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Abstract—Self-driving vehicles are expected to bring many
benefits among which enhancing traffic efficiency and relia-
bility, and reducing fuel consumption which would have a
great economical and environmental impact. The success of this
technology heavily relies on the full situational awareness of its
surrounding entities. This is achievable only when everything
is networked, including vehicles, users and infrastructure, and
exchange the sensed data among the nearby objects to increase
their awareness. Nevertheless, human intervention is still needed
in the loop anyway to deal with unseen situations or compensate
for inaccurate or improper vehicle’s decisions. For such cases,
video feed, in addition to other data such as LIDAR, is considered
essential to provide humans with the real picture of what is hap-
pening to eventually take the right decision. However, if the video
is not delivered in a timely fashion, it becomes useless or likely
produce catastrophic outcomes. Additionally, any disruption in
the streamed video, for instance during handover operation while
traversing inter-countries cross borders, is very annoying to the
user and possibly cause damages as well. In this article, we
start by describing two important use cases, namely Remote
Driving and Platooning, where the timely delivery of video is of
extreme importance [1]. Thereafter, we detail our implemented
solution to accommodate the aforementioned use cases for self-
driving vehicles. Through extensive experiments in local and LTE
networks, we show that our solution ensures a very low end-to-
end latency. Also, we show that our solution keeps the video
outage as low as possible during handover operation.

Index Terms—Autonomous Cars, Low Latency, Live Video
Streaming, H.264, Remote Driving, Platooning, Cross Border
Communication, and 5G.

I. INTRODUCTION

The relatively fast connectivity offered by 4G networks
in the last decade has essentially contributed to the explosion
of data generated by both professionals and amateurs. Addi-
tionally, it opened the eyes for new services and applications
(e.g. Augmented Reality, Self-driving Vehicles, and Remote
Surgery) touching various fields, such as education, trans-
portation and medical. These types of applications impose
stringent requirements (less than 1ms for some use cases)
and the violation of these requirements might lead to catas-
trophic results for verticals’ businesses, and more importantly
to human lives. The shift towards 5G is promising larger
bandwidth, that could reach 20 Gbps which is 100 times
faster than today’s 4G LTE [2], and aims to incorporate
Ultra-Reliable Low Latency Communications (URLLC), that
theoretically drops to 1ms [3] to bolster the needs of these
applications. To do so, the 5G architecture is adopting the

novel concept of network slicing and dedicates a network slice
to a specific use case or service (e.g. streaming).

The technology of autonomous cars is a highly active field
that is receiving keen research attention from both industry
and academia’s researchers. Besides, governments and busi-
nesses are immensely investing billions of dollars in order to
develop this technology and make it a reality [4]. Actually,
different automobile industries and car manufacturers are
scrambling to announce their first fully self-driving vehicles.
The impetus behind is to reduce the accidents’ risks caused by
human failures, among which the erroneous estimation and the
tiredness, offering more comfort while driving and providing
a trustworthy and auguring ecosystem. Great economical
revenues and eco-friendly outcomes are also expected.

Despite the fascinating features of autonomous cars and its
prosperous future, the realization on the wild is confronting
numerous challenges. For instance, every autonomous car
should get highly situational awareness of its surroundings,
such as the weather, the moving objects and traffic signs and
rules. This imposes the constant exchange of data flows in bi-
directional ways (i.e. up- and down-link), which exerts high
pressure on the underlying infrastructure in terms of consumed
bandwidth and requires high processing capabilities to timely
analyze and interpret the data.

Live video stream is one of the pivotal technologies that
ongoing research is heavily relying on to accommodate many
self-driving scenarios. Video data is known as bandwidth-
consuming traffic due to the high size of the video frames
even after compression [5]. Basically, a camera outputs a
raw video stream of high resolution and size. This makes
its conveyance over the network inefficient with nowadays
networks. As a remediation, a video compression (e.g. using
H.264 encoder) should be employed to reduce the size of the
original stream size. Depending on many parameters, such
as the used encoder, the target resolution, and bit-rate, this
process introduces significant overhead to the video latency.
Furthermore, the encoding is a time-consuming process and
heavily uses CPU resources. Additionally, the protocol to be
used (e.g. RTMP, RTSP, and HTTP) to convey the video
stream over the network and the container format required
by the player require further Muxing step. This would also
add an overhead to the streaming latency. Adding to that, the
time needed for the video data to flow to its destination and
the inverse processes (i.e. Demuxing and Decoding processes)
are done at the player side to visualize the stream in the
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receiver’s screen. All these together, create the so-called
glass-to-glass1 latency that depends on many factors, such as
the hardware specifications, the available bandwidth, and the
technologies employed. This latency should be maintained as
low as possible throughout the streaming session in order to
meet the requirements of self-driving cars’ use cases.

In this paper, we propose a solution for low latency live
video streaming and study its applicability to both Remote
Driving and Truck Platooning use cases for autonomous
vehicles. Specifically, we propose the solution to minimize the
video stream outage during the handover process between two
different network operators (i.e., cross border) to ultimately
provide smooth video playback.

The remainder of this paper follows the following struc-
ture. Previous work are summarized in the next section.
Section III discusses the use cases to which this work applies.
In Section IV, we describe our system architecture and detail
its different components. Experimental results are provided
in Section V. Finally, Section VI draws some concluding
remarks.

II. RELATED WORK

The advances in communication technologies have evolved
enormously at a very fast pace over the last decade. These
advances revolutionized our way of life in many domains,
such as healthcare, automotive industry, and transportation.
The emerging Intelligent Transportation Systems (ITS), and
particularly the autonomous vehicles, is one of the many
applications that have taken advantage of these advances to
ultimately uphold safety, provide comfort for humans, while
efficiently utilizing the roads and reducing fuel consump-
tion. Vehicles’ platooning concept is a promising solution to
achieve the aforementioned goals and more. It has been ex-
tensively studied in many road traffic-related projects among
which the California Partners for Advanced Transportation
Technology (PATH) [6] in USA, Safe road trains for the envi-
ronment (SARTRE) [7] and CHAUFFEUR [8] in Europe, and
the KONVOI project [9] funded by the German government.
In this section, we briefly review some of the previous studies
devoted to the platooning concept.

In [10], the authors study the leader election problem in
a platoon. Since the leading vehicle is responsible for most
of the self-driving vehicles’ functionalities and maneuvers
(e.g., taking a turn, braking, speeding up and slowing down)
in the whole platoon, it is very crucial to select the most
qualified vehicle that will take this responsibility in such
highly dynamic environment. To this end, the authors propose
a consensus-based mechanism and adopt an incentive strategy
for the leader election under different circumstances. In the
same context, Jaehee et al. propose in [11] the use of the Raft
algorithm for the election of a platoon leader. In the proposed
strategy, all vehicles in the platoon can have one of the three
states: Followers, Leaders, and Candidates. Initially, a vehicle
gets Follower state once it joins the platoon and switches to
Candidate when its random election timeout elapses, which
triggers the election period. The better the performance of

1It means from the camera’s glass to the end-user screen’s glass.

a vehicle, the faster the election timeout decreases. Then,
Candidate vehicles send a request to the rest of the vehicles
asking for a vote, after voting for themselves. The other
vehicles vote for the one who sends the request earlier, and
eventually the vehicle with the majority of votes wins.

Hao et al. tackle the problem of platoon head selection from
the security standpoint in order to prevent choosing badly-
behaving head vehicles [12]. To this aim, they have proposed
the REPLACE solution consisting of a recommendation sys-
tem for platoon head vehicles based on the vehicles’ repu-
tation collected from the user’s feedback. In [13], a platoon
management framework, based on Vehicular Ad-hoc Network
(VANET) and CACC vehicles, has been proposed by Mani et
al. In this framework, three main platoon operations, namely
merge, split and lane change, are considered to accomplish
the three scenarios of entry, leader leave, and follower leave,
respectively. The communication between the vehicles within
the platoon is achieved through V2V using Dedicated Short
Range Communication (DSRC) having up to 1000 meters of
transmission range. Simulation results, based on SUMO and
ONMNET++, show the effectiveness of the proposed protocol
in terms of traffic flow stability and throughput.

In [14], Uhlemann presents and discusses many recent
research efforts conducted by major industries such as Audi,
Volvo and Otto in the assisted driving field. The paper also
describes the relevant projects and events, such as the Grand
Cooperative Driving Challenge (GCDC), aiming to promote
the concept of cooperative driving for vehicle automation.
Uhlemann showcases the collaboration between large techno-
logical and communication companies (e.g. Cisco and Nokia)
and car manufacturers (e.g. Hyundai) in different projects
by leveraging recent technological advances such as IoT and
UAVs to enhance the developments towards fully autonomous
vehicles.

Mouelhi et al. propose in [15] a novel distributed au-
tonomous control system for connected vehicle platoons
using Distributed Object-Oriented Component-Based Design
(DOOCBD). The proposed system permits controlling the
speed of vehicles and avoiding collisions among vehicles in
a platoon. Specifically, they leverage Vehicle-To-Everything
(V2X) communication technologies to allow a new vehicle
to join a vehicle platoon and to propagate a braking decision,
taken by the leader vehicle in case of an obstacle for instance,
to the rest of the vehicles in the platoon. A prototype of
the proposed solution has been implemented and tested on a
platoon of wheeled robots to demonstrate the feasibility and
effectiveness of the proposed solution.

III. LOW LATENCY USE CASES FOR AUTONOMOUS CARS

In this section, we describe two use cases in which the
video feed is essential. Particularly, we describe the Remote
Driving and Platooning use cases where the former enables
a Remote Human Operator (RHO) to remotely take over the
control of a vehicle, and the latter allows the drivers of the
follower trucks in a platoon to get a better view of the roads.
In both use cases, the latency of the live video stream should
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be maintained as low as possible (typically below 500ms) in
order to provide a safe self-driving experience.

A. Remote Driving Use Case
As its name infers, fully autonomous vehicles are supposed

to operate safely and independently from human supervision.
To do so, they should be able to first acquire all and every
movement from their surrounding, second, and based on the
received data, they should be able to take the right decision
at the right time. While the first task is currently feasible,
notably with the various highly accurate sensing devices, the
second task remains elusive due to unforeseen situations. For
such cases, the remote intervention of a human being becomes
indispensable to either fully overtake the driving from the
autonomous vehicle or to validate the vehicles’ decision in
case of doubts.

Fig. 1: Remote driving use case.

Remote Driving is an indispensable use case for self-driving
cars. It allows the RHO at a Remote Control Center (RCC) to
take over the control of a vehicle in some particular cases
such as facing an unexpected obstacle during an already
planned journey. To do so, a Single Onboard Computer (SOC)
is deployed to the self-driving car and is connected to its
Onboard Unit (OBU). Basically, OBU provides both the
vehicle and the SOC with connectivity over 5G networks.
A HD webcam is also connected to the SOC to stream the
scene live. Upon detecting an unexpected event, the vehicle
stops immediately and sends a remote driving request to the
RCC. At the same time, it triggers a request to the SOC to
start streaming the scene live along with the last 15 seconds
video stream that precedes the request, so the RHO will get
better understanding of the triggering event. It also sends other
sensing data, such as the Lidar and the Real-Time Kinematic
(RTK) positioning. Based on the video feeds and the different
sensing data, the RHO sends commands to the vehicle (e.g.
using a Joystick). Fig. 1 illustrates the overall architecture of
the Remote Driving use case.

B. See-What-I-See in Platooning Use Case
Platooning is one of the self-driving vehicles’ use cases that

is gaining ample traction in both industry and academia. Simi-
larly to trains where many wagons are physically connected to

each other, a platoon of self-driving vehicles consists of many
vehicles virtually attached to each other and traveling at close
proximity. The first vehicle in the chain, called leader vehicle,
takes over the main driving functionalities and decisions, such
as speeding up, braking and steering. The role of the rest of
the vehicles in the same platoon, called follower vehicles, is to
keep listening to the leader’s decisions and react accordingly.
The wide interest from the community about the platooning
use case is justified by the numerous potential benefits it
promises in terms of safety, environmental, and economical
levels. Fig. 2 illustrates the platooning scenario during the
handover operation.

The aim of the See-What-I-See (SWIS) use case is to
provide the drivers at follower trucks with the road view of
the leader truck. This would bolster a comfortable driving
experience and prevent late reactions (e.g. braking) caused
by road invisibility due to the closeness of the vehicles to
each other. To this end, the leader vehicle keeps streaming
live the road to a media server in the cloud. The follower
vehicles in the platoon subscribe to the live video stream
sent by the leader vehicle and start receiving the stream
from the server. Crucially, the system should ensure a smooth
playback especially during handover operation, for instance
when crossing the borders between two countries, and should
minimize the stream disruption period caused by any network
outage.

Fig. 2: See-What-I-See use case.

IV. SYSTEM ARCHITECTURE

This section describes the proposed system architecture to
enable low latency live video streaming for remote driving
and platooning use cases in autonomous vehicles. Besides,
the proposed architecture allows a smooth playback during
Cross Borders Corridors (CBC) where vehicles change the
Public Land Mobile Network (PLMN) when traversing from
a country to another.

The proposed architecture is depicted in Fig. 3. As illus-
trated in the figure, there are three main streaming scenarios,
namely Cloud-based, Fog-based and V2V-based streaming
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Fig. 3: Global system architecture.

scenarios. For the two first scenarios, three entities (i.e.,
sender, server and receiver) are involved, while in the last
one the sender plays the role of the server as well. In the
Cloud-based scenario, the video stream is sent from the stream
source to a central data center in the cloud, and the receiver(s)
gets the stream through the server. This is more suitable for
the remote driving use case where the RHO is located far
away and there is no free RHO closer to the live video
stream’s sender. Fog-based streaming consists of leveraging
the operator’s Multi-access Edge Computing (MEC) resources
mainly to reduce the streaming latency. This is achieved by
deploying the streaming server closer to both the sender and
receiver, hence minimizing the number of hops that the video
packets could go through. This scenario is more adequate
for the platooning use case since the platoon’s members are
geographically located in the same area. It could also be
suitable for the remote driving use case when the RHO is in
the proximity of the video stream’s sender. To further reduce
the latency, V2V-based streaming could be the best solution
since it enables a direct connection between the sender and
the receivers. In this case, the streaming server should run
at the sender’s side which will perform both encoding and
delivering the stream. However, this solution applies only to
the platooning use case.

As stated earlier, in order to enable platooning and remote
driving use cases, three entities are required, namely the
sender, receiver and the server. In the following, we describe
each entity of the system as well as its corresponding pipeline
elements.

A. Stream Sender

The stream source is responsible for providing the live
video stream captured from the vehicle’s camera and deliv-

ering it to the entity that has initiated the live video stream
request. Specifically, in the platooning use case, one of the
follower vehicles might be the initiator of the live video
stream, while in the remote driving use case, the vehicle itself
triggers the request when encountering an obstacle or unseen
situation. Upon receiving the request, the SOC launches the
live video streaming process and starts receiving the stream
from the camera either in a raw or compressed format such as
jpeg. To efficiently use the network’s bandwidth and reduce
the latency, it is necessary to encode the raw stream with
highly efficient encoders such as Advanced Video Coding
(AVC), also referred to as H.264, or High Efficiency Video
Coding (HEVC), also known as H.265. In order to transmit
the video stream over the network, a payload step should be
added to encapsulate the encoded frames into RTP packets.
These packets are sent over User Datagram Protocol (UDP) to
a remote UDP sink. Generally, the encoding phase is known
as a very time-consuming process. To speed up this process,
GPU hardware encoding is leveraged to ultimately reduce
the end-to-end (E2E) latency. To cope with failure cases,
such as momentary network disruption, a recovery module
is implemented. This recovery module keeps monitoring the
whole pipeline and proceeds with recovery accordingly. A
logging module allows measuring the sender’s performance
in terms of latency as well as resource consumption such as
CPU, GPU, and RAM. The measurement of the latency is
done at each media element in the pipeline.

B. Streaming Server

The role of the streaming server is to deliver the stream
to the receivers such as the follower vehicles or RHO. To do
so, the server should run a media pipeline that receives the
stream coming from the sender on a specific port and delivers
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it to the receivers over Real Time Streaming Protocol (RTSP).
Similarly, logging and recovery modules are implemented to
take measurements and recover from failures, respectively.

C. Stream Receiver

The receiver of the stream could be either the follower
vehicle or the RHO. It gets notified, through a REST API
call, about the availability of the live video stream to launch
the player’s pipeline and initiate a streaming session with the
server. Once the session is successfully established, it starts re-
ceiving the RTP packets and proceeds with depaying, parsing,
decoding the compressed frames and finally displaying the
raw stream on the user’s screen. The recovery module is also
present at the receiver side to ensure the stream’s continuity
and smoothness after handover operation.

V. EXPERIMENTATION AND PERFORMANCE RESULTS

In this section, we describe the setup of our experimen-
tation and discuss the achieved performance in two different
setups. The first one consists of a Fog-based setup whereby
we inter-connect three different machines via a router in a
local wired network. In the second setup, both the sender and
the receiver are connected through a 4G LTE network, and
the server is located in an OpenStack cloud platform. The
remainder of this section is organized as follows: we first
discuss the technology choice, including the streaming proto-
col and the encoding/decoding tool. After that, we describe
our evaluation setup, and then present the performance results
achieved in each setup.

Fig. 4: Experiment setup.

A. Technology Choice

To ensure a smooth playback of live video stream during
handover (i.e., when traversing a cross borders corridor be-

tween two different countries), we first used Dynamic Stream-
ing over HTTP (DASH) streaming technology [16]. DASH
technology presents several advantages, among which it is
a stateless protocol which permits overcoming the streaming
outage during handover operations. We recall that after a
successful handover operation, the client gets a new IP address
from the target Public Land Mobile Network (PLMN). In this
context, streaming over HTTP is very suitable to avoid getting
disruptions since each video chunk is delivered in response
to a separate HTTP GET request. Typically, the length of a
chunk in DASH implementation is between 2 to 10 seconds.
If we even reduce the chunk length to one second, this would
introduce an extra delay that prevents keeping the latency as
low as possible. Additionally, a 1-second chunk length will
result in at least 1 second of latency which is not acceptable
in both remote driving and platooning use cases.

Alternatively, we opted for Real Time Streaming Protocol
(RTSP) [17] to meet the required latency for such use cases.
Indeed, RTSP provides good results. However, it is a stateful
protocol that results in session outage when the receiver joins
the target PLMN due to IP address change. As a remediation,
we deploy at each host a program written in C language
that uses the GStreamer framework and keeps monitoring
the host connectivity and accordingly recovers the streaming
session after handover operation once the connection to the
target PLMN is successfully established. To further reduce the
latency, we use the hardware acceleration feature of NVIDIA
GPU in the Jetson TX2 SOC for the encoding process.
Basically, each program creates a pipeline of media elements
where each of which is responsible for accomplishing a spe-
cific task such as acquiring, encoding, decoding, payloading,
depaying and displaying the stream. The use of a SOC that has
a GPU capability (e.g. Jetson TX2) is crucial to considerably
lower the latency by leveraging the hardware capabilities,
notably during the encoding phase, which is considered as the
most resource-consuming process in the streaming pipeline. It
is worth mentioning that the achieved results are obtained by
employing hardware encoding at the sender only, and lower
latency would certainly be achieved if the stream receiver has
GPU capabilities to employ hardware decoding.

As to the encoding/decoding process, we have used
GStreamer [18]. It is a powerful open-source, cross-platform
multimedia framework with a programmable pipeline plugin
architecture. Additionally, unlike the widely used FFmpeg,
it supports many plugins for hardware encoding/decoding in
NVIDIA GPUs deployed in SOCs.

B. Platform Setup

The evaluation of the live video streaming service in
case of the remote driving and platooning use cases during
the handover process is done using a testbed composed of
three hosts. The first host consists of a Jetson TX2 SOC
having a GPU architecture with 256 NVIDIA CUDA cores, a
Quad-Core ARM R© Cortex R©-A57 MPCore, and 8GB 128-bit
LPDDR4 Memory. The Jetson TX2 runs Ubuntu 18.04. The
second host is a virtual machine in an OpenStack cloud server
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(a) The processing time at each entity in fog-based streaming.
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(b) The processing time at each entity in cloud-based streaming.
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(c) The E2E latency in fog-based streaming.
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(d) The E2E latency in cloud-based streaming.

Fig. 5: The processing and E2E latency in both fog- and cloud-based streaming.

with 4 cores Intel Processor (Haswell, no TSX, IBRS) and
4GB of RAM, and is running Ubuntu Server 18.04. The last
host represents the receiver machine where the player runs and
displays the received stream. It consists of a desktop machine
running Ubuntu Desktop 18.04. Its hardware configuration
consists of an Intel(R) Xeon(R) CPU E31230 @ 3.20GHz,
8GB RAM. The experiments were conducted in both fog- and
cloud-based setups. In the fog-based network setup, the three
hosts are interconnected with each other through a physical
router by an Ethernet cable, whilst in the cloud-based setup,
both the sender and receiver are connected through 4G LTE
dongles. Fig. 4 illustrates the experiment setup in both fog-
and cloud-based live video streaming scenarios.

C. Performance Results

In this section, we present the achieved results in terms of
latency during the encoding and decoding processes in both
fog- and cloud-based setups. We start by showing measure-
ments regarding the computation time needed at each end.
This is achieved by adding probes at each media element in the
pipelines that are deployed at each host. Then, we present the
measured E2E latency that includes the network propagation
delay from the sender to the server as well as from the server
to the receiver. We also present the results about the displayed

and dropped frames over 11 different executions as well as
the 5%-95% confidence interval of the latency. Finally, we
show the consumed time to recover a stream session during
a handover operation.

1) Fog-based streaming latency: In this scenario, we eval-
uate the live video streaming latency when the streaming
server is in proximity to both the sender and receiver(s). The
evaluation covers both the processing time and the measured
E2E latency.

Fig. 5(a) shows the per-frame processing time needed at
each streaming entity. The results show that the processing
time needed for capturing, decoding, encoding with H264
and payloading with RTP format at the sender side using
the Jetson TX2 is the part that takes more time compared
to the server and receiver. Specifically, the encoding process
is the phase that takes most of the time. At the server-side,
we notice that the processing time for one frame does not
take more than 2 ms since there is no encoding or decoding
there. The last element in the chain is the receiver. It performs
the depaying, decoding and displaying respectively. This takes
less time than the sender’s processing time. It should be
noted here that the encoding at the sender is done using
hardware acceleration, whilst the decoding at the receiver side
is done using a software decoder. This figure also shows the
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Fig. 6: Streaming recovery time during handover operation.

accumulative processing time of the three entities which falls
within the interval [30, 50] ms most of the time. There are
some exceptional outlier values generated from the encoding
process. The average accumulative processing time is around
40ms most of the time.

The measured E2E latency, including the network, is de-
picted in Fig. 5(c). The results show that the network adds
almost 50ms on average to the accumulative processing time.
It should be noted that we used Network Protocol Time (NTP)
to synchronize the three entities where the server is set to be
the reference time for both the sender and receiver.

Fig. 6(a) depicts the 5%-95% confidence interval of the
processing time and E2E latency in fog-based streaming
experiment. These results are calculated after conducting 11
different executions. From this figure, we can vividly see that
the overall mean latency is nearly the same at all executions,
and the E2E latency is bounded and not oscillating which
offers a stationary performance.

As we are using UDP as the transport protocol, some frames
are dropped when they arrive late. Fig. 6(b) shows the number
of displayed and dropped frames at each execution. From this
figure, we observe that the dropping rate in most executions
is very low, and is relatively high at few executions. This is
mainly due to the network conditions during the experiment.

2) Cloud-based streaming latency: We have also con-
ducted the same experiment but using 4G LTE dongles at both
sender and receiver, as shown in Fig. 4. The measured results
are plotted in Figs. 5(b) and 5(d). From Fig. 5(b), we observe
almost no change in the processing time at the server side.
However, the latency has increased for both the sender and
receiver and it is noticeably unstable compared to the fog-
based streaming experiment. We also notice from Fig. 5(d)
that obviously the E2E latency increased by around 25ms
in 4G LTE network compared to the fog-based streaming.
Similarly, the E2E latency in cloud-based streaming is also
bounded even though it is less stable than the fog-based
experiment.

3) Streaming session recovery after handover operation:
Resuming the stream automatically after a network outage
due to handover operation is an important feature in our
implemented solution. Additionally, the gap between the time
the video freezes and it resumes playing back should be
minimized as much as possible to offer smooth and seamless
playback of the video stream, even after handover when the
OBU gets another IP address which results in dropping the
session between the receiver and the server. To this end, we
have deployed a module that keeps monitoring the pipeline
status and re-establishes a new session with the server once
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a handover operation is accomplished and a new IP address
is obtained. In Fig. 6(c), we present the measured time
to recover the streaming session after handover operation
in 30 handover operations. The reported values include the
time since losing the connection to the instant when a new
session is re-established with the server. Fig. 6(d) summarizes
the obtained results by presenting the minimum, mean and
maximum values. The obtained results show that the average
recovery time is lower than 300ms, and occasionally surpasses
600ms, which is usually unnoticeable by human eyes.

VI. CONCLUSION

Autonomous vehicles are essential and promising technol-
ogy for future smart cities. It brings many benefits in various
domains among which environmental, economical and more
importantly human safety by reducing accidents due to human
errors on the roadways. Despite the ability of self-driving
vehicles to handle many driving maneuvers such as automatic
speed control, braking and overtaking, autonomous systems
are prone to failures due to security attacks, unseen situations
or improper vehicle decisions. Hence, human intervention
should always be considered as an alternative solution. In this
case, humans need data feed from the vehicle’s sensors in
order to be able to react when vehicles fail to take the right
decision. To this end, live video streams are deemed to be the
most suitable and interactive data feeds.

In this article, we presented two important use cases
that require live video streams for human operators, namely
remote-driving and platooning. In the first, the human operator
is located in a remote control center and receives a take
over driving request from the self-driving vehicle in case of
obstacles or confused situation. Upon reception, the live video
stream, as well as the last recorded 15 seconds video streams,
are automatically streamed to the remote human operator.
Contrary, in the platooning use case, the human is located
in the follower vehicle of a platoon of vehicles. In this use
case, the live video stream is provided mainly for comfort
purposes, but also for taking quick action by the human driver
when needed. In this context, we implemented and evaluated
a live video streaming solution that ensures a low E2E latency.
Additionally, the implemented solution ensures low streaming
experience outage during handover operation.

In future work, we aim to study the streaming latency
for various video qualities and resolutions including 4K with
H.265 compression algorithm and its impact on the system
performance such as the latency, bandwidth, the GPU, CPU
and RAM usage. We will also investigate how to eliminate the
delay introduced by the player at the receiver side in order to
further lower the E2E latency.
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