted in
Figure 4.

The first hop from the transmitters to the relays is modeled as a Gaussian fading channel,
while it is usually assumed that the relays are connected to a destination with error-free bit
pipes with unlimited capacities. We will henceforth focus on the first hop.

The sources want to communicate messages wk \in \BbbF s
p to the destination, which are en-

coded into n-dimensional codewords xk \in \Lambda k,F \subset \BbbR n before transmission. Here, \Lambda k,F is
a full-rank lattice employed by transmitter k, acting as the fine lattice in the nested code
\scrC k(\Lambda C ,\Lambda k,F ) = \{ [x] \in \Lambda k,F (mod \Lambda C) | x \in \Lambda k,F \} . We impose the usual symmetric power
constraint 1

nE
\bigl[ 
| | xk| | 2

\bigr] 
\leq P for all k. We can interpret the coarse lattice \Lambda C as the structure

imposing the power constraint on the codewords, which allows us to ignore the specific defini-
tion of \Lambda C in the remainder of this section. The observed signal at relay m can be expressed
as

ym =
K\sum 
k=1

hmkxk + nm,(62)

where nm is additive white Gaussian noise with variance \sigma 2, and the channel coefficients hmk

are independent and identically distributed with normalized unit variance \sigma 2
h = 1. Here,

the signal-to-noise ratio (SNR) is \rho = P/\sigma 2. The compute-and-forward strategy involves
transforming the above random linear combination into a deterministic one and treating the
rest of the equation as noise. We will describe this process next, leading to (63).

Channel state information is available only at the relays; more specifically, each relay only
knows the channel ht

m = (hm1, . . . , hmK) to itself. Operating under the original compute-
and-forward protocol, a fixed relay selects a scalar \alpha m \in \BbbR , as well as an integer vector
atm = (am1, . . . , amK), and attempts to decode a linear combination of the received codewords
with coefficients amk. For \~ym := \alpha mym, the channel output is modified to read

\~ym =

K\sum 
k=1

amkxk +

K\sum 
k=1

(\alpha mhmk  - amk)xk + \alpha mnm.(63)
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Relay...

T1 h1

TK
hK

\rightsquigarrow y =
K\sum 
k=1

hkxk + n

\omega 1
\in \BbbF k

q

\scrE 1\mapsto  - \rightarrow x1
\in \Lambda 1,F /\Lambda C

\omega K
\in \BbbF k

q

\scrE K\mapsto  - \rightarrow xK
\in \Lambda K,F /\Lambda C

  \downarrow \oplus n

Figure 5. System model focused on the first hop, with K > 1 transmitters and a fixed relay.

The so-called effective noise

n\mathrm{e}ff :=
K\sum 
k=1

(\alpha mhmk  - amk)xk + \alpha mnm(64)

is no longer Gaussian.
Upon observing the faded superposition of transmitted codewords, each relay proceeds in

the same fashion in order to decode a linear combination. We can hence focus on a single
relay and, for ease of notation, drop the subscript m henceforth. The focused system model,
now resembling a K-user multiple-access channel, is illustrated in Figure 5.

An important performance metric of the compute-and-forward protocol is the so-called
computation rate. If \scrR M (k) = s

n log p denotes the message rate at transmitter k, then the
relay is able to decode a linear combination involving the codewords whose corresponding
message rates are smaller than the computation rate \scrR C(h,a) achieved by the relay, that is,
which satisfy \scrR M \leq \scrR C . The main results on the computation rate are briefly summarized
below.

Lemma 18 (see [4, 21]). For a relay employing the original compute-and-forward strategy
under a real valued channel model, the computation rate region is maximized by choosing \alpha as
the minimum mean square error estimate

\alpha \mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} =
\rho hta

1 + \rho | | h| | 2
,(65)

resulting in the computation rate region

\scrR C(h,a) =
1

2
log+

\Biggl( \biggl( 
| | a| | 2  - \rho (hta)2

1 + \rho | | h| | 2

\biggr)  - 1
\Biggr) 
.(66)

Moreover, the optimal coefficient vector is the solution to the minimization problem

a\mathrm{o}\mathrm{p}\mathrm{t} = argmin
\bfa \in \BbbZ K\setminus \{ \bfzero \} 

atGa,(67)

where G = IK  - \rho \bfh \bfh t

1+\rho | | \bfh | | 2 . Hence, a\mathrm{o}\mathrm{p}\mathrm{t} corresponds to the coefficient vector of the shortest

vector in the lattice with Gram matrix G.D
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Remark 5. The lattice shortest vector problem is in general a computationally hard prob-
lem. However, it has been shown recently that in certain instances in the context of compute-
and-forward, e.g., for solving (67), it can be solved in polynomial time [22].

A low-complexity approach assuming no cooperation between the relays has also been
proposed in [23].

4.1. Decoding linear equations. For each k, let \scrC k := \scrC k(\Lambda C ,\Lambda k,F ) denote the nested
lattice code employed by transmitter k. Assume that the fine lattices, possibly after reordering
the indexes, are nested, \Lambda 1,F \supseteq \Lambda 2,F \supseteq \cdot \cdot \cdot \supseteq \Lambda K,F . Since the codebook is finite for each
transmitter, the codewords can be assumed to be equiprobable in \scrC k.

A relay attempts to decode

y =
K\sum 
k=1

hkxk + n

to a lattice point

[\lambda ] =
K\sum 
k=1

akxk (mod \Lambda C)

in two steps:
(i) Scale the received signal by a scalar \alpha , compute an equation coefficient vector at =

(a1, . . . , aK) by solving (67), and decode an estimate \^\lambda of

\lambda =

K\sum 
k=1

akxk \in \Lambda F :=

K\sum 
k=1

ak\Lambda k,F .(68)

(ii) Apply the modulo-lattice operation to shift the received signal back into \scrV (\Lambda C),

[\lambda ] = \lambda (mod \Lambda C).(69)

The requirement \Lambda 1,F \supseteq \Lambda 2,F \cdot \cdot \cdot \supseteq \Lambda K,F guarantees3 that

\Lambda F =

K\sum 
k=1

ak\Lambda k,F(70)

is a lattice. The crucial step is the first one, estimating \^\lambda \in \Lambda F . Originally, a nearest neighbor
decoder is used for this estimation. As this method is optimal only at high SNR, we employ
ML decoding at the relay instead.

4.2. The ML decoding metric. Let \Lambda F =
\sum K

k=1 ak\Lambda k be the lattice defined above. By

the imposed norm constraint on the codewords, the desired lattice point \lambda =
\sum K

k=1 akxk is
contained in a finite subset LF \subset \Lambda F , which is determined by the norm restriction of the
original codewords as well as the coefficient vector a. Thus, a relay can restrict its search
space to LF . We make this more precise in the following straightforward proposition.

3Note that nesting is not necessary, but sufficient; more generally, it suffices to fix a common superlattice
for all transmitters. We adopt the nested assumption to be consistent with [4].D
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Proposition 19. For a fixed coefficient vector at = (a1, . . . , aK), the lattice point \lambda is con-
tained in the set

LF =

\Biggl\{ 
\lambda \in \Lambda k\mathrm{m}\mathrm{i}\mathrm{n},F

\bigm| \bigm| \bigm| \bigm| \bigm| | | \lambda | | \leq 
K\sum 
k=1

| ak| max
\bfx \in \scrC k\mathrm{m}\mathrm{i}\mathrm{n}

\{ | | x| | \} 

\Biggr\} 
,(71)

where k\mathrm{m}\mathrm{i}\mathrm{n} := argmin1\leq k\leq K \{ ak \not = 0\} .
Proof. By definition, k\mathrm{m}\mathrm{i}\mathrm{n} is the index of the first nonzero entry in the coefficient vector

a, hence the index of the first codeword to be included in the targeted linear combination.
As \Lambda 1,F \supseteq \cdot \cdot \cdot \supseteq \Lambda K,F , we have that xk \in \scrC k\mathrm{m}\mathrm{i}\mathrm{n}

for all k \geq k\mathrm{m}\mathrm{i}\mathrm{n}. Consequently, each of the
codewords involved in the linear combination satisfies | | xk| | \leq max\bfx \in \scrC k\mathrm{m}\mathrm{i}\mathrm{n}

\{ | | x| | \} . We conclude

| | \lambda | | =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
K\sum 
k=1

akxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \leq 

K\sum 
k=1

| ak| | | xk| | (72)

\leq 
K\sum 
k=1

| ak| max
\bfx \in \scrC k\mathrm{m}\mathrm{i}\mathrm{n}

\{ | | x| | \} .(73)

In this context, ML decoding amounts to maximizing the conditional probability

\^\lambda = argmax
\lambda \in LF

\BbbP [\alpha y | \lambda ](74)

= argmax
\lambda \in LF

\sum 
(\bfx i)i\in (\scrC i)i
K\sum 

k=1
ak\bfx k=\lambda 

\BbbP [\alpha y| (x1, . . . ,xK)]\BbbP [(x1, . . . ,xK)].(75)

The former factor in the above expression behaves as

\BbbP [\alpha y| (x1, . . . ,xK)] \propto exp

\left\{    - 1

2\sigma 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| y  - 

K\sum 
k=1

hkxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right\}   .(76)

Note that this is independent of \alpha . We define the function

\varphi (\lambda ) :=
\sum 

(\bfx i)i\in (\scrC i)i
K\sum 

k=1
ak\bfx k=\lambda 

exp

\left\{    - 1

2\sigma 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| y  - 

K\sum 
k=1

hkxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right\}   ,(77)

and using the assumption that the codewords are equiprobable in (\scrC 1, . . . , \scrC K), we conclude
that the estimate \^\lambda of \lambda can be computed by solving

\^\lambda = argmax
\lambda \in LF

\varphi (\lambda ).(78)D
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Remark 6. We are not proposing a decoding algorithm but rather elucidating the behav-
ior of the decoding metric and deriving a code design criterion. It has been shown in [10]
that in dimension n = 1 decoding based on Diophantine approximation is optimal, and in the
same article it was conjectured to be optimal for n \geq 2 as well. However, how to treat si-
multaneous Diophantine equations is a mathematically open problem, which would be needed
for implementing the Diophantine decoder in higher dimensions. While other optimal decod-
ing methods may be derived, related work, such as [12], has to date only proposed efficient
decoding algorithms in arbitrary dimensions for Gaussian channels.

Our goal in the remainder of this section is to study the behavior of \varphi (\lambda ). To analyze the
decoding metric, we first need to express the function \varphi (\lambda ) in terms of the lattice point \lambda . This
is achieved in the following proposition, whose proof we include as important quantities will
be defined within. We follow a similar procedure described in [6, 10], but in more generality.

Proposition 20. Let \varphi (\lambda ) be the decoding metric defined in (77). Then, \varphi (\lambda ) can be ex-
pressed in terms of the lattice point \lambda as

\varphi (\lambda ) =
\sum 

\bft \in S\subset \BbbZ nK

exp

\biggl\{ 
 - 1

2\sigma 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \omega (\lambda ) - M\scrL \^Ut
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2\biggr\} ,(79)

where S \subset \BbbZ nK is finite, \omega (\lambda ) is explicitly given in terms of \lambda , \^U \in Mat(n(K  - 1)\times nK,\BbbR ),
and M\scrL \in Mat(n\times n(K  - 1),\BbbR ).

Proof. For each transmitter 1 \leq k \leq K, let Mk \in Mat(n,\BbbR ) denote the generator matrix
of \Lambda k,F , and write xk = Mkzk for some zk \in \BbbZ n. We define the matrix M := [ a1M1 \cdot \cdot \cdot aKMK ] \in 
Mat(n\times nK,\BbbR ), where at = (a1, . . . , aK) is the solution to (67) and express \lambda as

\lambda =
K\sum 
k=1

akxk =
K\sum 
k=1

akMkz\bfk (80)

=
\bigl[ 
a1M1 \cdot \cdot \cdot aKMK

\bigr] \left[   z1
...
zK

\right]   = Mz.(81)

Let now4 U \in GLnK(\BbbR ) be an invertible matrix such that

\~B := MU =
\bigl[ 
0n\times n(K - 1) | B

\bigr] 
,(82)

where B \in Mat(n,\BbbR ) is invertible. We proceed by decomposing the matrix U into blocks
Vi \in Mat(n,\BbbR ) and Ui \in Mat(n\times n(K  - 1),\BbbR ), as

U =

\left[   U1 V1
...

...
UK VK

\right]   .(83)

4We will later choose a specific decomposition. However, any decomposition of this form suffices for decoding
purposes.D
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Let now \~r := U - 1z = (rt, rtn)
t, where rn denotes the last n components of \~r, and write

\lambda = Mz = \~BU - 1z = \~B\~r = Brn.(84)

Note that rn = B - 1\lambda . To describe r, the first n(K  - 1) components of \~r, let \^U be composed
of the first n(K  - 1) rows of U - 1. Then r = \^Uz. We can now write\left[   z1

...
zK

\right]   =

\left[   U1 V1
...

...
UK VK

\right]   \biggl[ r
B - 1\lambda 

\biggr] 
=

\left[   U1r+ V1B
 - 1\lambda 

...
UKr+ VKB - 1\lambda 

\right]   (85)

and consequently rewrite the codewords xk in terms of \lambda as

xk = Mkzk = MkUkr+MkVkB
 - 1\lambda (86)

= MkUk( \^Uz) + \mu k(\lambda ),(87)

where \mu k(\lambda ) := MkVkB
 - 1\lambda . For \nu k := MkUk( \^Uz), the exponent of \varphi (\lambda ) now takes the form\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| y  - 

K\sum 
k=1

hkxk

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
2

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| y  - 

K\sum 
k=1

hk(\mu k(\lambda ) + \nu k)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
2

(88)

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl( 
y  - 

K\sum 
k=1

hk\mu k(\lambda )

\Biggr) 
 - 

K\sum 
k=1

hk\nu k

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.(89)

To further simplify the expression, define the matrix

M\scrL :=

K\sum 
k=1

hkMkUk,(90)

which allows us to rewrite \varphi (\lambda ) explicitly in terms of \lambda as

\varphi (\lambda ) =
\sum 

\bft \in S\subset \BbbZ nK

exp

\biggl\{ 
 - 1

2\sigma 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \omega (\lambda ) - M\scrL \^Ut
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2\biggr\} .(91)

Here S \subset \BbbZ nK is finite and we have defined

\omega (\lambda ) := y  - 
K\sum 
k=1

hk\mu k(\lambda ).(92)

We state a lemma related to the structure defined by the matrix M\scrL for future reference
and quickly discuss the consequences.

Lemma 21. Let M\scrL =
\sum K

k=1 hkMkUk be the matrix defined in (90). Then M\scrL defines a
subgroup \scrL of \BbbR n of rank n(K  - 1), which can only be discrete for K = 2. Hence, for K \geq 3,
\scrL is not a lattice almost surely, i.e., with probability one.D
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Remark 7. We remark that the authors in [6, 10] are not aiming at analyzing the behavior
of \varphi (\lambda ) for actual resulting lattice sums \scrL . The structure of \scrL has been studied only in the
case K = 2, and consequently \scrL has been commonly believed to be a lattice for any number
of transmitters. By Lemma 21, \scrL is a lattice for K = 2 but lacks a discrete structure when
K > 2. The main problem is the effect of the random channel coefficients hk and, as an
important implication, the function \varphi (\lambda ) does not converge if the sum ranges over all of \scrL .
This fact has dramatic consequences, as it implies that the tools developed in [6] for analyzing
the behavior of \scrL can be applied only in the case K = 2.

In general \scrL =
\sum K - 1

i=1 \scrL i is a sum of (K  - 1) lattices, i.e., consists of vectors of the form

q =
\sum K - 1

i=1 qi, where qi \in \scrL i. An example of a finite subset \scrL \subset \scrL for a sum of two lattices
\scrL = \scrL 1+\scrL 2 (K = 3) for n = 2 and a fixed channel vector is depicted in Figure 6 for illustrative
purposes.

In the proof of Proposition 20, we assumed the existence of a matrix U \in GLnK(\BbbR ) which
yields the desired decomposition (82). For a general matrix U \in GLnK(\BbbR ), its inverse is a
matrix with coefficients in \BbbR , and hence r = \^Uz is not an integer vector. Thus, M\scrL \^Uz cannot
be interpreted as an element of the lattice sum \scrL .

In [6, 10, 12], the authors propose a decomposition based on the Hermite normal form
(HNF) of M . While the use of this specific decomposition has certain disadvantages, for
example, it only allows us to consider integer lattices at the transmitter, it also allows us to
further simplify the decoding expression. Using the HNF, the matrix U is unimodular, i.e.,
U \in GLnK(\BbbZ ). In this special situation, we have that \^U \in Mat(n(K  - 1) \times nK,\BbbZ ), and
consequently r = \^Uz \in \BbbZ n(K - 1). This allows us to further simplify the ML decoding decision
(91) to read

\^\lambda = argmax
\lambda \in LF

\sum 
\bfq \in \scrL 

exp

\biggl\{ 
1

2\sigma 2
| | \omega (\lambda ) - q| | 2

\biggr\} 
,(93)

where q = M\scrL z with z \in \BbbZ n(K - 1) ranges over a finite subset \scrL \subset \scrL .
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Figure 6. Sum of (K  - 1) = 2 lattices \scrL = \scrL 1 + \scrL 2 in dimension n = 2. The depicted points correspond
to coefficient vectors \bfz \in [ - p, p]4 with p = 1, and the density increases rapidly as p grows. The employed code
lattices are \BbbZ 2 on the left and \Psi (\scrO \BbbQ (

\surd 
5)) on the right figure.D
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Nonetheless, any decomposition yielding a matrix in the form (82) allows for ML decoding
at the relay.

4.3. The behavior of \bfitvarphi (\bfitlambda ). We move on to analyze the behavior of the function

\varphi (\lambda ) =
\sum 

\bft \in S\subset \BbbZ nK

exp

\biggl\{ 
1

2\sigma 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \omega (\lambda ) - M\scrL \^Ut
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 2\biggr\} ,(94)

which, as indicated in [6], can be flat for certain parameters leading to ambiguous decoding
decisions and ultimately resulting in decoding errors. We begin by illustrating the behavior
of \varphi (\lambda ) in Figure 7 for dimensions n = 1 and 2. In order to show that the flatness behavior
of \varphi (\lambda ) prevails when using a decomposition other than the HNF, as well as when employing
noninteger lattices, we use the LQ-decomposition of M . Here M = LQ, where L is lower
triangular and Q unitary, and we choose U := Q; cf. (82).

In order to decode the lattice point \lambda , the relay needs to solve the maximization problem
(78). We adopt two necessary restrictions.

(i) The definition of the flatness factor involves the volume of the considered lattice.
Hence, the analysis of \varphi (\lambda ) in terms of this quantity makes sense only when the volume
vol\scrL is defined. We thus require that \scrL is a lattice, i.e., K = 2 (cf. Lemma 21).

(ii) Second, while any decomposition yielding the desired form allows the relay to solve
(78), the matrix \^U may not be an integer matrix. The fractional part frac( \^Ut) =
\^Ut  - int( \^Ut) may complicate the analysis of \varphi (\lambda ). To overcome this problem, we
henceforth restrict to integer lattices, i.e., lattices with an integer generator matrix.
This allows us to choose the HNF as the employed decomposition and consider the
simplified expression (93).

Remark 8. An extension to the case K > 2 seems necessary, as numerical results suggest
that the flat behavior prevails for more than two transmitters. A natural first step is to
study the average flatness factor restricted to finite sets of the lattices constituting \scrL , as a
straightforward generalization of the flatness factor for a sum of lattices \scrL is not obvious.
This was considered in a preliminary version of this article. However, the relevance of such
an approach needs to be verified, and numerical simulations are currently too expensive.

If the intermediate relay aims to decode a linear combination of K = 2 codewords, the
ML decoding metric (91) is a sum over lattice points, as repeatedly remarked previously. This
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Figure 7. Behavior of \varphi (\lambda ) for K = 2 transmitters in dimension n = 1 (left) with \Lambda = \BbbZ , and n = 2
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allows us to characterize the behavior of \varphi (\lambda ) in terms of the flatness factor of the lattice \scrL 
(cf. (61)).

Definition 22. Let K = 2. The flatness factor of \varphi (\lambda ) is defined as the flatness factor of
\scrL ,

\varepsilon \varphi (\lambda )(\sigma 
2) := \varepsilon \scrL (\sigma 

2).(95)

Remark 9. The description of \varepsilon \Lambda (\sigma 
2) in (61) allows us to study the flatness factor as a

function of the noise variance \sigma 2. In the context of compute-and-forward, we need \varepsilon \varphi (\lambda )(\sigma 
2) to

be as large as possible, as by the definition large values imply a distinctive maximum, which
inhibits a flat behavior of the related function \varphi (\lambda ).

Initially, studying the lattice flatness factor \varepsilon \varphi (\lambda )(\sigma 
2) boils down to studying the flatness

factor of the random lattice \scrL which results at the relays. In order to have a reliable per-
formance in the considered setting, we should choose lattices at the transmitter which are
good for reliable communications, i.e., protect against noise and fading, while maximizing the
flatness factor of the resulting lattice \scrL . By adopting the two restrictions listed above, it
turns out that \scrL can be related to the lattices employed at the transmitter, a link which we
make explicit in Theorem 23 below. The consequences of the theorem are that maximizing
the flatness factor of \scrL amounts to maximizing the flatness factor of the original lattice.

Theorem 23. Let K = 2, and let \Lambda 1,\Lambda 2 \subset \BbbR n be full integer lattices such that if M\Lambda is the
generator matrix of \Lambda 1, then there exists c \in \BbbZ \setminus \{ 0\} such that cM\Lambda is the generator matrix
for \Lambda 2. Hence, \Lambda 1 \supseteq \Lambda 2 are nested. Then, employing the HNF decomposition, the lattices \scrL 
and \Lambda 1 are equivalent.

Proof. We determine the generator matrix M\scrL of the lattice \scrL . Assume that at = (a1, a2)
is the coefficient vector determining the linear combination to be decoded. As a is the solution
to a shortest vector problem, we have gcd(a1, a2) = 1. Define the matrix

M :=
\bigl[ 
a1M\Lambda a2cM\Lambda 

\bigr] 
.(96)

Since we have at \not = (0, 0), the matrix M has full-rank. Hence, there always exist U \in 
GL2n(\BbbZ ) and B \in Mat(n,\BbbZ ) invertible, such that MU =

\bigl[ 
0n B

\bigr] 
is in HNF. If we write

A1 := diag \{ a1\} ni=1, A2 := diag \{ ca2\} ni=1, and decompose the matrix U into n\times n blocks as

U =

\biggl[ 
U1 V1

U2 V2

\biggr] 
,(97)

we can write

MU =
\bigl[ 
a1M\Lambda a2cM\Lambda 

\bigr] 
U(98)

=
\bigl[ 
M\Lambda M\Lambda 

\bigr] \biggl[ A1 0n
0n A2

\biggr] \biggl[ 
U1 V1

U2 V2

\biggr] 
(99)

=
\bigl[ 
M\Lambda M\Lambda 

\bigr] \biggl[ A1U1 A1V1

A2U2 A2V2

\biggr] 
=
\bigl[ 
0n B

\bigr] 
.(100)
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As M\Lambda generates a full lattice, it is invertible. We multiply by M - 1
\Lambda from the left to get

M - 1
\Lambda 

\bigl[ 
M\Lambda M\Lambda 

\bigr] \biggl[ A1U1 A1V1

A2U2 A2V2

\biggr] 
(101)

=
\bigl[ 
In In

\bigr] \biggl[ A1U1 A1V1

A2U2 A2V2

\biggr] 
(102)

=
\bigl[ 
(A1U1 +A2U2) (A1V1 +A2V2)

\bigr] 
(103)

=
\bigl[ 
0n M - 1

\Lambda B
\bigr] 
,(104)

which yields the equations A1U1 + A2U2 = 0n and A1V1 + A2V2 = M - 1
\Lambda B. We can rewrite

the first equation to read\bigl[ 
A1 A2

\bigr] \biggl[ U1

U2

\biggr] 
(105)

=

\left[     
a1 0 \cdot \cdot \cdot 0 ca2 0 \cdot \cdot \cdot 0
0 a1 0 0 ca2 0
...

. . .
...

...
. . .

...
0 \cdot \cdot \cdot a1 0 \cdot \cdot \cdot ca2

\right]     
\biggl[ 
U1

U2

\biggr] 
= 0n.(106)

This equation is satisfied if and only if

colspan

\biggl( \biggl[ 
U1

U2

\biggr] \biggr) 
\subseteq ker

\bigl( \bigl[ 
A1 A2

\bigr] \bigr) 
(107)

= span

\biggl\{ \biggl[ 
ca2 \cdot ei
 - a1 \cdot ei

\biggr] \biggr\} n

i=1

,(108)

where ei is the ith standard vector. In particular, we can always choose

U1 =  - diag \{ ca2\} ni=1 ; U2 = diag \{ a1\} ni=1 .(109)

With this choice, the generator matrix of \scrL simplifies to

M\scrL = h1M\Lambda U1 + h2cM\Lambda U2(110)

=  - h1M\Lambda diag \{ ca2\} ni=1 + h2cM\Lambda diag \{ a1\} ni=1(111)

= (h2cdiag \{ a1\} ni=1  - h1 diag \{ ca2\} ni=1)M\Lambda = rM\Lambda (112)

for some r \in \BbbR .
This result motivates the study of the flatness factor of the code lattices. As these should

be picked to be well-conditioned for coding purposes, we only need to compute the flatness
factor of reasonably conditioned lattices. Thus, the derived approximation \Theta \frakA 

\Lambda (q) will suffice

for that purpose. We consider the lattices \Lambda 
(3)
i and \Lambda 

(4)
i , 1 \leq i \leq 4, tabulated in Table 2 in

Appendix 5. As the well-known lattices \BbbZ n, Dn and the dual D\ast 
n are all examples of well-

rounded lattices, we consider additional lattices \Lambda 
(3)
4 , \Lambda 

(4)
3 , and \Lambda 

(4)
4 which are well-rounded

as well, for sake of consistency. These are found via computer search.

Remark 10. Note that, as it should be, the flatness factor of \varphi (\lambda ) is independent of the
size of constellation, as it is simply the flatness factor of the unconstrained lattice \scrL . For a
meaningful comparison, however, we fix a finite codebook for each of the considered lattices
and illustrate their flatness factor with respect to the power-dependent SNR, \rho = P/\sigma 2.

D
ow

nl
oa

de
d 

01
/1

4/
21

 to
 1

30
.2

33
.1

91
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

498 BARREAL, DAMIR, FREIJ-HOLLANTI, AND HOLLANTI

26 28 30 32 34 36
SNR (dB)

101

102

103 1
(3)

2
(3)

3
(3)

4
(3)

30 31 32 33 34 35 36
SNR (db)

103

104

5  104

1
(4)

2
(4)

3
(4)

4
(4)

Figure 8. Flatness factors of \Lambda for lattices of dimensions n = 3 (left) and n = 4 (right).

The average power P for the employed constellation is also found in Table 2. We compare
the considered lattices in Figure 8.

In both dimensions n = 3 and n = 4, it is visible that the integer lattice \Lambda 
(n)
1 = \BbbZ n

performs best among the considered lattices with respect to the flatness factor criterion. This
is in agreement with the observation in [10] that the lattice \scrL should not be dense. However,
the density is not the only factor that plays a role, as visible from the plot in dimension

n = 3. There, the best quantizer, \Lambda 
(3)
3 = D\ast 

3, exhibits the smallest flatness factor, even below

the densest packing \Lambda 
(3)
2 = D3. In dimension n = 4, the lattice \Lambda 

(4)
2 = D4 is both the best

quantizer and densest packing and exhibits the smallest flatness factor.
The quintessential statement, however, is not that the lattice \BbbZ n is the one that should

always be used. Indeed, the code lattice should first be chosen to perform well in compute-
and-forward, and additionally exhibit a large flatness factor. This yields a potential trade-off
in code design.

5. Conclusions. The main goal of this article was to derive a simple approximation of the
theta series of a lattice. Our approximation can be shown to be a simple rational function.

We then studied maximum-likelihood decoding in the context of compute-and-forward
relaying and showed that partial code design criteria can be derived based on the so-called
flatness factor of certain involved lattices. Using a particular matrix decomposition for manip-
ulating the decoding metric, and adopting two important restrictions, we further prove that
the code lattice at the transmitter and the random lattice at the relay are similar. This allows
for a direct design criterion for the code lattice, rather than for the random lattice. Namely,
the flatness factor of the code lattice should be maximized.

As the flatness factor is directly related to the theta series of a lattice, it is hence crucial
to be able to efficiently compute the latter quantity. Hence, for the purposes of empirically
analyzing different lattices at the transmitter, the theta series approximation proves to be
crucial, both in this context as well as in the context of wiretap coset code design, e.g., the
results obtained in [27].

This work allows extending the framework in a variety of directions. First, as noted in
this article, the decoding metric is only a sum over lattice points for K = 2 transmitters,D
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and the analysis of its behavior becomes more complicated when K \geq 3, though numerical
results show that the flatness behavior prevails. On the other hand, the used decomposition
only allows for integer lattices and integer linear combinations. Following related work [24, 26]
where the linear combinations are allowed to be over the ring of integers of an algebraic number
field, it would be of benefit to examine the decoding metric in this generalized setting. The
HNF decomposition over the integers \BbbZ is only a special case, and the algorithm has been
extended to arbitrary Dedekind domains. Thus using this generalized decomposition would
allow studying algebraic lattices for code construction at the transmitters.

Appendix. Table 2 serves as a summary of the characteristics of the lattices used for
simulations and introduces the employed notation.

Table 2
Summary of the lattices employed for simulation results.

\bfn = \bfthree Notation M\Lambda \lambda 1 vol \Lambda \Theta \Lambda (q) P (| \scrC | = 343)

\Lambda 
(3)
1 = \BbbZ 3 I3 1 1 \theta 33(q) 4

\Lambda 
(3)
2 = D3

\sim = A3

\left[   - 1 1 0
 - 1  - 1 1
0 0  - 1

\right]  2 2 1
2
(\theta 33(q) + \theta 34(q)) 8

\Lambda 
(3)
3 = D\ast 

3
\sim = A\ast 

3

\left[  2 0 1
0 2 1
0 0 1

\right]  3 4 \theta 2(4q)
3 + \theta 3(4q)

3 16.6667

\Lambda 
(3)
4

\left[  2 0 0
1  - 2 1
0  - 1  - 2

\right]  5 10 - 20

\bfn = \bffour P (| \scrC | = 2401)

\Lambda 
(4)
1 = \BbbZ 4 I4 1 1 \theta 43(q) 4

\Lambda 
(4)
2 = D4

\left[    
 - 1 1 0 0
 - 1  - 1 1 0
0 0  - 1 1
0 0 0  - 1

\right]    2 2 1
2
(\theta 43(q) + \theta 44(q)) 8

\Lambda 
(4)
3

\left[    
1 1  - 1 1
1  - 1 1 1
 - 1 0 0 1
0 1 1 0

\right]    3 8 - 12

\Lambda 
(4)
4

\left[    
 - 2 0 0 0
0 0 0  - 2
1 1  - 2 1
0 2 1 0

\right]    5 20 - 20
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