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ARTICLE

Dynamics of cascades on burstiness-controlled
temporal networks
Samuel Unicomb 1✉, Gerardo Iñiguez2,3,4, James P. Gleeson 5 & Márton Karsai 1,2✉

Burstiness, the tendency of interaction events to be heterogeneously distributed in time, is

critical to information diffusion in physical and social systems. However, an analytical fra-

mework capturing the effect of burstiness on generic dynamics is lacking. Here we develop a

master equation formalism to study cascades on temporal networks with burstiness modelled

by renewal processes. Supported by numerical and data-driven simulations, we describe the

interplay between heterogeneous temporal interactions and models of threshold-driven and

epidemic spreading. We find that increasing interevent time variance can both accelerate and

decelerate spreading for threshold models, but can only decelerate epidemic spreading.

When accounting for the skewness of different interevent time distributions, spreading times

collapse onto a universal curve. Our framework uncovers a deep yet subtle connection

between generic diffusion mechanisms and underlying temporal network structures that

impacts a broad class of networked phenomena, from spin interactions to epidemic contagion

and language dynamics.
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Temporal networks provide a representation of real-world
complex systems where interactions between components
vary in time1–3. Although initially modelled as Poisson

processes, where independent events are homogeneously dis-
tributed in time, real-world networked interactions have been
found to be heterogeneously distributed and to exhibit temporal
correlations4–6. In particular, interaction events in real systems
concentrate within short periods of intense activity followed by
long intervals of inactivity, an effect known as burstiness. Bursty
dynamics appear in diverse physical phenomena including
earthquakes7 and solar flares8, biological processes like neuron
firing9, as well as the dynamics of human social interaction5,10.

Burstiness in temporal interactions has profound implications
for the diffusion of information over temporal networks, as
demonstrated in a growing number of works11–17. This is true in
the case of epidemic processes, often referred to as simple con-
tagion, where the probability of infection of an uninfected node
depends linearly on the number of exposures, i.e., temporal
interactions with infected neighbours in the network18. Epidemic
models successfully describe the spread of biological disease19,
and have been shown to critically depend on burstiness and other
patterns of temporal interactions12,20–23. Epidemic spreading
over temporal networks appears to be slowed owing to burstiness
in some cases11,24–26, whereas accelerated in others14,27,28.
However, these conclusions are known to depend on the stage at
which we observe the spreading process. It has been argued that
at early stages of epidemics, short interevent times may accelerate
spreading13, whereas at later stages, long interevent times may
decelerate dynamics16,26. Threshold mechanisms provide another
class of phenomena where bursty temporal networks have a
crucial role. Threshold dynamics, also known as complex con-
tagion, are used to model the spread of information where
infection requires the reinforced influence of at least a certain
fraction of neighbours in the egocentric network29. Threshold-
driven dynamics over static networks have been extensively stu-
died both empirically30 and theoretically30–34, but analysis of
their behaviour on temporal networks is so far limited to a small
number of empirical studies35–38. Using random reference
models of temporal networks, it has been shown that when
infection is driven by the fraction of infected neighbours, rather
than their absolute number, bursty interactions may lead to
deceleration35,36,38. In contrast, if the threshold measure of
influence is absolute, burstiness may have an accelerative effect35.
Acceleration has also been observed in the case of history-
dependent contagion37.

Information diffusion in social and economic settings must
overcome limits inherent to our social and cognitive capacities,
namely that we have finite attention. This has motivated the
concept of the attention economy39,40, where relative to an
abundance of content and information, attention is a scarce
resource. A mechanism that has emerged to deal with these
limitations is ephemeral content41,42. Variously referred to as
stories, snaps or fleets, depending on the platform, ephemeral
content disappears after a specified amount of time, in principle
concentrating the attention of viewers. In contrast, persistent
content is not explicitly erased, but owing to cognitive limits and
competing content, gradually decreases in visibility. Here, we
propose an analytical framework to systematically describe the
relationship between the diffusion of information, bursty tem-
poral interactions, and inherent limits to our attention and
memory, thus providing the theoretical foundation necessary to
shed light on the role of burstiness in generic diffusion processes,
including simple and complex contagion models of physical,
biological and social phenomena.

We incorporate the most widely documented features of
temporal interactions into a framework of binary-state dynamics

and benchmark its behaviour with standard models of threshold
driven and epidemic spreading. Although stochastic bursty
interactions are likely emergent phenomena4,43, their dynamics
are well approximated by renewal processes44. Temporal het-
erogeneity in network interactions can then be characterised by
the variability in interevent times τ, the time between consecutive
events on a given edge, parameterised by the interevent time
distribution ψ(τ), whereas other features of the temporal network
are considered maximally random. Renewal processes represent
the simplest model of bursty, non-Markovian dynamics, and a
departure from the memoryless assumption implicit in Poisson
processes. Nevertheless, we are able to show that such a system
can be accurately captured by a master equation formalism,
which is essentially memoryless, implying the existence of a
purely Markovian system with almost identical behaviour. We
show both analytically and numerically that bursty temporal
interactions give rise to a percolation transition in the con-
nectivity of the temporal network, separating phases of slow and
rapid dynamics for both epidemic and threshold models of
information diffusion. We find that diffusion dynamics are sen-
sitive to the choice of interevent time distribution, particularly in
regard to its skewness, and we demonstrate a data collapse across
distributions when controlling for this effect.

Results
Temporal network model. To model a temporal network, we
consider an undirected, unweighted static network of N nodes as
the underlying structure, acting as a skeleton on top of which
temporal interactions take place. The degree of a node, or how
many neighbours it has, takes discrete values k= 0, …, N− 1
from a degree distribution p(k). Pairwise temporal interactions, or
events, occur independently at random on each static edge via a
renewal process with interevent time distribution ψ(τ). Time is
continuous and events are instantaneous, whereas consecutive
interevent times are uncorrelated. We also assume that the
renewal process is stationary (for further details, see Methods and
Supplementary Note 4). By using a static underlying network, we
assume that the time scales of edge formation and node addition
or removal are far longer and thus negligible relative to the time
scale of event dynamics over existing edges.

In its simplest form, information diffusion is a binary-state
process where each node occupies one of two mutually exclusive
states, which we term uninfected and infected. The probability of a
node changing state is a function of the state of its neighbours, as
well as the strength of their interactions. Interaction strength, also
referred to as mutual influence, is a non-negative scalar that we
consider to be a function of the elapsed renewal process time series.
We desire that the mean of the emergent distribution of interaction
strengths be stationary, and invariant to the underlying burstiness
of the system. This is achieved when the contribution of a single
event to interaction strength (i) goes to zero as the event ages, and
(ii) is additive, meaning a spike in edge activity leads to a spike in
the interaction strength between neighbours.

To satisfy these conditions, we are free to choose a memory
kernel, or distribution of event memory times. One such coupling
is a step function, i.e., the contribution of an event to the actual
interaction strength is constant for a duration η, after which it
goes to zero. This is best used to model information diffusion via
ephemeral content, where the lifetime of an interaction is
expressly finite. An alternative is an exponential memory kernel,
where an event is forgotten at a constant rate 1/η, modelling
persistent content with attention decaying due to other factors.
For all choices of memory kernel, we define the interaction
strength wj of an edge at time t (or state j for short), as the number
j of events in active memory. In the case of a step-function
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memory kernel, the focus of our work, it is simply the number of
events in the preceding time window of width η (Fig. 1).
Nevertheless, all studied memory kernels qualitatively lead to the
same results.

It follows that the local configuration of a node is determined by
the number kj of its neighbours connected via edges in state j, with
the degree k of the node related to its kj values by k= ∑jkj at any
time t. We introduce mj as the number of infected neighbours of a
node connected via edges in state j. Consequently, 0 ≤mj≤ kj with
m= ∑jmj the total number of infected neighbours. For each node,
we store kj and mj for all j in vectors k and m, providing a
description of edge and node states in the local neighbourhood of a
node. Nodes in class (k, m) become infected at a rate Fk,m, and are
statistically identical in this sense. We also store the interaction
strength wj= j in the vector w for all j. The dynamics of a given
node, through Fk,m, are thus fully determined by (k, m) and w.

Information diffusion over temporal networks. To examine the
effect of temporal interactions on information diffusion, we
explore three widely known models of transmission. We consider
both relative (RT) and absolute (AT) variants of a threshold
mechanism29,31,45, as well as the susceptible-infected (SI) model
of epidemic spreading46 (see Table 1 for details). All models are
non-recovery, meaning the uninfected state cannot be re-entered,
and we consider infection owing to external noise at a low, but
non-zero rate p.

The study of threshold dynamics focuses on the conditions
leading to cascades, or large avalanches of infections that sweep
through the network. In the simplest implementation of threshold
dynamics, infection occurs when the number m of infected
neighbours of an uninfected node exceeds a fraction ϕ of its
degree k29,31. Generalising this rule to the case of arbitrary
interaction strength33,47, in the RT model infection occurs when
the influence of infected neighbours, m ⋅ w, exceeds a fraction ϕ
of all potential influence, k ⋅ w. The RT model captures instances
of real-world diffusion where interaction between elements affect
the probability of infection only in aggregate, similar to the
response of individuals to new behavioural patterns or transmis-
sion in biological neural networks48,49. When considering the RT
model over temporal networks, the probability of infection may
increase during bursts of interaction events with infected
neighbours or, conversely, bursts of activity with uninfected

neighbours may temporarily maintain a node in the uninfected
state. This is the case in Fig. 1b, where influence from a single
infected neighbour is insufficient to overcome that from
uninfected neighbours. In the AT model, influence from infected
neighbours is not normalised, but compared with some absolute
valueMϕ

45. In contrast to the RT model, infection is not hindered
by interaction activity with uninfected neighbours, and bursts can
only increase the probability of infection. In the SI model, finally,
each interaction event with an infected neighbour triggers
infection at a rate λ. In our framework of temporal networks,
infected neighbours trigger infection via edges in state j at a rate
λj. Writing λ= λw, the infection rate for a node with a
neighbourhood of infected nodes described by m is m ⋅ λ. Similar
to the AT model, bursts can only increase the probability of
infection in the SI model (Fig. 1).

Master equation solution. We extend a master equation
formalism33,50 to account for network temporality. We introduce
the state space of all configurations (k, m) allowed by the under-
lying degree distribution p(k), under the condition that each edge is
in one of a finite number of possible edge states (see Methods, and
Supplementary Note 1 for lattice diagrams of this space). We
introduce the state vector s(t) containing the probability that a
randomly selected node with underlying degree k is uninfected and
in class (k, m) at time t. The time evolution of s is governed by the
matrix W(s, t), containing the transition rate Wij from the ith to
the jth configuration (k, m) at time t. Transitions arise from three
mechanisms. First, ego transitions, contained in the matrix Wego,
describe the loss to configuration (k, m) owing to its nodes
becoming infected. This occurs at a rate Fk,m, as per Table 1, so the
diagonal terms of Wego are given by −Fk,m and off-diagonals are
zero. Second, neighbour transitions, contained in matrix Wneigh,
describe the gain or loss to configuration (k, m) owing to the
infection of neighbours of nodes related to this class. This transi-
tion is determined by βjdt, the probability of an uninfected
neighbour in configuration j becoming infected over an interval dt
(see Methods for an explicit calculation). Taken together,Wego and
Wneigh accurately describe diffusion dynamics over static networks
with heterogeneous edge types, such as weighted and multiplex
networks33,34.

Temporal networks require a third component, edge transi-
tions, contained in the matrixWedge, describing the gain or loss to
configuration (k, m) due to changes in an edge’s state j. This
applies to any temporal network model that can be formulated in
terms of discrete, dynamic edge states. We denote by μjdt and νjdt
the probabilities that a randomly selected edge in state j
undergoes a positive or negative transition and enters state
j + 1 or j − 1, respectively, over an interval dt. Combining these
terms gives the master equation

d
dt

s ¼ ðWego þWneigh þWedgeÞs ¼ Wðs; tÞs: ð1Þ

Fig. 1 Model of information transfer via bursty temporal interactions.
a Interaction events appear on edges according to independent renewal
processes. Under a step-function memory kernel, interaction strength is
determined by the number of events j having occurred within a time window
of length η. Memory windows are highlighted in violet, with a darker shade
indicating infection. b The edge-state configuration of node u is determined
by the renewal process in a. Node u has three neighbours, with v3 being
infected, so k= 3 and m= 1. The degree vector k of u contains zeros except
when j= 0, 3 and 9, where entries equal 1. The infected degree vector m
contains zeros, except when j= 3, where the entry is 1. For v1, v2 and v3,
k contains zeros, except when j= 9, 0 and 3, respectively, where entries
equal 1. In each case, m contains only zeros. The dynamical response of
node u to its local configuration is given by the infection rate Fk,m, which
here assumes a relative threshold (RT case) of ϕ = 0.3, an absolute
threshold (AT case) of Mϕ = 3, and a transmission rate (SI case) of λ.

Table 1 Models of information diffusion.

RT AT SI
1; m � w � ϕk � w
p; otherwise

�
1; m � w � Mϕ

p; otherwise

�
maxðp; m � λÞ

Transmission rate Fk,m for nodes in configuration (k, m) with interaction strength w and
infection rate p due to external noise. In complex contagion models with relative (RT) and
absolute (AT) thresholds, infection is regulated by parameters ϕ and Mϕ, respectively. In the
susceptible-infected (SI) model, infection is determined by the rate λ for a single event on an
infected edge, and λ= λw for all events on that edge. See Fig. 1 for an illustrative configuration.
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Modelling temporal network dynamics amounts to solving Eq.
(1), which along with the initial condition s(0), determines the
evolution of the system.

To apply this formalism we derive the edge transition rates μj
and νj in the case of renewal processes. We first note that
microscopically, on the scale of a single edge, transitions from
state j to j ± 1 cannot be described by a constant rate. In a renewal
process, the probability of an event occurring is conditional on
the time elapsed since the previous event. Therefore, this
probability is history dependent, meaning edges have an effective
memory and are non-Markovian by definition. Further, since it is
only the previous event that is determinant, there is clearly no j
dependence at this scale. A renewal process may then seem at
odds with a Markovian master equation [where s(t + dt) depends
only on s(t), as per Eq. (1)]. Macroscopically, however, on the
scale of large ensembles of edges, the renewal process exhibits
effective j-dependent rates that are constant in time. We can
calculate the probability Ej that a randomly selected edge is in
state j, and the probability that it transitions to state j ± 1 over an
interval dt, giving μj and νj [see Methods for explicit expressions
for j > 0, with the j= 0 case of Ej and μj comprising a special case
that we define in Eqs. (2) and (3) below].

As the rates μj and νj are heterogeneous in terms of j, they can
be viewed as a signature of the model parameters ψ(τ) and η, and
of the non-Markovianity inherent at the scale of a single edge. On
a macroscopic scale, μj, νj, and Ej are constant in time, meaning
our system is indistinguishable from a continuous-time Markov
chain model of edge state. That is, a random walk on the non-
negative integers, with transition rates given by μj and νj, and a
stationary distribution of walkers given by Ej (see Supplementary
Note 2 for an illustration of μj and νj in the case of gamma-
distributed interevent times). Applying the system-wide rates μj
and νj at the finer-grained level of configurations (k, m) amounts
to a mean field approximation. Monte Carlo simulations (see
Supplementary Fig. 10) demonstrate that the actual edge
transition rates deviate slightly from μj and νj for each class
(k, m), even if they are exact for the network as a whole, in the
limit of large N. The accuracy of the master equation solution
provides a measure of the remarkable similarity between a
renewal process, where Eq. (1) is an approximation, and the
biased random walk interpretation of edge state, where Eq. (1)
is exact.

Information diffusion and burstiness. We validate our analy-
tical framework with Monte Carlo simulations of diffusion
dynamics over temporal networks. Simulations use an underlying
static, configuration-model network with lognormal degree dis-
tribution of mean 〈k〉 and standard deviation σk. We measure the
time tc required to reach an arbitrary density ρc of infected nodes,
in the presence of background noise at rate p. We also measure ρf,
the relative frequency of infections due to external noise, such
that 0 < ρf ≤ 1, with 1/ρf the ratio of total to noise-induced
infections, measuring the catalytic effect of external noise (for a
detailed description of ρf see Methods). We normalise tc by the
time taken to reach the desired density by noise alone, providing
tf, such that 0 < tf ≤ 1 . Remarkably, ρf and tf are close to linearly
proportional (Fig. 2a, inset). A value of ρf= tf= 1 indicates slow
diffusion with complete reliance on external noise, whereas small
ρf and tf represent rapid diffusion with external noise producing a
substantial catalytic effect. Together, they measure the extent to
which the temporal network, rather than external noise, drives
the diffusion of information.

We first examine the effect of varying interevent time standard
deviation στ for fixed memory η= 〈τ〉= 1 (Fig. 2a). We choose a
Weibull interevent time distribution ψ(τ), used widely to model

behavioural bursts in both human51 and animal52 dynamics. A
Weibull distribution reduces to the exponential distribution
when στ= 〈τ〉= 1. Node dynamics follow the RT model
with threshold ϕ= 0.15 and background noise p= 2 × 10−4.
Approaching the small στ limit from above, events arrive in an
increasingly regular pattern, and an increasing fraction of edges
are frozen in the mean state η/〈τ〉= 1. We refer to this as the
quenched regime, whereby edges converge to a single state and
the network is effectively static. In the opposing limit of large στ,
burstiness means that at any given time, edge activity is
concentrated among an arbitrarily small fraction of edges that
undergo large spikes in activity, with the remainder in state j= 0.
We refer to this as the annealed regime, where the network is
maximally sparse and has a vanishingly small role in information
diffusion (ρf and tf approach one).

Both quenched and annealed regimes lead to slow, noise-
reliant diffusion, with the expected edge state η/〈τ〉 preserved in
each case (Fig. 2a). For intermediate values of στ, there is a well-
mixed regime where relatively rapid diffusion occurs, owing to
edge-state fluctuations that are ultimately favourable to transmis-
sion. In the RT model this implies a spike of activity on an
infected neighbour overcoming a node’s threshold, or decreased
activity on uninfected edges lowering the relative influence to be
overcome. The decelerative effect of quenching is increased for
narrower underlying degree distributions, as an increasing
fraction of nodes are frozen in a state unfavourable to
transmission, a static network effect already reported in ref. 31.

As seen in Fig. 2a, if the system is more bursty than a Poisson
process, i.e., if στ ≥ 1, values of ρf coincide regardless of the
underlying degree distribution. The degree distribution is
degenerate in this sense, as temporal fluctuations, rather than
the underlying degree, determine local connectivity over short

Fig. 2 Fraction of infections due to noise, ρf, as a function of interevent
time distribution. Normalised diffusion time tf produces an almost identical
effect (see a, inset). The small στ limit, leading to regular patterns in τ,
comprises the quenched limit in a where η= 1 and the network is effectively
static. The large στ limit produces large bursts in activity, comprising the
annealed regime where the network is effectively sparsified and plays no
role in information diffusion (ρf= 1). Mirroring results are achieved by
varying memory η for fixed στ in generated, b, and empirical, c–d, temporal
networks. Analytic solution is denoted by dashed lines, and Monte Carlo
results by solid lines. Generated networks have lognormal degree
distribution with mean 〈k〉= 7 and standard deviation
σk= 2. We use Weibull-distributed interevent times with mean 〈τ〉= 1. Plot
b uses στ= 1. For empirical data description see Methods. Node dynamics
correspond to the RT model with threshold ϕ= 0.15 and external noise p=
2 × 10−4. Cutoff density is ρc= 0.4. Monte Carlo simulations are averaged
over 104 realisations. Network size is 106 in a, and 5 × 103 in b.
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time scales. In Supplementary Note 6, we show that clustering is
another such property, where even densely clustered
configuration-model networks53 are functionally treelike in the
annealed phase, with long interevent times τ inducing edges to
the non-interacting state, thereby deconstructing cycles. We
conjecture that local properties, like node degree and clustering,
are degenerate in the presence of uncorrelated temporal
fluctuations, whereas collective properties like modularity and
eigenvector centrality are not. In Supplementary Fig. 9 we
demonstrate using the Watts-Strogatz model54 that average path
length, a manifestly collective property, is clearly non-degenerate.
Interestingly, these results suggest that temporal correlations
between edges on a local scale may break the degeneracy observed
in Fig. 2a. The study of such correlations is an active line of
research55.

A mirroring effect can be obtained by varying memory η for
constant στ= 〈τ〉= 1 (Fig. 2b). The quenched limit is recovered
for large η, as large samples of events on each edge result in edges
converging to a mean state, η/〈τ〉, with an increasingly narrow
distribution, owing to the central limit theorem. As for the case of
fixed η, quenching may be decelerative if cascades on the
corresponding static network are noise dependent. For example,
increasing ϕ can cause slower diffusion in the quenched limit
(Fig. 2b). The annealed, or noise-reliant regime is effectively
recovered when η is vanishingly small, meaning almost all edges
are in state j= 0 and the role of the network in information
diffusion vanishes (ρf = tf = 1). The correspondence between στ
and η suggests data-driven experiments that allow an indirect
inference of the effects of varying στ in real systems, an open
problem in the study of information diffusion. We simulate the
RT model on two empirical temporal networks and vary only the
memory η, recovering qualitatively the effects observed on
synthetic networks (Fig. 2c, d, see Methods for data description).
This suggests the accelerative and decelerative effects of burstiness
may well be a feature of real-world information diffusion.

Comparing interevent time distributions. Next, we compare the
dynamical outcomes of diffusion under lognormal, Weibull and

gamma interevent time distributions. Each of these are two-
parameter distributions, whose values we determine by specifying
their mean 〈τ〉 and standard deviation στ. Consider first the AT
model with Mϕ= 2 and η= 〈τ〉= 1 (Fig. 3b). Here, we observe a
striking dependence of diffusion dynamics on ψ(τ), with the
lognormal distribution leading to the most rapid diffusion, out-
pacing the gamma distribution in diffusion speed and relative
noise dependence by up to a factor of 83, and the Weibull dis-
tribution by up to a factor of 14. Consider too that in order to
achieve an identical dynamical outcome as the gamma distribu-
tion, say ρf= 0.1, the standard deviation of the lognormal dis-
tribution must be increased by over three orders of magnitude.
These dramatic differences can be accounted for by comparing
the rate of onset of annealing in terms of the fraction of edges in
state j= 0, as we increase στ. To quantify this effect, we introduce

ξE ¼
Z 1

η
ΨðτÞdτ ð2Þ

and

ξμ ¼
R1
η ψðτÞdτR1
η ΨðτÞdτ ; ð3Þ

where ξE equals E0, the fraction of edges in state zero, and ξμ
equals μ0, the probability that a randomly selected edge in state
zero enters state one over an interval dt. We may refer to ξE as the
effective sparsification, or alternatively, the effective annealing.
Here Ψ(τ) is the complementary cumulative distribution relating
to ψ(τ). The gamma distribution rapidly anneals the network,
yielding the largest ξE values of all choices of distribution,
meaning the most edges in state j= 0. As a result, it exhibits the
slowest, most noise-reliant diffusion. In terms of the value of ξE
induced, the gamma is followed by the Weibull distribution, then
the lognormal distribution. In fact, the lognormal requires orders-
of-magnitude larger στ to produce equal values of ξE as the
Weibull and gamma distributions. By plotting ρf against ξE we
observe the data to collapse approximately onto a single curve,
revealing ξE to be a far better predictor of dynamics than στ (see
Fig. 3c in contrast to Fig. 3b). Some disagreement persists,

Fig. 3 Fraction of infections due to noise, ρf, for various choices of interevent time distribution ψ(τ). Information diffuses following the AT, or absolute
threshold model, a–c, and the SI, or susceptible-infected model, d–f. Analytic solution is denoted by dashed lines, and Monte Carlo results by solid lines.
a Effect of absolute threshold Mϕ. b Dependence of ρf on choice of ψ(τ). c Data collapse of b after controlling for effective sparsity ξE. Left inset is a closeup of
the main plot in linear scale, revealing that differences in ρf remain after controlling for ξE. This is explained by the differing mixing rates ξμ (inset right).
e, f Corresponding results for the SI model. Cutoff node density is ρc=0.4, with η= 〈τ〉= 1. Analytic solution is shown by dashed lines, Monte Carlo simulations
by solid lines. Degree distribution is lognormal with 〈k〉= 7 and σk= 1. We use a threshold Mϕ= 2 for the AT model, λ ¼ 0:02 in the SI model, and external
noise p= 2 × 10−4 in each. Monte Carlo simulations involve 104 realisations on networks of size N= 106.
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however (Fig. 3c, left inset), which can be explained by noting
that increased rates of mixing ξμ (Fig. 3c, right inset) ensure that
the small number of active edges redistribute about the network
at a greater rate, thus mediating cascades more effectively. An
identical effect is observed for the SI model (Fig. 3e, f).

The data collapse in Fig. 3c, f confirm that above all it is ξE, the
density of edges in state j= 0, that ultimately determines the
diffusion dynamics in our framework. The sensitivity of ξE to the
choice of interevent time distribution ψ can be seen in Eq. (2),
where the dependence is functional. We wish to go further,
however, and identify the properties of a given distribution ψ that
contribute to the value of ξE, beyond its mean and standard
deviation. We explore these properties using the generalised
gamma distribution in the following section.

Temporal network phase transition. We systematically explore
(στ, η) space using Monte Carlo simulations of the SI model
(Fig. 4). We aim first to understand how the temporal con-
nectivity evolves as a function of στ and η. As previously observed,
the quenched regime appears either in the small στ limit for
constant (but sufficiently large) η, or in the large η limit for
constant στ. The temporal network enters the annealed regime in
two ways, either by taking the small η limit for constant στ, or the
large στ limit for constant η. The two regimes are separated by an
edge percolation transition, i.e., the emergence of a giant

connected component in the sub-graph formed by edges in state j
> 0, that can be expected with high probability at any given time
(see regimes and boundary in Fig. 4a). The giant component is
dynamic, meaning its composition in terms of both nodes and
edges is constantly evolving, but can always be expected to per-
colate through the network. Above percolation, a giant compo-
nents facilitates the diffusion of information, that would
otherwise rely on small, temporally disconnected components in
order to propagate. We denote by q(k) the degree distribution
obtained by randomly removing a fraction ξE of edges in a static
configuration-model network with degree distribution p(k),
which is identical to that of the expected sub-graph formed by
removing state zero edges in the stochastic temporal network.
The percolation transition for q(k) can be computed analytically
(see Supplementary Note 3), and despite the static assumption,
provides an excellent estimate of the boundary between quenched
and annealed regimes of the temporal network (Fig. 4a), indi-
cating the onset of slow, noise-dependent diffusion for all diffu-
sion dynamics considered.

The percolation transition in Fig. 4a is heavily dependent on ψ,
as seen in the angle formed in the (στ, η) plane by the gamma,
Weibull and lognormal interevent time distributions (left to
right). For a given value of memory η, we denote by σc the critical
value of interevent time standard deviation, indicating the
collapse of the giant temporally connected component. To
appreciate the importance of the choice of ψ, consider that when
memory is set to η= 10, the collapse of the giant component
occurs at σc= 15 under the gamma distribution, then orders-of-
magnitude later at 80 and 1300 under the Weibull and lognormal
distributions, respectively. Above all, these results emphasise that
for an arbitrary interevent time distribution, mean and standard
deviation alone are insufficient to estimate dynamical quantities,
such as temporal connectivity.

To better understand the behaviour of the temporal network
phase transition, critical values of interevent time standard
deviation, σc, are drawn from Fig. 4a and plot as symbols in
Fig. 4b. We do this for select values of memory, η. Then, we
exploit the fact that the distributions in Fig. 4a are either special
(gamma and Weibull) or limiting (lognormal) cases of the
generalised gamma distribution, a three-parameter distribution
that may be used to model interevent times directly, or be used
to discriminate between two-parameter models in empirical
settings56. We specify two of the three parameters in the
generalised gamma distribution using 〈τ〉 and στ, leaving a third
parameter that may be used to control a number of higher order
properties, such as the interevent time skewness, γτ. Other
parameterisations are possible, such as differential entropy,
defined in Supplementary Note 8. The solid curves in Fig. 4b
give the critical point σc observed when smoothly varying γτ in
the generalised gamma distribution. As expected, σc in the
simulated network interpolates between that of the gamma and
Weibull distributions. The lognormal distribution is numeri-
cally challenging to recover in this manner, being a limiting
case, but in principle belongs to the same family. The dashed
line is the extrapolation to this case.

The variation between phase transitions in Fig. 4a appears to
be characterised by a single parameter, namely the angle formed
in the (στ, η) plane. This intuition is validated by the generalised
gamma distribution, whose third parameter, specified here by
interevent time skewness γτ, accounts for this effect. Skewness
should be viewed here as a proxy of higher order structure, as a
number of other quantities, such as differential entropy, vary
alongside γτ. A consequence of this may be the following. Given
a set of empirical interevent time data, measurements of its
mean and standard deviation alone are insufficient to infer its
dynamics, such as spreading time (as in Fig. 3b, d), or whether

Fig. 4 Collapse of the giant temporal component due to increasing
burstiness. a Heat map is diffusion time tf for an SI process with λ=0.02
under a Weibull interevent time distribution, and a step-function memory
kernel. The underlying degree distribution is lognormal with 〈k〉= 7 and σk=
0.5, and network size N= 105. The slope of the temporal network phase
transition, dashed lines, depends on the choice of the interevent time
distribution, and can be parameterised by its skewness, γτ. b For a given η, the
critical σc varies for the gamma, Weibull and lognormal distributions, which
are special and limiting cases of the generalised gamma distribution,
parameterised here by γτ. Solid lines in b result from simulating the temporal
network with smoothly varying γτ under the generalised gamma distribution.
Symbols are data taken from a, the results of direct simulation of the gamma,
Weibull and lognormal distributions. Dashed lines are extrapolation from solid
lines to lognormal data.
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the temporal network is above percolation, below percolation,
or at criticality (as in Fig. 4a). Figure 4 demonstrates that
performing just one additional measurement, such as the
skewness of the τ data, is sufficient to characterise the temporal
connectivity, and consequently, the diffusion dynamics.

These results are unchanged qualitatively when the step-
function memory kernel is replaced with an exponential kernel
with mean η. The difference lies in the slope of the transition in
the (στ, η) plane, with the giant component proving more robust
everywhere in the exponential case (see Supplementary Fig. 12).
For instance, when η= 10, the giant component collapses at στ=
80 under a step-function memory kernel, but not until 300 under
an exponential kernel. Although a substantial effect, it is small
relative to that of varying interevent time skewness. Further, since
the basic connectivity of the temporal network is determined by ψ
and η, the outcome of information diffusion (as measured by tf in
Supplementary Fig. 7) is qualitatively similar across diffusion
models. In particular, below percolation, all transmission events
take place in small temporally disconnected components, that
appear and disappear dynamically. Above percolation, the
diffusion process is accelerated thanks to the giant connected
component. The percolation transition is clear regardless of one’s
choice of diffusion model.

Discussion
Our study shows that generic dynamics of information diffusion
are closely tied to the level of burstiness in the underlying tem-
poral network. By considering three binary-state models of
transmission, we have demonstrated that they differ in their
response to burstiness only in their details. For instance, while
having a purely decelerative effect on SI models, increasing bur-
stiness at intermediate values can be accelerative for threshold
models. Nevertheless, the prevailing trend suggests that increas-
ing burstiness is strongly decelerative overall, with the onset of the
decelerative phase heavily dependent on the choice of the
interevent time distribution. The key assumptions here are that
the underlying network is fixed, and that owing to a memory
mechanism, a fraction of edges enter a non-interacting state
owing to long waiting times. These assumptions result in a
temporal network topology that has profound implications for
many dynamical processes. It is likely that structural features of
the temporal network, such as the percolation transition separ-
ating slow and fast diffusion, will also be critical for the more
general class of binary-state dynamics.

Indeed, one of the strengths of our master equation formalism is
that it is straightforward to extend to general binary-state models of
node dynamics. This includes not only threshold and epidemic
models, but language, voter, and Ising models, among others (see
Supplementary Note 1). Our framework can also accommodate a
broad class of temporal network models. In particular, any model
that can be formulated in terms of discrete, dynamic edge states is a
candidate for our approach. This includes growing, decaying and
adaptive networks, as well as models of rewiring. In line with our
use of renewal processes, a large family of point processes have
natural descriptions in terms of discrete edge state, such as cas-
cading Poisson, Cox and Hawkes processes. Extensions to the
Poisson process in general represent promising applications of our
methodology. The main limitation of our approach, however, is the
sheer size of the master equation solution, in that it can be just as
fast to simulate the dynamics as to solve its equations numerically.
In particular, note that we did not solve the system at large values of
memory η, as this entails a large average edge state, and a prohi-
bitively large configuration space.

Although a master equation is unlikely to be one’s first choice
of tool when analysing empirical temporal network data, the

by-products of a master equation study are immediately applic-
able. In particular, our study highlights the importance of
moments beyond mean and standard deviation when fitting
interevent time distributions. We have used the generalised
gamma distribution to interpolate between the lognormal, Wei-
bull and gamma distributions, and in so doing, demonstrated a
remarkable sensitivity of dynamic quantities such as the temporal
network percolation transmission. Estimating the connectivity of
empirical systems, for example, by accounting for interevent time
skewness, is one intriguing application of this technique. Further,
our treatment of non-Markovianity may be applied to other
systems. That is, while a single component in a large system may
be strongly non-Markovian, as was the case in our renewal pro-
cess, stationary statistics may emerge at an ensemble level that act
as a signature of the non-Markovianity in play microscopically.
Our biased random walk interpretation of the renewal process
model shows that strikingly similar Markovian counterparts may
be available for analysis. Incidentally, biased random walk models
of edge state suggest a broad class of Markovian models to which
our master equation applies exactly. Markovian systems may then
be used in this way as a probe of various complex systems where
memory is critical.

Methods
Master equation configuration space. We provide here an outline of the master
equation formalism. In this work, our approach has been to assign one of a finite
number of types to each edge, and to allow this quantity to evolve over time. To
formulate a master equation solution, one defines a state space of allowed node
configurations, which we term configuration space. The second step is to define the
allowed transitions between node configurations. The time evolution of a prob-
ability density over this state space amounts to a set of first-order differential
equations, or rate equations, that among other things, provides the total density of
infected nodes at a given time.

First, we define Ck,m, the set of all nodes in the network with local configuration
(k,m), such that 0 ≤mj ≤ kj, for all j. Whereas Ck,m is a set of nodes, we define Ck as
the set of all sets Ck,m with total degree k. In a similar way we define the
configuration space C as the set of all possible sets Ck,m, given a degree distribution
p(k). These sets can be written

Ck ¼ Ck;m j
X
j

kj ¼ k and 0≤mj ≤ kj

( )
ð4Þ

and

C ¼
[
k

Ck; ð5Þ

where the union is over all k in the support of p(k). Importantly, C leads to a partition of
the network at any given time. Written this way, C is potentially infinite. Imposing the
constraint that it be finite, we assume an upper cutoff in the degree distribution p(k),
and the set of edge states to be of a finite size n. Note that C includes any set for which
Ck,m is empty at a given time. The cardinality ∣C∣ of configuration space is thus
determined entirely by the support of p(k), along with n. Since (k, m) does not convey
ego state, just edge and neighbour configuration, we partition Ck,m into sets of
uninfected and infected nodes, such that Ck,m= Sk,m ∪ Ik,m. Similar definitions allow us
to introduce Sk and Ik, Sk and Ik, as well as S and I. Although in general ∣Sk,m∣ ≠ ∣Ik,m∣,
the structure of the uninfected and infected configuration spaces is identical, such that
∣C∣ = ∣S∣ = ∣I∣, ∣Ck∣ = ∣Sk∣ = ∣Ik∣ and ∣Ck∣ = ∣Sk∣ = ∣Ik∣.

Density of states. The evolution of a dynamical process over a network amounts
to a flow of nodes through the sets Sk,m and Ik,m over time. As the number of nodes
N in the network is conserved, it is their distribution over the sets Sk,m and Ik,m that
evolves in time. These distributions provide the state of the process at time t. As
our formalism is independent of network size, we deal with the densities of nodes
rather than the absolute sizes of these sets. To this end, we introduce

k Ck k �
X

Ck;m2Ck

jCk;mj ð6Þ

as shorthand for the number of nodes with underlying degree k. This is in contrast
to ∣Ck∣ and ∣Ck∣, which give the number of configurations with degrees k and k,
respectively. To convert from absolute node count to node density, we need to
normalise Sk,m and Ik,m by some non-zero quantity that is conserved over the
course of a dynamical process. As our temporal network models assume a static
underlying network, a node’s underlying degree k is preserved, and as a result, so is
∥Ck∥, defined in Eq. (6). The density of uninfected nodes in class (k, m) in this case
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is given by

sk;m ¼ jSk;mj
k Ck k

; ð7Þ

with ik,m defined analogously. The node conservation principle leads to the con-
dition

P
Ck
ðsk;m þ ik;mÞ ¼ 1, which is to say that the sum of all densities sk,m and

ik,m with underlying degree k, is one. We then have

ρk ¼ 1�
X
Ck

sk;m ð8Þ

and

ρ ¼
X
k

pðkÞρk; ð9Þ

with ρk giving the probability that a randomly selected node with underlying
degree k will be infected, and ρ the probability that any randomly selected node will
be infected.

As discussed in the main text, s is the ∣C∣-dimensional vector storing the
densities sk,m. In practice, we use lexicographic ordering of the tuples in C to define
a one-to-one mapping (k, m) ↦ i, for some i in the range 1 ≤ i ≤ ∣C∣, to define the
ith element of s. In Supplementary Note 1, we argue that for fixed n and limiting k
the size of configuration space behaves like Θ(k2n). We demonstrate this
analytically, and validate it numerically by constructing C over a wide range of
parameters.

Master equation transition rates. We indicate in Table 2 the relationship
between (k,m) and its neighbouring classes in configuration space. Classes that can
be reached from (k, m) via ego, neighbour, and edge transitions are shown in the
left column, with the corresponding transition type given in the right column. The
rates at which nodes flow between classes are given in the middle column. The
following notation is used to describe relative changes to the class (k, m). First, ej is
the jth unit vector, and determines the change to a degree vector as a result of
a neighbour transition. Second, we define Δ±

j ¼ �ej þ ej ± 1, which determines the
change to a degree vector as a result of an edge transition. When an edge incre-
ments or decrements state, adjacent nodes lose a j-type edge, and gain a j ± 1-type
edge, all while preserving the underlying degree k. Transitions appear as direc-
ted edges in the lattice diagram illustrations of configuration space (see Supple-
mentary Note 1).

Ego transitions occur at rates Fk,m, and involve the flow of nodes from set Sk,m
to Ik,m. As such, no change to the ego’s local neighbourhood (k,m) takes place, and
the transition represents a type of self-edge, or loop, in the lattice representation of
configuration space. The rates Fk,m are encoded in transmission functions such as
those shown in Table 1. Flux measurements of these transitions, such as those in
Supplementary Note 7, are expected to be exact. This is because node infection is
directly determined by Fk,m. As nodes are infected at constant rates, we draw the
waiting time to infection from an exponential distribution with mean 1/Fk,m. As
such, flux measurements of ego transitions must agree with Fk,m, by construction.
This makes them a useful benchmark for verifying one’s implementation. The rates
Fk,m are contained in the matrix Wego.

Neighbour transitions are based on the probability βjdt that an uninfected
neighbour of an uninfected node becomes infected over an interval dt. To calculate
βj we use a straightforward ensemble average over S. To obtain the expected
fraction of neighbours undergoing transitions, we observe the number of nodes
undergoing ego transitions at time t, and count the number of neighbour
transitions produced as a result. That is, when an uninfected node in class (k, m)
becomes infected, which occurs with probability Fk,mdt, it has kj−mj uninfected
neighbours that observe this transition, or kj−mj nodes undergoing neighbour
transitions. The number of such edges across the entire network is given by
∑Spk(kj − mj)Fk,msk,m, where the sum is over all uninfected classes. We compare
this with the total number of uninfected-uninfected edges, ∑Spk(kj − mj)sk,m, giving
the neighbour transition rate

βjdt ¼
P

Spkðkj �mjÞFk;msk;mP
Spkðkj �mjÞsk;m

dt; ð10Þ

which has previously been used in master equation solutions of binary-state
dynamics on static networks. The rates βj are contained in the matrix Wneigh,
weighted by the values kj and mj of the relevant classes (k, m), as detailed in
Supplementary Note 1.

Edge transitions occur at rates μj and νj, and give the probability of edges in
state j transitioning to state j+ 1 or j− 1, respectively, over an interval dt. Their
value depends upon the temporal network model in question. In this work, edge
transition rates are determined by renewal processes following interevent time
distributions ψ(τ), with complementary cumulative distributions Ψ. If the state of
an edge is determined by the number of events j having occurred in the preceding
time window of duration η owing to a renewal process, edge transition rates are

μjdt ¼
Ψ � ψ�j

Ψ � ψ�ðj�1Þ � Ψ dt ð11Þ

and

νjdt ¼
Ψ � ψ�ðj�1Þ

Ψ � ψ�ðj�1Þ � Ψ dt; ð12Þ

with

Ej ¼ Ψ � ψ�ðj�1Þ � Ψ ð13Þ

giving the probability that a randomly selected edge is in state j. It is this quantity
that provides the normalising constant for the rates μj and νj. Here, ψ*j is the jth
convolution power of ψ. A complete derivation of these quantities is given in
Supplementary Note 1. The Gaver–Stehfest algorithm is used to compute the
inverse Laplace transforms, and an efficient numerical procedure reducing μj and νj
to a matrix-vector product is developed in Supplementary Note 5. These
expressions hold for j > 0, with Eqs. (2) and (3) in the main text giving the special
case of j= 0 for Ej and μj, respectively. Regardless of the form of ψ, the mean edge
state η/〈τ〉 is always conserved on a network-wide level. Applying Eqs. (11) and
(12) at the level of class transitions amounts to a mean field approximation, since
flux measurements of Monte Carlo simulation show edge transition rates to deviate
slightly from μj and νj at the class level (k, m), even if exact for the network as a
whole, as shown in Supplementary Note 7.

Monte Carlo simulation. We simulate networks G ¼ ðV; EÞ composed of a node
set V of size N, and an underlying edge set E. The edge set is produced by a desired
degree distribution, wired according to the configuration model. Overlying tem-
poral network activity is initialised to the steady state, such that at time t= 0, the
time to the first event follows exactly the residual distribution Ψ, in the limit of
large networks. Specifically, we set the time to t= −η, and draw jEj residual times
from Ψ, or one for each edge. Subsequent interevent times are drawn from ψ.
Advancing in time from −η ensures that a stationary distribution of edge states Ej
is achieved exactly at t= 0, when we begin to allow node dynamics to evolve.
Owing to the large values of interevent time standard deviation studied in this
work, out-of-the-box sampling routines were either inefficient or broke down for
large στ. As such, we develop a simple, yet efficient routine in Supplementary
Note 4 based on approximate inverse transform sampling of ψ and Ψ, using a
bisection method. This is performed on a numerical grid of Ψ values, with relevant
details of the probability distributions outlined in detail in Supplementary Note 9.
A third-order spline interpolation on a logarithmic scale provides intermediate
values of the grid, such that the resultant underlying distribution is close to exact.

Node dynamics are implemented via a Gillespie algorithm, which uses the fact
that the waiting time to infection for an uninfected node in class (k, m) follows an
exponential distribution with mean 1/Fk,m. Initially all nodes are in the uninfected
state, and the diffusion process is triggered by low-level background noise at rate p.
To simulate the temporal network itself, a time-ordered sequence of edge events is
implemented in parallel with the node update sequence. This amounts to two
separate time-ordered sequences of events executed simultaneously. Algorithms are
described in detail in Supplementary Note 4 with pseudocode.

We use the normalised density of noise-induced infections, ρf, and normalised
diffusion time, tf, as measures of the diffusion process. We define these quantities as
follows. The probability that a randomly selected node has been infected as a result

Table 2 Class transition rates.

Configuration Transition rate Transition type

ðk;mÞ Fk,m Ego
ðk;mþ ejÞ βj(kj − mj) Neighbour
ðk;m� ejÞ� βj(kj − mj + 1) Neighbour
ðkþ Δþ

j ;mÞ μj(kj − mj) Positive edge
ðkþ Δþ

j ;mþ Δþ
j Þ μjmj Positive edge

ðk� Δ�
j ;mÞ� μj(kj − mj + 1) Positive edge

ðk� Δ�
j ;m� Δ�

j Þ� μj(mj + 1) Positive edge
ðkþ Δ�

j ;mÞ νj(kj − mj) Negative edge
ðkþ Δ�

j ;mþ Δ�
j Þ νjmj Negative edge

ðk� Δþ
j ;mÞ� νj(kj − mj + 1) Negative edge

ðk� Δþ
j ;m� Δþ

j Þ� νj(mj + 1) Negative edge

Classes neighbouring (k,m) in configuration space are shown in the leftmost column. Those
marked with and without an asterisk flow into and out of (k,m), respectively. The rate at which
they do so is given in the centre column. Transition types are shown in the rightmost column,
and include ego, neighbour and edge transitions. Classes related to (k,m) by neighbour
transitions differ only by ej, the jth unit vector. Classes related by edge transitions differ by
Δ ±
j ¼ �ej þ ej ± 1 , that is, by the loss of an edge of type j, and the gain of an edge of type j ± 1.
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of external noise is

~ρðtÞ ¼ p
Z t

0
ð1� ρðτÞÞdτ; ð14Þ

meaning 0< ~ρ ≤ ρ. We define ρf as the fraction of infections that are due to noise,
ρf ¼ ~ρ=ρ, such that 0 < ρf ≤ 1. This value cannot equal zero since there must be at
least one noise induced infection, namely, the first infection in the diffusion
process. A value approaching ρf= 1 means almost all infection is due to external
noise. This occurs in the annealed limit, when almost all edges are in state j= 0,
and network interactions play a vanishingly small role in the diffusion process. As a
consequence, the time evolution of the diffusion process is governed by

_ρ ¼ pð1� ρÞ; ð15Þ
whose solution ρ= 1− e−pt can be inverted to give the time required to the achieve
a given density ρ of infections relying solely on noise, that is,

t ¼ �ln ð1� ρÞ
p

: ð16Þ

If tc is the time required in the general case to reach a cutoff density of infections ρc,
normalising tc by Eq. (16) evaluated at ρc defines tf, such that 0 < tf ≤ 1. A value of
tf= 1 means the system is driven entirely by noise, and a value approaching 0 a
rapid diffusion process. An important feature of this work is that tf and ρf seem to
be interchangeable, as per the inset of Fig. 2a, and any result shown in terms of ρf
produces an identical picture in tf.

Data description. In this work, we use two empirical temporal networks used
by ref. 57 and references therein, which we describe below. The first is a temporal
network of email exchange57,58, extracted from the log files of a university email
server. The sender, recipient and the timestamp are used to form the network. The
data set consists of N= 3,188 nodes, and jEj ¼ 31,857 underlying edges, such that
the average degree is 19.9. A total of 308,730 events were recorded, with a resolution
of one second over a period of 81.3 days. An average of 9.69 events occur per edge.
We determine the interevent time distribution by taking the subset of edges
observing more than one event, of which there are 21,199. The mean interevent time
is then calculated to be 〈τ〉= 3.13 days, with standard deviation στ= 6.62 days. This
yields a coefficient of variation στ/〈τ〉= 2.12.

The second data set is a temporal network of online forum interactions57,59.
Similar to the email data set, the sender, recipient and the timestamp are extracted
from the messages. The data set consists of N= 7,083 nodes, and jEj ¼ 138,144
underlying edges, such that the average degree is 39.0. A total of 1,428,493 events
were recorded, with a resolution of one second over a period of 3,133 days. An
average of 10.3 events occur per edge. We determine the interevent time
distribution by taking the subset of edges observing more than one event, of which
there are 70,902. The mean interevent time is then calculated to be 〈τ〉= 16.6 days,
with standard deviation στ= 76.5 days. This yields a coefficient of variation
στ/〈τ〉= 4.61.

Data availability
The data that support the findings of this study are openly available through direct
request to the authors of original publications.

Code availability
The code that supports the findings of this study is available upon request from the
corresponding authors.
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