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Abstract—Zero-touch network and Service Management
(ZSM) exploits Network Function Virtualization (NFV) and
Software-Defined Networking (SDN) to efficiently and dynam-
ically orchestrate different Service Function Chaining (SFC),
whereby reducing capital expenditure and operation expenses.
The SFC is an optimization problem that shall consider differ-
ent constraints, such as Quality of Service (QoS), and actual
resources, to achieve cost-efficient scheduling and allocation of
the service functions. However, the large-scale, complexity and se-
curity issues brought by virtualized IoT networks, which embrace
different network segments, e.g. Fog, Edge, Core, Cloud, that can
also exploit proximity (computation offloading of virtualized IoT
functions to the Edge), imposes new challenges for ZSM orches-
trators intended to optimize the SFC, thereby achieving seamless
user-experience, minimal end-to-end delay at a minimal cost. To
cope with these challenges, this paper proposes a cost-efficient
optimized orchestration system that addresses the whole life-cycle
management of different SFCs, that considers QoS (including
end-to-end delay, bandwidth, jitters), actual capacities of Virtual
Network Functions (VNFs), potentially deployed across multiple
Clouds-Edges, in terms of resources (CPU, RAM, storage) and
current network security levels to ensure trusted deployments.
The proposed orchestration system has been implemented and
evaluated in the scope of H2020 Anastacia EU project1, showing
its feasibility and performance to efficiently manage SFC, opti-
mizing deployment costs, reducing overall end-to-end delay and
optimizing VNF instances distribution.

I. INTRODUCTION

Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) paradigms will play crucial roles
in enabling the 5G system and beyond. While NFV decouples
the network function from the hardware to decrease the capital
expenditures (CAPEX) and operating expenses (OPEX), SDN
enables the network softwarization, and hence it elevates
the network flexibility. NFV exploits virtualization techniques
to deploy network functions (e.g. router, switches, proxies),
and security network functions (e.g. firewalls, proxies, AAA
services, Virtual-HoneyNet) on Virtual Machines that run top
of general-purpose hardware, separating network functional-
ity from traditional dedicated hardware middle-boxes. From
another side, Zero-touch network and Service Management
(ZSM) [1] will play a crucial role in enabling closed-loop
efficient network slice management systems. The main aim

1H2020 Anastacia EU project website: http://www.anastacia-h2020.eu/

of ZSM is to allow zero-touch automated network and ser-
vice management in a multi-vendor and multi-tenant envi-
ronment, including management of programmable, multi-layer
and cloud-native networks, as well as traditional virtualized
and physical network functions. ZSM leverages cloud-native
principles, SDN and NFV for addressing (fully automated)
management and operation of network slicing. ZSM allows
automatizing all the service chaining processes, thereby mini-
mizing the required provisioning time, optimizing operational
and capital costs, and reducing or even eliminating human
intervention. These virtual network service functions (VNFs)
can be dynamically and effectively connected setting-up dif-
ferent service function chains (SFCs) belonging to different
service providers (SPs), that run in the same hardware sharing
the available physical resources.

For enabling network slicing, VNFs are leveraged that use
either virtual machines (VMs) or light-wight virtualization
(Containers) that should run on top of different administra-
tive and technological clouds. The SFC provisioning is a
challenging problem that requires placing VNFs in different
clouds, interconnect them in proper order in the chain, and
then steering the traffic. ZSM requires all the portions, SDN,
NFV and slice orchestration, are integrated in a unified manner
to ensure the closed loop configurations and orchestration
of different network slices that are presented by different
SFCs. The orchestration and the management of SFCs are an
optimization problem that looks for finding a fair trade-off
between the cost and expected QoS offered by each SFC [2].
The optimization problem is even more complicated due to the
sharing of various physical resources across SPs. The schedul-
ing and the chaining of VNFs under different administrative
domains (i.e., SPs) make the orchestration further difficult.
In addition, the optimization problem is exacerbated when
dealing with SDN/NFV-based IoT networks, where different
virtualized and softwarized edges, fog nodes, and multi-clouds,
able to allocate VNFs, and having each one different available
flavors, QoS and resources available are involved. This hetero-
geneity imposes challenges to manage and optimize the end-
to-end overall delay as different heterogeneous virtual network
infrastructures in the SFC are involved.

To deal with the above challenges, in this paper, we suggest
a cost efficient orchestration mechanism that enables ZSM
of different SFCs. We have suggested a novel orchestration



2

mechanism aimed to optimize the allocation and life cycle
management (LCM) of VNFs potentially deployed across IoT
domains, inter-clouds, and cross network segments, thereby
ensuring efficient management of SFC in virtualized and
softwarized IoT networks. We have suggested an optimal
and a heuristic solutions for ensuring an efficient LCM. The
optimal solution leverages linear integer programming (LIP)
for finding optimal configurations. In contrast, the heuristic
provides near optimal configuration, however within a short
execution time. Unlike the current state of the art, the proposed
solutions consider not only quality of service (QoS) of the
system (including end-to-end delay, bandwidth, jitters) and
actual capacities of VNFs in terms of Resources (CPU, RAM
and disk), but also the network security levels (enforced
security channels mechanisms across the VNFs in the SFC).
Moreover, the suggested solutions provide cost efficient ZSM
for orchestrating and scheduling different network services.
The algorithms consider a predefined blueprint configuration
for the SFC, and targeted KPIs, and optimize the targeted KPIs
in terms of link security level, QoS, delay and bandwidth.
Thus, depending on the KPIs defined in the SFC blueprint,
the VNFs and communication links are used to satisfy the
predefined requirements. To the best of our knowledge this is
the first proposal intended to deal with ZSM for providing
cost efficient network service orchestration mechanism for
SDN/NFV-based IoT networks that might demand multiple
clouds, fog nodes, virtualized edges to host the VNF instances
conforming the SFC. The proposed orchestration solutions
have been successfully implemented and evaluated showing
their feasibility and performance to deal with life-cycle man-
agement of SFC in IoT scenarios [3].

The rest of this paper is structured as follows. Section II
presents related works. Section III overviews the orchestration
architecture for NFV/SDN-enabled IoT networks. Section IV
formulates the optimization problem. The optimization al-
gorithm is described in section V. The heuristic solution is
described in section VI. Section VII presents the evaluation
and finally section VIII concludes the paper.

II. RELATED WORK

The NFV orchestration has been widely discussed in the
literature to efficiently and autonomously manage and control
software and hardware in NFV Infrastructure (NFVI). To
efficiently manage and orchestrate the NFVI, a Management
Orchestration (MANO) layer has been proposed that is respon-
sible for managing and orchestrating both VNFs and NFVI. To
ensure an efficient orchestration plan, MANO architecture has
mainly three functional components. The first component is
NFV orchestrator (NFVO) that is responsible for: i) Network
resource orchestration of NFVI and VNFs that form SFCs;
ii) Validating and authorizing NFVI resource requests from
the VNF manager (VNFM); iii) Network service life-cycle
management of SFCs and their VNFs. The second component
is VNFM, which is responsible for the life-cycle manage-
ment of VNFs at a specified cloud. Finally, the Virtualized
Infrastructure Manager (VIM) manages NFVI associated that
usually belongs to the cloud operator. The VIM is also

responsible for managing Virtual Machine (VMs) that host
different VNFs.

As it has been recently highlighted in different surveys
on network service orchestration [4], [5], one of the main
open challenges is to consider security aspects when it comes
to SFC optimization and VNF management. NFVO is re-
sponsible for the dynamic life cycle management to provide
end-to-end connectivity and additional services between users
and accessed services. The SFC optimization problem has
been widely studied recently. The basic formulation for VNF
scheduling considering VNFs’ processing delays can be found
in [6]. Similarly, in [7], authors laid out simple algorithms
aimed at function mapping and scheduling (NFMS) of VNFs,
considering as objective problems the minimization of flow
time, cost, and revenue. However, these works do not con-
sider end-to-end delays in multi-domain scenarios, in which
interconnection links can influence delays in the SFC.

In [8] authors analyze the problem of VNFs allocation
optimization with optimal algorithms, but they do not actually
deal with service chaining and order of VNFs. Likewise, in [9]
authors address the service chaining optimization challenge,
but they do not consider global delays of network traffic in
the SFC path. Similarly, in [10] authors formalize the VNF
placement and SFC problem and follow an Integer Linear
Programming (ILP) to deal with the optimization problem,
considering the distance across clients and VNFs and their
cost. However, they do not consider other resources and
security aspects as addressed in our model. In contrast to this
solution, our model considers cost-efficient life cycle manage-
ment when allocating computational and network resources.
Some other related research papers focus on other kind of
QoS metrics for performance improvement, such as bandwidth
allocation optimization for VNFs usage [11]. In [12] authors
analyze the VNF scheduling and resource allocation with
service chain, and provide resource optimization solutions.
They define the scheduling decisions and chaining based on
service transmission and VNF’s processing delays. However,
unlike our work they do not consider security aspects in the
formulation.

A reliability-aware SFC provisioning of VNFs with delay
guarantees is proposed in [13]. They suggest a mixed integer
linear program (MILP) for VNFs allocation that maximizes
reliability and end-to-end delays. Artificial Intelligence is start-
ing to be exploited for VNF scheduling [14]. However, in their
work authors only account on transmission and processing
delays to optimize the SFC. Recently Long Qu et al. [15] have
proposed a model for SFC orchestration in 5G networks. They
formulate the optimization problem using ILP and heuristic
algorithms, but considering only the minimization of the path
length and cost of computing resources of the VMs.

None of the above research works have considered so far
the security aspects, such as security levels in different links
interconnecting IoT domains with different clouds. Also, in
contrast to these works, the proposed framework considers
cost-efficient ZSM of different network slices across heteroge-
neous technological and administrative clouds domains. The
suggested solutions consider the optimization of the SFC of
VNFs combining inter-cloud relationships, QoS properties,
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and resource features.

III. SECURITY ORCHESTRATION IN SDN/NFV-BASED IOT
SYSTEMS

Our proposed Service Function Chaining (SFC) algorithms
and life Cycle Management model for SDN/NFV-aware IoT
systems (defined in section V) have been implemented as
a security Orchestrator component, which in turn, has been
integrated in a global Security Architecture [16] for IoT
networks devised in the scope of ANASTACIA H2020 EU
project. The Anastacia architecture implements a MAPE loop
(Monitor, Analyze, Planning, Execute) to counter dynamically
cyber-attacks in IoT systems, by deploying dynamically the
pertinent chained virtual network security functions according
to the actual network and system conditions. The Security
Orchestrator is able to interact with different controllers to
manage the systems (Fig. 1(a)) by ensuring cost-efficient life
cycle management of SFC and ensuring the network security.
Namely, the SO interfaces with the IoT controller, SDN
controller and NFV orchestrator. When an attack is detected,
thanks to the mitigation action service (MAS) component,
a mitigation request (security policy) is sent to our security
orchestrator (SO) (Fig. 1(b), Step 3) that runs the optimization
algorithms for selecting the best SFCs, according to the actual
resources, QoS and security aspects.

The SO oversees orchestrating the virtual security enablers
according to the security policies generated and forwarded
from other architectural components. In order to mitigate the
various attacks without affecting the QoS in different verticals,
the SO takes into account the policies requirements and the
available resources in the underlying infrastructure. The latter
refers to the available amount of resources in terms of CPU,
RAM, and storage in different cloud providers, as well as
the communication network resources including the end-to-
end bandwidth, jitters and delay. The quality of the link varies
according to the locations of different communicating peers
(i.e., intra and inter cloud communication), as well as the use
of secure channels with different levels including IPsec, SSL
and TLS. As aforementioned, the SO is able to interface with
the IoT controller, SDN controller and NFV controller.
• IoT controller: It provides IoT command and control

at high-level of abstraction in independent way of the
underlying technologies. That is, it is able to carry out the
IoT management request through different IoT constraint
protocols like CoAP or MQTT. It also maintains a registry
of relevant information of the deployed IoT devices like
the IoT device properties and available operations. The
SO interacts with the IoT controller to mitigate the attacks
at the level of the IoT domain and prevent the propagation
of the attack to other networks (Figure 1(b): 4). The
IoT controller enforces different security rules at the IoT
router (data plane) to mitigate the attack (Figure 1(b): 5).

• NFV orchestrator: to ensure efficient management of
SFC, we have integrated SDN controller (ONOS) with the
used Virtual Infrastructure Manager (VIM), in our case
OpenStack. The integration of SDN with the VIM enables

the smooth communication between different VNFs that
form the same SFC. After receiving the MSPL message
from the MAS, the security orchestrator identifies the
right mitigation plane should be implemented. If the
mitigation plan requires the instantiation of new VNFs,
the security orchestrator (SO) instructs the NFV orches-
trator to instantiate and configure the required VNFs. To
instantiate the required VNFs, the NFV orchestrator inter-
acts with the VIM (Figure 1(b): 6). After the successful
instantiation of a security VNF, the security orchestrator
configures that VNF with the security policy (Figure 1(b):
6).

• SDN controller: This component helps in rerouting the
traffic between the VNFs in different SFCs. As depicted
in Fig. 1, when the mitigation action service notifies the
orchestrator about an attack, the SFC would be updated
by adding/inserting new security VNFs in the SFCs. The
security orchestrator should push the adequate SDN rules
to reroute the traffic between different VNFs in the SFC
and the IoT domain (Fig. 1(b): 7). Also, according to the
different situations, the security orchestrator can choose
the SDN as security enabler. In this case, it can be the
attack mitigated by pushing exploring the strength of
the SDN technology. If so, the security orchestrator can
instruct the SDN controller to push some SDN rules to
prevent, allow or limit the communication on specified
protocols and ports between different communication
peers (Fig. 1(b): 7).

Formally, in our solution, the communication between a user
and an IoT domain happens through a list of chains of VNFs
and PNFs named service function chaining (SFCs). The latter
consists of three parts:
• The ingress point, which is the first VNF in the SFC. The

user initially attaches to the ingress point;
• The intermediate VNFs;
• the egress point, which is the last VNF in the SFC. The

egress point should be connected to the IoT controller.
As depicted in Fig. 1(b), the order of the communications

between the VNFs is defined according to the different SDN
rules enforced thanks to the SDN controller. The nature and
the size of the SFCs would be defined according to the nature
of the user (a normal or a suspicious).

Thus, the framework can mitigate the threats either at the
PNFs, VNFs or IoT devices by directly interacting at these
components and/or the network interconnecting them. The
communication between different peers (End-user and IoT
devices) happens thanks to VNFs and PNFs installed in the
network. When the anomalies are detected, an alert should be
generated and forwarded to the SO. The latter mitigates the
attacks by dint of SE plane by:
• Pushing different rules at the network by leveraging

software defined networking (SDN);
• Interacting at the IoT devices and PNFs by pushing

different rules that mitigate the attacks, such as shutting
off the malicious IoT devices;

• Creating different VNFs (e.g., virtual firewall) and en-
force the traffic to pass through these VNFs, such that
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(a) Network topology (b) Three UEs are interested to connect to the server

Figure 1: Orchestration system functional architecture

the exploit of different vulnerabilities is mitigated through
ports communication restriction.

By relying in the aforementioned orchestration properties
and features, as well as NFV, SDN and IoT controllers,
the ANASTACIA framework aims to cope with the research
challenges related with Orchestration of SDN/NFV-based se-
curity solutions for IoT environments and currently several
experiments have been carried out in different security areas.
For instance, we have developed a new VNF firewall based
on SDN-enabled switch and OpenFlow [17], or a VNF for
AAA and channel protection solutions [18]. Besides, several
experiments have been successfully carried out regarding vir-
tual IoT-honeynets [19]. This kind of VNF allows replicating
a real IoT environment in a virtual one by simulating the
IoT devices with their real deployed firmware, as well as the
physical location. The IoT-honeynet can be represented by an
IoT-honeynet security policy, and the final configuration can
be deployed transparently on demand with the support of the
SDN network.

The following sections focus on defining the Orchestration
Component of Anastacia Framework, including the SFC model
and life cycle management of the VNFs.

IV. NETWORK MODEL AND PROBLEM FORMULATION

A. Main idea

In this paper, we are interested to provide a framework that
serves a user u ∈ U to access to an IoT devices d ∈ D
deployed in a distributed IoT infrastructure by leveraging
SDN and NFV technology as depicted Fig. 2(a) for enabling
Zero-touch network Service Management (ZSM) of different
network slices. The user u would access to the IoT device d
through a specified SFC that consists of a set of VNFs and
PNFs, respectively. For instance, the user u can access to the
IoT devices using an SFC that consists of: i) A load balancer
(a triangle in Fig. 2(a)); ii) A firewall that is presented as
rectangle in Fig. 2(a); iii) Finally, an MQTT broker whereby
the IoT device publish its message.

The communication, between different clouds, VNFs, users
and devices, is characterized by different delay, bandwidth,
jitters and security levels. For instance, the communication

link within the same cloud has a higher security level while
the one between users, devices and inter clouds that do not
use security mechanisms, such as IPSEC and SSL, has the
lowest security level. Each SFC is created from a predefined
blueprint that specifies its characteristics and targeted KPIs
that should be respected in terms of link security level, QoS,
delay and bandwidth. According to the KPIs defined in the
SFC blueprint, the VNFs and communication links should be
used to satisfy the predefined requirements. Fig. 2(b) depicts
a rearrangement of candidate VNFs, in different clouds, and
their possible links between them to fulfil the requested SFC.

As we have explained before, some links could not satisfy
the KPIs specified in the SFC blueprint, and hence they should
be considered when instantiating the SFC as shown in Fig.
2(c). As depicted in Fig. 1 of [20], the information about the
links, such as bandwidth, jitters and delay, and the resources of
already deployed VNFs in terms of CPU, RAM and disk would
be retrieved from the module ”Resource and QoS Monitoring”.
The latter would give predict values about different metrics
by exploring the ”Data Analytics” module. Using the latter
module, we can predict the resources should be consumed
from each VNFs if it is included in the SFC. Thus, each VNFs
that would use resources higher than a predefined threshold
should be not considered as depicted in Fig. 2(d). However,
we could have a situation whereby some VNFs are missing
to complete the SFC as depicted in Fig. 2(d). In this case,
the security orchestrator needs to instantiate a new VNF with
the required resources and at the appropriate cloud (i.e., Links
that ensure the KPIs) as depicted in Fig. 2(e). Then, the SFC
would be instantiated using both NFV orchestrator and SDN
controller as depicted in Fig. 2(f). Note that in a real scenario,
we can receive many requests to create different SFCs with
different size and KPIs. The security optimizer component
should consider all the requests once to prevent to generate
sub-optimal configuration (i.e., local optimal situation).

B. Problem formulation

We denote by U a set of users that interested with different
services offered by IoT devices D deployed in a distributed
IoT infrastructure. For the sake of clarity, a summary of the
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(a) Network topology (b) All possible SFCs between the user and the IoT
device

(c) Removing links that do not respect the KPIs

(d) Removing VNFs that do not have enough
resources

(e) Creating a new VFN at the third cloud to generate
a valid SFC

(f) Generating the final SFC between the user and the
IoT device

Figure 2: Main idea of the proposed framework

notations employed in this formulation is included in Table I.
Let G(V,E,W ) denote the underlying network that consists
of a set of IoT devices and clouds. V consists of: i) Clouds or
edges (VC); ii) Distributed IoT infrastructure (VI ); iii) End-
users (VU ) that represent the (radio) access nodes ((R)AN)
from whereby the users access. Each cloud/edge u ∈ VC is
characterized by a limited storage and computation resources
including CPU, RAM and storage. Let ∆r(u) be a vector that
shows the resources of the cloud u ∈ VC in terms of resources
r that could be CPU, RAM and storage, respectively. For the
sake of simplicity, E represents the end-to-end connections
between VU ∪ VI ∪ VC by considering an overlay network
and by making an abstraction on the intermediate routers
and switches (backbone). However, the suggested model is
orthogonal, and can be easily adapted and extended to consider
the intermediate network components if needed. Meanwhile,
W denotes the characteristics of the links that include the
bandwidth, delay and security level. Let WB, WL and WS
denote the characteristics of the links E in terms of bandwidth
capacity, propagation delay and security level, respectively.

We denote by Θ the set of SFCs in the network, such that
each SFC θ ∈ Θ serves a set of users. In this paper, we propose
a ”Security Orchestrator Optimizer” (SOO) component that
ensures the life cycle management of SFCs Θ. Formally, at a
given time, we have three set of SFCs: i) SFCs Θ̇ that will not
be used in the future as all its users left the communication
or shifted to new SFCs; ii) SFCs Θ̈ that already deployed
and would be kept as its users should be stay connected
in the future; iii) New SFCs Θ̂ that would be instantiated
to serve new connected users. While the first SFCs Θ̇ will
not be considered in the optimization, the other SFCs are
considered as their users will be connected in the future. Thus,

the resource used by Θ̇ should be released before executing the
optimization. Let Θ̄ denote the SFCs that would be considered
in the future to interconnect the new and existing users to
their IoT devices. Formally, Θ̄ = Θ̈ ∪ Θ̂. In the proposed
model, we aim to provide ZSM for enabling cost-efficient
LCM of network slicing that consists of Θ. For this reason,
either periodically or when the KPIs are not respected, the
”Security Orchestrator Engine” (SOE) will call the SOO for
delivering the optimal configurations. For each SFC θ ∈ Θ̄,
we have the QoS and security level should be respected.
Let ξLθ and ξBθ denote the end-to-end delay and bandwidth
should be respected, respectively. Meanwhile, ξSθ represents
the minimum security level that should be considered when
interconnecting different VNFs of the SFC θ. The SOE detects
the violation in the KPIs thanks to the ”Resource and QoS
Monitoring” (RQM) or Mitigation Action Services (MAS)
components. While RQM detects the violation in the KPIs that
have relationship with the network and computation resources
utilization, the MAS detects the violation in the security that
has relationship with the security. Let Φθ denote the set of
users of the SFC θ ∈ Θ̄. The SOO would have the information
about the expected traffic that would be exchanged between
the users Φθ and the IoT devices. Let λθ denote the expected
traffic that will be exchanged between the users Φθ and the
IoT devices.

In the proposed model, we leverage the strength of SDN
technology to interconnect the users with their IoT devices.
Formally, the communication between a user and its IoT
devices happens through a specified SFC θ ∈ Θ̄ that consists
of a list of VNFs Υθ. As we have mentioned in the previous
section, each VNF has a specified type, such as firewall,
load balancer,...etc. We denote by Π the set of VNFs types
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Table I: Summary of Notations.

Notation Description
U The set of users in the network.
D The IoT devices deployed in a distributed IoT infrastruc-

ture.
VC The set of clouds or edges existing in the network.
R The set of all the resources. R could equal to

{RAM,CPU,DISK}.
∆r(c) A parameter that shows the amount of resource r ∈ R

available at the cloud/edge c ∈ VC .
WB The characteristics of the links in terms of bandwidth.
WL The characteristics of the links in terms of delay.
WS The characteristics of the links in terms of security.
Θ The set of service function chaining (SFCs) that serves the

users.
Θ̇ The SFCs that will not be used in the future.
Θ̈ The already deployed SFCs and would be kept in the

future.
Θ̂ The set of new SFCs that should be deployed in the future

for serving the users.
Θ̄ The set of SFCs that would be considered in the future.

Formally, Θ̄ is defined as follows: Θ̄ = Θ̈ ∪ Θ̂
Φθ The users of the SFC θ ∈ Θ̄.
λθ The expected traffic that will be exchanged between the

users Φθ and the IoT devices D.
Υθ The list of VNFs forming the SFC θ ∈ Θ̄.
Π The set of VNFs’ types supported in the system, such as

firewall, load balancer,...etc.
πυ The type of the VNF υ ∈ Υθ , such that πυ ∈ Π.
V̈ The already deployed VNF instances that serve already

existing VNFs
⋃
θ∈Θ̈

Υθ .

V̂ The new VNF instances that should be instantiated to serve
the new VNFs

⋃
θ∈Θ̂

Υθ .

V The VNF instances (VNFI) that would be used by the
VNFs Θ̄ in the future. Formally V is defined as follows:
V = V̈ ∪ V̂

ζ(υ) All the VNFs that have the same type like the VNF υ ∈⋃
θ∈Θ̄

Υθ . ζ(υ) is defined formally as follow: ζ(υ) = {ύ :

∀ύ ∈
⋃
θ́∈Θ̄

Υθ́ ∧ πθ = πθ́}.

Ψ(υ) All the VNFs that have conflicts with the VNF υ ∈ Υθ .
F The list of flavors that can be used by different VNFs. Each

flavor f ∈ F specifies the amount of all resources r ∈ R
that should be used by a VNF instance.

δr(f) The amount of resources r ∈ R used by the flavor f ∈ F .
δp(f) The price of using the flavor f ∈ F .
Ω(u) The set of VNFs that would be hosted at the VNFI u ∈ V .
Γ(.) Γ(πu, f,

∑
θ∈Θ̄,υ∈Υθ∩Ω(v)

λθ) denotes the average pro-

cessing delay would be expected from the VNFI u to
process one packet.

ξLθ It denotes the end-to-end delay requirement of the SFC θ
that should be respected.

ξBθ It denotes the end-to-end bandwidth of the SFC θ that
should be respected.

ξSθ It denotes the end-to-end security level of the SFC θ that
should be respected.

supported in the system. We denote by πυ the type of the
VNF υ ∈ Υθ, such that πυ ∈ Π. Each SFC θ consists of three
parts:
• The ingress point (υI ∈ Υθ), which is the first VNF in

Υθ. The user initially attaches to (R)AN, and then from
the (R)AN to the ingress point (υI );

• The egress point (υE ∈ Υθ), which is the last VNF in
Υθ;

• The intermediate VNFs (υ ∈ Υθ \ {υI , υE});
We denote by (υi, υj) ∈ Υθ a two consecutive VNFs in the

SFC θ ∈ Θ̄. Note that the SFCs Θ̄ are only logical presentation
that should be specified in the blueprint as depicted in Fig.
2 with white colored shapes. Θ̄ would be instantiated in
the clouds as shown in the same figure as colored shape.
In the blueprint, the KPIs of each SFC θ ∈ Θ̄ are also
defined in terms of end-to-end delay and bandwidth, as well
as the security levels of the links used for interconnecting θ’s
components. While the two former metrics target the quality of
experience (QoE), the latter targets the security level of θ. Let
σLθ , σBθ and σSθ , denote the θ’s end-to-end delay, bandwidth
and security level, respectively.

Let V represent the instantiated VNFs in different clouds
(i.e, colored shapes in Fig. 2). V represents the VNF instances
(VNFI) that would be used by the VNFs of SFCs Θ̄. In the
network, we would have two types of VNFIs, V = V̈ ∪ V̂ .
Already deployed VNFIs V̈ that serve already existing VNFs⋃
θ∈Θ̈

Υθ. Meanwhile, the Algorithms will also instantiate new

VNFIs for the new SFCs Θ̂. Unfortunately, V̈ could not serve
all the SFCs Θ̄ = Θ̈ ∪ Θ̂. For this reason, new VNFIs could
be instantiated to serve some new VNFs of Θ̂ as depicted in
Fig. 2(f). We denote by V̂ the set of VNFIs that could be
instantiated to serve the new VNFs

⋃
θ∈Θ̂

Υθ. Note that more

than one VNF in (Θ̄) could use the same VNFI in (V). Based
on the observation that each new VNF would be maximum
instantiated at one VNFI, we have |V̂| ≤ |

⋃
θ∈Θ̂

Υθ|.

In the proposed model, one VNFI can be shared with
multiple SFCs, and hence two VNFs (υ1, υ2) ∈ Υθ1 × Υθ2 ,
that belong to two different SFCs θ1, θ2 ∈ Θ̄, could use
the same VNFI u ∈ V iff the following conditions hold:
i) They have the same type πυ1

= πυ2
; ii) There are no

conflicts in the configuration of the two VNFs υ1 and υ2. The
conflicts happen between the already enforced and the newly
added security policies. Many types of security configuration
conflicts should be prevented during the network orchestration
( [21]: sub-section 5.3.2). For instance, friction happens when
a deep packet inspector is deployed on a link in which the
network channel is already encrypted. Conflict also occurs
when the same firewall has been configured to accept and
reject the traffic from the same subnet with the same priority
level. Let ζ(υ) denote all the VNFs that have the same type
like υ. Formally ζ(υ) is defined as follows: ζ(υ) = {ύ : ∀ύ ∈⋃
θ́∈Θ̄

Υθ́ ∧ πυ = πύ}. Meanwhile, Ψ(υ) denotes all the VNFs

that have conflicts with the VNF υ ∈ Υθ. The SOO receives
this list from the ”Policy Interpreter” component. Formally, the
candidate list of VNFs that can be hosted in the same VNFI
with the VNF υ ∈ Υθ is ζ(υ)−Ψ(υ).

Let R denote the resources that are considered in this paper.
R can be defined as follows: R = {RAM,CPU, Storage}.
Also, we denote by F the list of available flavors in the
network. Each flavor f ∈ F has a specified amount of
resources should be used by a VNF instance. Let δr(f) denote
the amount of resources r ∈ R should be used by the flavor
f . We denote by Ω(u) the set of VNFs that would be hosted
at the VNFI u ∈ V . Formally, there is a correlation between
the resources used by a VNFI u ∈ V , the amount of traffic
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treated by that VNFI, and the expected services offered by that
VNFI in terms of computation and QoS. While the amount of
traffic negatively affects the QoS, the amount of resources has
a positive impact on the QoS [22], [23]. We denote by πu the
VNF instance type. Note that a VNFI u whose type is similar
to the VNFs that it hosts. Let Γ(πu, f,

∑
θ∈Θ̄,υ∈Υθ∩Ω(v)

λθ) a

function that returns the average expected processing delay
for handling the data traffic

∑
θ∈Θ̄,υ∈Υθ∩Ω(v)

λθ by a VNFI u

that uses the flavor f ∈ F and has a type πu ∈ Π. For the
sake of simplicity, we consider that Γ is a linear function in
respect to the amount of data λθ. Therefore,

Γ(πu, f,
∑

θ∈Θ̄,υ∈Υθ∩Ω(u)

λθ) =
∑

θ∈Θ̄,υ∈Υθ∩Ω(u)

Γ(πu, f, λθ)

In this paper, a best effort communication model is consid-
ered within the same VNFI, and hence if two SFCs share the
same VNFI, they will share both the same processing delay.
This means that the processing delay will be increased by
twice for each SFC.

V. OPTIMAL SECURITY ORCHESTRATION SOLUTION

In this section, we present the Algorithm that should be
executed at the SOO component. First of all, we start by
defining the different variables, then we will define the various
constraints. The different variables used in this paper are
summarized in the table II.

Table II: Summary of Variables Notations.

Variable Description
Xυ,u A Boolean decision variable that shows if the VNF υ ∈ Υθ

of the SFC θ ∈ Θ would use the VNFI u ∈ V .
DVu The expected average time needed to process all the traffic

by the VNFI u.
φu,f A decision variable that shows if the VNFI u ∈ V will use

the flavor f ∈ F .
DVu The expected time to handle the traffic by VNFI u ∈ V .
δr(υ) The amount of resources r ∈ R used by the VNF υ ∈ Υθ .
T Vu,v The amount of traffic should be transferred from VNFI

u ∈ V to VNFI v ∈ V .
T Cc The amount of traffic should be handled by the cloud c ∈

VC .
Yu,c A Boolean decision variable that shows if the VNFI u ∈ V

would be deployed at the edge/cloud c ∈ VC .
Au,π A Boolean decision variable that shows if a VNFI u has

the type π.
Bθ,u A Boolean decision variable that shows if an SFC θ ∈ Θ̂

would use VNFI u ∈ V .

As aforementioned, mainly the SOO has the following
inputs:
• The set of users U in the network;
• The set of IoT devices D existing in the network;
• Underlying network G(V,E,W ):

– V consists of i) Clouds or edges (VC); ii) Distributed
IoT infrastructure (VI = D); iii) End-users (VU =
U );

– E represents the end-to-end connections between
VU ∪ VI ∪ VC ;

– W denotes the characteristics of the links that in-
clude the bandwidth, delay and security level. W
could contain either actual characteristics that should
be received from RQM module or future predicted
characteristics that should be received from the data
analytic module. W consists of bandwidth capacity
(WB), propagation delay (WL) and security level
(WS );

• The set of already deployed VNFIs V̈ that should be kept
used in the next period;

• Üu,c is a parameter that specifies if a VNFI u ∈ V̈ is
deployed at a cloud c ∈ VC or not. Üu,c = 1 if a VNFI
u is already deployed in a cloud c, otherwise Üu,c = 0.
Note that a VNFI in V̈ should be deployed only on one
cloud, and hence

∑
c∈VC

Üu,c = 1;

• The set of SFCs that should be considered in the future
Θ̄ = Θ̈ ∪ Θ̂;

• For each SFC θ ∈ Θ̄, we have the QoS and security level
should be respected that are presented by ξLθ , ξBθ and ξSθ ;

• For already deployed VNF υ ∈ Υθ for θ ∈ Θ̈, we have
the following parameters that are included as input in the
Algorithm:

– Ẍυ,u equals to 1 if the VNF υ uses the VNFI u ∈
V̈ . Note that a VNF υ should use only one VNFI,
thus

∑
u∈V̈
Ẍυ,u = 1. Moreover, each already deployed

SFC θ ∈ Θ̈ should use maximum one VNFI u ∈ V̈
to prevent the loops. Formally, u ∈ V̈, ∀θ ∈ Θ̈ :∑
υ∈Υθ

Ẍυ,u ≤ 1;

– Each VNF υ has a specified type πυ;
– Each VNFI u ∈ V̈ has a specified type. We denote

by Äu,π a parameter that equals to 1 if VNFI u uses
has the type π ∈ Π. Moreover, VNFI u should have
the same type as all the VNFs that use it. Formally,
∀u ∈ V̈ : Ẍυ,u = 1 =⇒ πυ =

∑
π∈Π

π × Äu,π;

– We also denote by Ÿυ,c a decision parameter that
shows if the VNF υ is hosted at the cloud c ∈ VC
or not. Note that the VNF υ is hosted at the cloud
c ∈ VC if its VNFI is running on top of that cloud.∑
c∈VC

Ÿυ,c = 1. Formally, Ÿυ,c is defined as follow:

∀c ∈ VC : Ÿυ,c =
∑
u∈V̈
Ẍυ,u × Üu,c.

In what follows, we will present the different variables and
constraints that should be used by the Algorithm of SOO.

A. VNF and VNFI relationship constraints

We define by Xυ,u a decision Boolean variable that shows
if the VNF υ ∈ Υθ of the SFC θ ∈ Θ will use the VNFI
u ∈ V .

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V :

Xυ,u =

{
1 Iff υ uses VNFI u
0 Otherwise

Xυ,u should be subject to the following constraints:
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Similar to the existing VNFs υ ∈ Υθ for θ ∈ Θ̈, new VNFs
should use only one VNFI. Each new VNF, υ ∈ Υθ for θ ∈ Θ̂,
should use one and only one VNFI u in the network.

∀θ ∈ Θ̂, ∀υ ∈ Υθ :
∑
u∈V
Xυ,u = 1 (1)

Let Bθ,u denote a Boolean decision variable that shows if
an SFC θ ∈ Θ̂ would use VNFI u ∈ V .

∀θ ∈ Θ̂, ∀u ∈ V :

Bθ,u =

{
1 Iff θ uses VNFI u
0 Otherwise

In order to prevent the loop in the SFC θ, VNFs (∀υ ∈
Υθ) of that SFC should use the VNFI u maximum once. The
constraint (2) prevents the loop in the SFC, as well as it ensures
that Bθ,u = 1 if one of θ’s VNFs uses u.

∀u ∈ V , ∀θ ∈ Θ̂ :
∑
υ∈Υθ

Xυ,u = Bθ,u (2)

The following constraints ensure that a new VNF υ should
not share a VNFI u ∈ V with another VNF with whom has
a conflict or does not have the same type. Let we define two
sets of conflicts Ψ(υ) for the VNF υ. These two sets are:
i) Ψ̈(υ) = Ψ(υ) ∩ (

⋃
θ∈Θ̈

Υθ); ii) Ψ̂(υ) = Ψ(υ) ∩ (
⋃
θ∈Θ̂

Υθ).

Formally, Ψ̈(υ) denotes all deployed VNFs that have security
conflict with υ while Ψ̂(υ) denotes all the VNFs that should
be deployed and have a conflict with υ.

We define by Yυ,c a decision Boolean variable that shows
if a VNF υ ∈ Υθ for θ ∈ Θ̄ is hosted at the cloud c ∈ VC
or not. Formally a VNF υ is hosted at a cloud c ∈ VC if its
VNFI is running on top of that cloud.

∀θ ∈ Θ̄, ∀υ ∈ Υθ,∀c ∈ VC :

Yυ,c =

{
1 Iff υ is hosted at cloud c
0 Otherwise

Each VNF should run on top only one cloud at a given time.
Constraint (3) ensures that each VNF should be deployed only
on one cloud.

∀θ ∈ Θ̂, ∀υ ∈ Υθ :
∑
c∈VC

Yυ,c = 1 (3)

We define also by Au,π a decision Boolean variable that
shows if the VNFI u ∈ V̂ has the type π ∈ Π.

∀u ∈ V̂, ∀π ∈ Π :

Au,π =

{
1 Iff u has type π
0 Otherwise

Each new VNF υ ∈ Υθ for ∀θ ∈ Θ̂ that uses existing
VNFIs u ∈ V̈ should use the same VNF type as mentioned in
constraint 4.

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V̈, ∀π ∈ Π :

πυ ×Xυ,u =π × Äu,π ×Xυ,u (4)

From another side, constraint 5 ensures that each new VNFI
u ∈ V̂ should have the same type as the VNFs that use it.

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V̂, ∀π ∈ Π :

πυ ×Xυ,u =π ×Au,π ×Xυ,u (5)

Unfortunately, the constraint (5) is not linear due to the part
Au,π×Xυ,u. In order to make this constraint linear, we replace
the constraint (5) with the constraints (6 and (7).

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V̂, ∀π ∈ Π :

πυ ≤ π + (2−Xυ,u −Au,π)×M (6)

, where M is a big number (M≈∞).

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V̂, ∀π ∈ Π :

π ≤ πυ + (2−Xυ,u −Au,π)×M (7)

The following constraint ensures that each VNFI u ∈ V̂
should have only one type if and only of it is deployed,
otherwise it should not have any type.

∀u ∈ V̂ :
∑
π∈Π

Au,π =
∑
c∈VC

Uu,c (8)

Constraints (6), (7) and (8) ensure VNFs should have the
same type of their VNFIs, which prevent the deployment of
the VNFs that have different types on the same VNFI.

B. VNFI and cloud relationship constraints

We also define by Uu,c a Boolean variable that shows if the
VNFI u ∈ V̂ would be deployed in the cloud/edge c ∈ VC

∀u ∈V̂, ∀c ∈ VC :

Uu,c =

1 Iff VNFI u would be deployed in
the cloud/edge c

0 Otherwise

A new VNFI u ∈ V̂ should be deployed if and only if it is
used at least by one VNF as presented by the constraint (9).

∀u ∈ V̂, ∀θ ∈ Θ̂, ∀υ ∈ Υθ :
∑
c∈VC

Uu,c ≥ Xυ,u (9)

Also, a VNFI u ∈ V̂ should be not deployed if it is not used
by any VNF in the network as show in the constraint (10).

∀u ∈ V̂ :
∑
c∈VC

Uu,c ≤
∑

θ∈Θ̄,υ∈Υθ

Xυ,u (10)
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Finally, each VNFI u ∈ V̂ should be deployed at most at
one cloud as shown in the constraint (11).

∀u ∈ V̂ :
∑
c∈VC

Uu,c ≤ 1 (11)

A VNF should use the same cloud where its VNFI is
deployed. Constraint (12) ensures that each VNF that uses
already existing VNFI, then it should use the same cloud as
that VNFI.

∀c ∈ VC , ∀u ∈ V̈, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Üu,c = 1 =⇒ Yυ,c ≥ Xυ,u (12)

Meanwhile, Constraint (13) ensures that each VNF that uses
a new VNFI, then it should use the same cloud as that VNFI.
While constraint (14) ensures that a VNF υ should not use a
cloud c if its VNFI is not running on that cloud.

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,c ≥Xυ,u × Uu,c (13)

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂, ∀υ ∈Υθ :

Yυ,c ≤
∑
u∈V̂

Xυ,u × Uu,c+
∑
u∈V̈

Xυ,u × Üu,c (14)

Unfortunately, the constraint (13) and (14) are not linear. To
make the optimization linear, we have replaced the constraints
(13) and (14) with the following variables and constraints:

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V̂, ∀c ∈ VC :

Yυ,u,c =

1 Iff VNF υ would use VNFI u that
should be deployed at cloud/edge c

0 Otherwise

We replace the constraint (13) and (14) with the following
constraints:

Constraints (15) and (16) ensure that Yυ,u,c = 0 if υ does
not use u (i.e., Xυ,u = 0) or u is not deployed at cloud c (i.e.,
Uu,c = 0).

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,u,c ≤ Uu,c (15)

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,u,c ≤ Xυ,u (16)

Constraint (17) ensures that Yυ,u,c = 1 iff both variables
Xυ,u and Uu,c equal to 1.

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,u,c ≥ Xυ,u + Uu,c − 1 (17)

Meanwhile, constraint (18) ensures that the VNF υ is
deployed in cloud c (i.e., Yυ,c = 1) if Yυ,u,c = 1.

∀c ∈ VC , ∀u ∈ V̂, ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,c ≥Yυ,u,c (18)

Constraint (19) ensures that a VNF υ is not deployed in a
cloud c (i.e., Yυ,c = 0) if it does not use any VNFI deployed
at cloud c.

∀c ∈ VC , ∀θ ∈ Θ̂,∀υ ∈ Υθ :

Yυ,c ≤
∑
u∈V̂

Yυ,u,c +
∑
u∈V̈

Xυ,u × Üu,c (19)

Meanwhile, the constraint (20) ensures that each VNF υ
should be hosted at a cloud.

∀θ ∈ Θ̂, ∀υ ∈ Υθ :
∑
c∈VC

Yυ,c = 1 (20)

C. Resource aware constraints

We define by φu,f a decision Boolean variable that shows
if VNFI u ∈ V would use a flavor f ∈ F .

∀u ∈ V̂, ∀f ∈ F :

φu,f =

{
1 Iff VNFI u uses flavor f
0 Otherwise

First of all, each VNFI should use only one flavor if it is
deployed as shown in the constraint (21).

∀u ∈ V :
∑
f∈F

φu,f =
∑
c∈VC

Uu,c (21)

The constraint (22) ensures that each cloud should not
overloaded.

∀r ∈ R, ∀c ∈ VC :
∑
f∈F

δr(f)×
(∑
u∈V̈

φ̈u,f × Üu,c

+
∑
u∈V̂

φu,f × Uu,c
)
≤ ∆r(c) (22)

Unfortunately, the constraint (22) is not linear due to the part
φu,f×Yu,c. To convert the optimization to linear optimization.
we replace the constraint (22) by the following constraints and
variables:

First, we define the variable Uu,c,f that shows if the VNFI
u uses the flavor f in the cloud c.

∀u ∈V , ∀f ∈ F , ∀c ∈ VC :

Uu,c,f =

{
1 Iff VNFI u uses flavor f in the cloud c
0 Otherwise

Also, we replace the constraint 22 with the following
constraints.

∀c ∈ VC , ∀f ∈ F , u ∈ V̂ : Uu,c,f ≤ Uu,c (23)
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∀c ∈ VC , ∀f ∈ F , u ∈ V̂ : Uu,c,f ≤ φu,f (24)

∀c ∈ VC , ∀f ∈ F , u ∈ V̂ : Uu,c,f ≥ Uu,c + φu,f − 1 (25)

∀r ∈ R, ∀c ∈ VC :
∑
f∈F

δr(f)×
(∑
u∈V̈

φ̈u,f × Üu,c

+
∑
u∈V̂

Uu,c,f
)
≤ ∆r(c) (26)

D. QoS aware constraints

Let Tu denote processing delay expected by the VNFI
u ∈ V . The variable Tu should be subject to the following
constraints:

The processing delay for already deployed VNFI ∀u ∈ V̈
is computed using the constraint (27):

∀u ∈ V̈ : Tu =
∑
f∈F

∑
π∈Π

Äu,π × φ̈u,f ×
(

Γ(π, f,
∑

θ∈Θ̈,υ∈Υθ

λθ × Ẍυ,u)

+
∑
θ∈Θ̂

Γ(π, f, λθ)× Bθ,u
)

(27)

Note that
∑

θ∈Θ̈,υ∈Υθ

Ẍυ,u ≤ 1 as two VNFs at the same SFC

θ does not use the same VNFI u.
Meanwhile, the processing delay of a new VFNI ∀u ∈ V̂ is

computed as follow:

∀u ∈ V̂ : Tu =
∑
f∈F

∑
π∈Π

∑
θ∈Θ̂

Γ(π, f, λθ)

× Bθ,u ×Au,π × φu,f (28)

However, the constraint (28) is not linear due to the term
Bθ,u × Au.π × φu,f . In order to convert the optimization
to linear optimization, we replace the constraint 28 with the
following constraints and variables:

First of all we add the following variable Cθ,u,π,f that equals
to 1 if the SFC θ ∈ Θ̂ uses the VNFI u ∈ V̂ that has the flavor
f and the type π.

∀θ ∈ Θ̂, ∀u ∈ V̂, ∀f ∈ F , ∀π ∈ Π : Cθ,u,π,f ≤ Bθ,u (29)

∀θ ∈ Θ̂, ∀u ∈ V̂, ∀f ∈ F , ∀π ∈ Π : Cθ,u,π,f ≤ Au,π (30)

∀θ ∈ Θ̂, ∀u ∈ V̂, ∀f ∈ F , ∀π ∈ Π : Cθ,u,π,f ≤ φu,f (31)

∀θ ∈ Θ̂, ∀u ∈ V̂, ∀f ∈ F , ∀π ∈ Π :

Cθ,u,π,f ≥ Bθ,u+Au,π + φu,f − 2 (32)

∀u ∈ V̂ : Tu =
∑
f∈F

∑
π∈Π

∑
θ∈Θ̂

Γ(π, f, λθ)× Cθ,u,π,f (33)

Let T Vυ denote processing delay expected by the VNF υ ∈
Υθ for θ ∈ Θ. The variable T Vυ should be subject to the
following constraints:

First, we define the constraint that has relationship with the
already exiting VNFs υ ∈ Υθ for θ ∈ Θ̈.

∀θ ∈ Θ̈, ∀υ ∈ Υθ, ∀u ∈ V̈ :

T Vυ ≤Tu + (1− Ẍυ,u)×M (34)

∀θ ∈ Θ̈, ∀υ ∈ Υθ, ∀u ∈ V̈ :

Tu ≤T Vυ + (1− Ẍυ,u)×M (35)

Second, we define the constraint that has relationship with
the new VNFs υ ∈ Υθ for θ ∈ Θ̂.

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V :

T Vυ ≤Tu + (1−Xυ,u)×M (36)

∀θ ∈ Θ̂, ∀υ ∈ Υθ, ∀u ∈ V :

Tu ≤T Vυ + (1−Xυ,u)×M (37)

The following constraint ensures that the end-to-end delay
in the SFCs is respected.

First, we define T Cc1,c2 that denotes the expected delay
between two different clouds c1, c2 ∈ VC , c1 6= c2 after
binding and deploying the SFCs.

∀c1, c2 ∈ VC , c1 6= c2 :

T Cc1,c2 =
1

Wc1,c2

[∑
θ∈Θ̈

∑
(υ1,υ2)∈Υθ

λθ × Ÿυ1,c1 × Ÿυ2,c2

+
∑
θ∈Θ̂

∑
(υ1,υ2)∈Υθ

λθ × Yυ1,c1 × Yυ2,c2

]
(38)

However, the constraint (38) is not linear due to the part
Yυ1,c1 × Yυ2,c2 . In order to make the optimization linear,
we replace the constraint (38) by the following variables and
constraints:

∀θ ∈ Θ̄,∀(υ1, υ2) ∈ Υθ, ∀c1, c2 ∈ VC , c1 6= c2 :

Yυ1,c1,υ2,c2 =

1 Iff υ1 and υ2 are hosted at
cloud c1 and c2, respectively

0 Otherwise

∀θ ∈ Θ̄, ∀(υ1, υ2) ∈ Υθ,∀c1, c2 ∈ VC , c1 6= c2 :

Yυ1,c1,υ2,c2 ≤ Yυ1,c1 (39)
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∀θ ∈ Θ̄, ∀(υ1, υ2) ∈ Υθ,∀c1, c2 ∈ VC , c1 6= c2 :

Yυ1,c1,υ2,c2 ≤ Yυ2,c2 (40)

∀θ ∈ Θ̄, ∀(υ1, υ2) ∈ Υθ,∀c1, c2 ∈ VC , c1 6= c2 :

Yυ1,c1,υ2,c2 ≥Yυ1,c1 + Yυ2,c2 − 1 (41)

∀c1, c2 ∈ VC , c1 6= c2 :

T Cc1,c2 =
1

Wc1,c2

[∑
θ∈Θ̈

∑
(υ1,υ2)∈Υθ

λθ × Ÿυ1,c1 × Ÿυ2,c2

+
∑
θ∈Θ̂

∑
(υ1,υ2)∈Υθ

λθ × Yυ1,c1,υ2,c2

]
(42)

Then, we will define the propagation delay between two
consecutive VNFs in an SFC. Let T Vυ1,υ2

denote a propagation
delay between two consecutive VNFs (υ1, υ2) ∈ Υθ for θ ∈
Θ̄. We have two sets of constraints that define the propagation
delay between two consecutive VNFs υ1 and υ2 according to
the state of their SFCs either is already deployed or not yet.

In what follow, we define T Vυ1,υ2
for already scheduled SFCs

θ ∈ Θ̈.

∀c1, c2 ∈ VC , c1 6= c2, ∀θ ∈ Θ̈, ∀(υ1, υ2) ∈ Υθ :

T Vυ1,υ2
≤ T Cc1,c2 + (1− Ÿυ1,c1 × Ÿυ2,c2)×M (43)

∀c1, c2 ∈ VC , c1 6= c2, ∀θ ∈ Θ̈, ∀(υ1, υ2) ∈ Υθ :

T Cc1,c2 ≤ T
V
υ1,υ2

+ (1− Ÿυ1,c1 × Ÿυ2,c2)×M (44)

Then, we define T Vυ1,υ2
for unscheduled SFCs θ ∈ Θ̂.

∀c1, c2 ∈ VC , c1 6= c2, ∀θ ∈ Θ̂, ∀(υ1, υ2) ∈ Υθ :

T Vυ1,υ2
≤ T Cc1,c2 + (1− Yυ1,c1,υ2,c2)×M (45)

∀c1, c2 ∈ VC , c1 6= c2, ∀θ ∈ Θ̂, ∀(υ1, υ2) ∈ Υθ :

T Cc1,c2 ≤ T
V
υ1,υ2

+ (1− Yυ1,c1,υ2,c2)×M (46)

In what follow, we will define the constraints that ensure
end-to-end delay of each SFC is respected. Thus, the end-to-
end delay of each SFC θ ∈ Θ̄ does not exceed its threshold
ξLθ .

∀θ ∈ Θ̄ : ∑
υ∈Υθ

T Vυ︸ ︷︷ ︸
(47.a)

+
∑

(υ1,υ2)∈Υθ

T Vυ1,υ2︸ ︷︷ ︸
(47.b)

≤ ξLθ (47)

While the part (47.a) presents the computation delay ex-
pected by an SFC θ ∈ Θ̄, the second part (47.b) presents the
propagation delay expected in the SFC θ.

Finally, we need to ensure that all the paths selected by
the VNFs of a given SFC respect the constraints of security.
Indeed, all the links that interconnect VNFs of the same SFC
θ ∈ Θ̄ should have a security level higher than the security
level ξSθ .

∀c1, c2 ∈ VC , c1 6= c2, ∀θ ∈ Θ̂, ∀(υ1, υ2) ∈ Υθ :

ξSθ × Yυ1,c1,υ2,c2 ≤ WSc1,c2 (48)

E. Final Optimization of SOO component

In what follow, we present the global optimization solution
that aims to reduce the cost while taking into account the QoS
during the LCM of different SFCs.

min
∑

u∈V̂,f∈F

δp(f)× φu,f (49)

S.t,

VNF and VNFI relationship constraints:

(1), (2), (3), (4), (6), (7) and (8).

VNFI and cloud relationship constraints:

(9), (10), (11), (12), (15), (16), (17), (18), (19) and (20).

Resource aware constraints:
(21), (23), (24), (25) and (26).

QoS aware constraints:

(27), (29), (30), (31), (32), (33), (34), (35), (36), (37),
(39), (40), (41), (42), (43), (44), (45), (46), (47) and (48).

VI. EFFICIENT QOS AND RESOURCE-AWARE SECURITY
ORCHESTRATION SOLUTION

In this section, we proposed a heuristic solution that aims
for finding near optimal configurations in a reasonable time.
The heuristic, dubbed Efficient QoS and Resource-aware Se-
curity Orchestration Algorithm (EQRSO), aims to ensure the
efficient LCM of VNFs that are potentially deployed across
IoT domains, inter-clouds and cross network segments. The
different steps of the heuristic are summarised in Algorithm
1. The Algorithm has the following inputs: i) The underlying
network graph G(V,E,W ); ii) The already deployed SFCs Θ̈;
iii) The set of new SFCs that should be deployed Θ̂; iv) Φθ
that denotes the users of the SFC θ; v) The already deployed
VNF instances V̈; vi) ζ(υ) that denotes all the VNFs that have
the same type like the VNF υ; vii) Ψ(υ) that denotes all the
VNFs that have a conflicts with the VNF υ. While the outputs
of the Algorithms are the new VNF instances V̂ that should
be instantiated to serve the new SFCs and their VNFs.
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Algorithm 1: Efficient QoS and Resource-aware Se-
curity Orchestration Algorithm (EQRSO)

Input :
G(V,E,W ): The underlying network graph.
Θ̈: The already deployed SFCs and would be kept in

the future.
Θ̂: The set of new SFCs that should be deployed in the

future for serving the users.
Φθ: The users of the SFC θ ∈ Θ̈ ∪ Θ̂.
V̈: The already deployed VNF instances that serve

already existing VNFs.
ζ(υ): All the VNFs that have the same type like the

VNF υ.
Ψ(υ): All the VNFs that have conflicts with the VNF υ.

Output:
V̂: The new VNF instances that should be instantiated to

serve the new VNFs.
1 V̂ ← ∅;
2 Θ← Θ̈;
3 for θ ∈ Θ̂ do
4 for υ ∈ Υθ do
5 c1 ← υ.pred.c;
6 for u ∈ sorted(V̂ ∪ V̈) do
7 if Z(u) ∩ ζ(υ) 6= Z(u) ∨ Z(u) ∩Ψ(υ) 6= ∅ then
8 continue;
9 end

10 c2 ← u.c;
11 if ξSθ >WS

c1,c2
then

12 continue;
13 end
14 υu ← u;
15 uθ ← uθ ∪ {θ};
16 if QoS Satisfied(Θ, θ) = True then
17 break;
18 end
19 υu ← ∅;
20 uθ ← uθ \ {θ};
21 end
22 if υu = ∅ then
23 c2, uf ← η(Θ, θ);
24 υu ← u;
25 uπ ← υπ ;
26 uθ ← uθ ∪ {θ};
27 uc ← uc ∪ {c2};
28 υu.c← c2;
29 V̂ ← V̂ ∪ {u};
30 end
31 end
32 Θ← Θ ∪ θ;
33 end

The heuristic firstly starts by initiating the new VNF in-
stances V̂ with an empty set (Algorithm 1: Line 1). The
Algorithm should assign VNF instances to the VNFs without
creating conflicts with already scheduled SFCs within the
Algorithm. In the Algorithm, we denote by Θ the set of
scheduled SFCs in the Algorithm. Formally, Θ = Θ̈ ∪ Θ̂.
Initially, Θ should be initialized with already scheduled SFCs
Θ̈ (Algorithm 1: Line 2). Then, the Algorithm schedules the
SFCs Θ̂ in a loop (Algorithm 1: Lines 3−33). At each iteration
one SFC should be scheduled. The VNFs of the same SFC
θ ∈ Θ̂ are also scheduled one by one (Algorithm 1: Lines
5− 32). In the Algorithm, we primarily aiming at the use of
already existing VNFIs and the deployment of new VNFIs on
the last resort basis, as a ”capacitor”. The Algorithm initially
starts looking for already deployed VNFIs (Algorithm 1: Lines
6−21), then if it could not use an existing VNFI, the Algorithm

should deploy a new VNFI (Algorithm 1: Lines 22− 30).

∀c1, c2 ∈ VC , c1 6= c2 :

Tc1,c2 =
1

Wc1,c2

∑
θ′∈Θ∪{θ′}

∑
(υ1,υ2)∈Υ

θ
′∧υ1.c=c1∧υ2.c=c2

λθ′

(50)

∀u ∈ V : Tu =
∑
θ′∈uΘ

Γ(uπ, uf , λθ′ ) (51)

The Algorithm goes through the VNFs Υθ of the same
SFC θ one by one (Algorithm 1: Line 4). For each VNF
υ ∈ Υθ, the Algorithm finds the edge c1 of its predecessor
(Algorithm 1: Line 5). Note that c1 = ∅ for the first VNF in
the SFC θ. The Algorithm first starts looking for the sorted
list of already deployed VNFIs. The latter includes previously
scheduled VNFIs (V̈) and the scheduled VNFIs within the
Algorithm (V̂). The Algorithm checks the VNFIs one by one
starting from the one that have more resources (Algorithm 1:
Line 6). The Algorithm schedules the VNF υ in the VNFI
u ∈ sorted(V̂ ∪ V̈) if the following statements hold:
• The VNFI u should host the VNFs that have the same

type like υ. We denote by Z(u) the set of VNFs hosted
at the VNFI u. Formally, the VNFI u should be skipped
if all the VNFs hosted at it do not have the same type
like the VNF υ (i.e., Z(u) ∩ ζ(υ) 6= Z(u)). (Algorithm
1: Line 7);;

• The VNFI u should not host a VNF that hast a conflict
with the VNF υ (Z(u) ∩Ψ(υ) 6= ∅);

• The security level of the links should be respected. The
Algorithm should deploy the VNF υ on the edge c2
of the VNFI u that ensures the required security level
(Algorithm 1: Line 11). In other words, the security re-
quirement should not be violated. The Algorithm checks
if the security link level between the previous VNF’s
cloud/edge and c2 is not lower than the required threshold
(ξSθ ) (Algorithm 1: Line 12);

• Finally, the Algorithm checks if the schedule of VNF
ε at the VNFI u should not have a negative impact on
the expected QoS should be perceived by the SFC θ and
already scheduled SFC Θ (Algorithm 1: Lines 16− 18).

∀θ
′
∈ Θ ∪ {θ

′
} :

∑
υ∈Υ

θ
′

T +
∑

(υ1,υ2)∈Υθ

Tυ1.c,υ2.c ≤ ξLθ (52)

In order to ensure the QoS, the Algorithm first assigns the
VNF υ to the VNFI u (Algorithm 1: Lines 16− 18). Then, it
checks if the QoS of all the SFCs Θ∪ {θ} is respected using
the function QoS Satisfied(Θ, θ). If the QoS is satisfied, the
Algorithm schedules the VNF υ by exiting the loop and going
to the next VNF (Algorithm 1: Lines 16−18). Otherwise, the
VNFI u should not be considered and the Algorithm goes to
the next VNFI (Algorithm 1: Lines 19 − 20). The function
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Figure 3: Performances of the proposed solutions in terms of cost

QoS Satisfied(Θ, θ) ensures that the end-to-end delay of
all the SFCs Θ ∪ θ does not exceed the threshold ξθ′L . This
function checks if the inequality (52) is verified for all the
SFCs ∪θ. It returns true if all the end-to-end delays of the
SFCs θ

′ ∈ Θ∪θ do not exceed the threshold ξθ′L . Otherwise,
the function returns false. Similarly to the inequality (47), this
inequality has two main parts, which are the computational and
propagation delay. While the propagation is computed using
the equality (50), the computation delay is computed in the
equation (51).

In case that the already scheduled VNFIs cannot serve the
VNF υ, then a new VNFI should be instantiated and scheduled
(Algorithm 1: Lines 22−30). The Algorithm calls the function
η(Θ, θ) that selects the adequate cloud/edge c2 and the flavor
uf . This function η(Θ, θ) leverages the inequalities (50), (51)
and (52) and ensures the security level. While the cloud/edge
c2 is selected to ensure better propagation delay and security
level, the flavor is selected to ensure better computational
delay. Then, the new VNFI u will be assigned to the VNF
υ and added to V̂ (Algorithm 1: Lines 23− 29). When all the
VNF of an SFC θ has been scheduled, the Algorithm includes
it to Θ to be considered when scheduling the remaining SFCs.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performances of our solu-
tions. While the heuristic EQRSO has been developed using
Python language, the optimal solution uses Python language
and Gurobi Optimizer software. All the execution time mea-
surements are based on a Dual Intel Xeon E5-2680 v3 @ 2.5
GHz, with 256 GB of RAM, and running Ubuntu 16.04. In
order to ensure the life cycle management (LCM) of different
slices, we ran the simulation in 20 epochs, in each of which
a set of SFCs arrive and leave the environment. When a SFC
leaves the simulation, then all its VNFs will not considered in
the next epoch. As aforementioned, the communication link
between clouds, VNFs, users, and devices, are characterized
by different security levels. While the links within the same
cloud have higher security levels, those that do not use any
security mechanisms (i.e., IPSEC and SSL) and interconnect
clouds, users, and devices have lower security levels. Usually,
the use of security mechanisms comes with an inevitable cost

regarding the degradation of network bandwidth and end-to-
end delay. According to the cryptography type and network
layer, the security mechanism is used, we may observe differ-
ent security levels. In all the simulations, we have considered
15 security levels, where we have uniformly distributed them
among the connection links that interconnect clouds, edges
and IoT domains. Moreover, we have also considered 15
possible end-to-end security levels, ξSθ , that are randomly
distributed among different SFCs θ. The suggested solution
hosts the VNFs of new arrival SFCs in either existing VNFIs
or by instantiating new ones if needed. We have evaluated
the suggested solution in different scenarios by running 35
repetitions. The plotted results present the mean and 95%
confidence interval. In the evaluation, we have considered the
following metrics:

• LCM cost: is defined as the average cost needed for
deploying VNFIs in public clouds for hosting the VNFs
of different SFCs during the simulation epochs.

• Runtime execution: This metric is defined as the average
time needed to execute the solution and provides configu-
ration for each epoch of the LCM. In fact, at each epoch,
we measure the time difference between the finishing and
staring time needed for providing the configuration LCM
of SFCs.

• End-to-end delay: is defined as the average end-to-end
delay, which includes the propagation and processing
delays, perceived by different SFCs in different epochs.

• Number of deployed VNFIs: is defined as the total
number of deployed VNFIs in all the periods for serving
different SFCs.

Our proposed solutions are evaluated by varying the number
of edges, the number of deployed SFCs, and the number of
VNF types. In the first scenario, we have varied the number
of edges/clouds while fixing the number of SFCs by 6 and
the VNF types by 15. Meanwhile, in the second scenario, we
have varied the number of SFCs while fixing the number of
clouds/edges by 20 and the VNF types by 15. Finally, in the
last scenario, we have the number of VNF types while fixing
the number of edges/clouds by 20 and the number of SFCs
also by 6.
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Figure 4: Performances of the proposed solutions in terms of execution time

A. Cost performance evaluation

In this subsection, we show the performances of the sug-
gested solutions in terms of cost while varying the number of
edges/clouds, the number of SFCs and the number of types as
depicted in Fig. 3. While the optimal solution is shown with a
blue curve, the heuristic EQRSO is presented with a red color
curve.

Fig. 3(a) shows the impact of the number of clouds/edges on
the suggested solutions in terms of cost. The first observation
that we can draw from this figure is that the number of
edges/clouds has a positive impact on the cost. This can be
explained as follow, increasing the number of edges/clouds
gives more flexibility to the solutions for finding a better
position for deploying the VNFIs that serve more VNFs, and
hence serving more SFCs. This leads to reducing the number
of VNFIs should be deployed, and hence reduce the cost.
Moreover, we observe that the optimal solution has almost
twice times better performances comparing to the heuristic
EQRSO. The obtained results show the efficiency of the
optimal solution in terms of cost when varying the number
of edges.

Meanwhile, Fig. 3(b) shows the impact of the number of
SFCs should be deployed at each epoch on the cost. From
this figure, we observe that the number of SFCs hurts the cost
in both solutions. In fact, increasing the number of SFCs leads
to an increase in the number of VNFs needed to be deployed,
and hence it increases the number of VNFIs that should set
up at different clouds/edges. This has a negative impact on the
cost. We also observe from this figure that the optimal solution
has twice times better performances comparing to the EQRSO.

Last but not the least, Fig. 3(c) shows the impact of the
number of VNF types on the cost. We observe from this figure
that the number of VNF types harms the cost in both solutions.
Increasing the number of VNF types leads to increase the
likelihood to picks up VNFs with different types in diverse
SFCs, and hence they cannot use the same VNFIs. This leads
to an increase in the probability of deploying more VNFIs and
hence leads to an increase in the cost. We also observe that at
a given threshold the cost stabilizes for the optimal solution.
This can be explained as follow, at that threshold the most or
all the VNFs would have different types. Indeed, the optimal
solution successes to assign many VNFs with the same type

into the same VNFI. We also observe that the optimal solution
has better performances comparing to the heuristic EQRSO.

B. Time complexity

Fig. 4 shows the performances of proposed solutions in
terms of time complexity while varying the number of
edges/clouds, the number of SFCs and the number of types.
Fig. 4(a) shows the impact of the number of clouds/edges
on the suggested solutions in terms of time complexity. The
first observation that we can draw from this figure is that the
number of edges/clouds harms the complexity of the optimal
solution. Increasing the number of edges/clouds leads to an
increase in the number of variables and constraints in the
optimization problem of the suggested solution, and hence
more time is required for solving the optimization due to the
use of branch and bound technique. In contrast to the optimal
solution, the number of clouds/edges has only slightly impact
the time complexity of EQRSO. Whatever the number of the
edges/clouds, the execution time does exceed 10−1sec.

Additionally, Fig. 4(b) shows the impact of the number of
SFCs should be deployed at each epoch on the execution time.
From this figure, we observe that the number of SFCs has a
negative impact on the time complexity of the optimal solution.
In fact, increasing the number of SFCs leads to an increase
in the number of variables and constraints in the optimization
model, and hence it has a negative impact on the execution
time. In contrast, the number of SFCs does not have a high
impact on the execution time. These results show the efficiency
of the heuristic in terms of time complexity. Last but not
the least, Fig. 4(c) shows the impact of the number of VNF
types could be considered in different SFCs on the execution
time. We observe from this figure that the number of VNF
types harms both the execution time for the optimal solution.
Increasing the number of VNF types leads to an increase in
the number of variables and constraints in the optimization
problem of the proposed solution, which hurts the execution
time of the suggested solution. In contrast, the number of types
does not have any impact on the time complexity of EQRSO.
The time complexity of EQRSO does not exceed 10−2sec
whatever the number of types.
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Figure 5: Performances of the proposed solutions in terms of average delay

C. End-to-end delay

In this subsection, we show the performances of the sug-
gested solutions in terms of end-to-end delay, as shown in
Fig. 5. Like the previous subsection, we evaluate the end-to-
end delay by varying the number of edges/clouds, the number
of SFCs, and the number of VNF types. The first observation
that we can draw from Fig. 5(a) is the increase in the number
of edges/clouds has a positive impact on the delay on EQRSO
and the optimal solutions. The delay proportionally decreases
with the number of edges/clouds in the network. Increasing
the number of edges/clouds leads to increasing the likelihood
of finding better locations for deploying different VNFIs that
could offer better end-to-end delay for different SFCs. We
observe that the optimal solution overcomes the heuristic
EQRSO in terms of end-to-end delay. The difference between
the two solutions sometimes exceeds 6ms.

Meanwhile, Fig. 5(b) shows the impact of the number of
SFCs on the end-to-end delay. We observe from this figure that
the increase in the number of SFCs harms the end-to-end delay
for both solutions. This can be explained as follow: Increasing
the number of SFCs leads to increase the probability for
getting VNFs that have more resources’ requirements. The
resources demanding of these VNFs will limit their options
to be deployed in clouds/edges that offer better delays. Also,
increasing the number of SFCs leads to raising the likelihood
to get SFCs with sparsely distributed users, which hurts the
end-to-end delay. We observe also that the optimal solution has
better performances comparing to the heuristic EQRSO. The
optimal solution overcomes the heuristic EQRSO in terms of
end-to-end delay by more than 10ms.

Finally, Fig. 5(c) depicts the impact of VNF types on the
delay on both solutions. The first observation that we can
draw from this figure is the number of VNF types has a
positive impact on the end-to-end delay. In the simulation,
we randomly assign types (e.g., firewall and load balancer)
to the VNFs of SFCs from a pool named Π. Increasing the
size of the pool Π will increase the likelihood that two VNFs
that belong to two different SFC do not have the same type.
This increases the number of VNFIs used to host the VNFs,
which hurts the cost, as depicted in Fig. 3(c). However, from
another side has a positive impact on the delay. Increasing
the number of VNF types reduces the VNF per VNFI ration,

which increases the flexibility of deploying VNFIs in better
positions that reduce the delay at each SFC. Let υ1 and υ2 two
VNFs belong into two different SFC θ1 and θ2, respectively.
If these two VNFs have the same type and use the same
VNFI, then the best location to deploy that VNFI is the one
that reduces the delay between each VNF and its successor
and predecessor in each chain. Thus, the placement of that
VNFI considers four delays; Two delays (i.e., successor and
predecessor) per VNF. However, if these two VNFs have
different types, they should be assigned to two VNFIs. In
this case, the best position of each VNFI is the one that
reduces only two delays (i.e., successor and predecessor) of
its VNF. This will increase the likelihood of finding better
positions that reduce the delay between the VNF and its
successor and predecessor, which positively impacts the end-
to-end delay. Moreover, the reduction of VNF per VNFI ratio
would positively impact the processing delay, which leads to
reduce further the end-to-end delay. Also, we observe that
the optimal solution has better end-to-end delay comparing
to the heuristic EQRSO. The optimal solution overcomes the
heuristic EQRSO by 6ms in terms of end-to-end delay.

D. VNFIs distribution

In this subsection, we assist the performances of the sug-
gested solutions in terms of the number of deployed VNFIs
while varying the number of edges/clouds, the number of SFCs
and the number of VNF types. Fig. 6 shows the impact of the
number of edges, the number of SFCs and the number of VNF
types on the number of deployed VNFIs. Fig. 6(a) depicts
the impact of the number of edges/clouds on the number of
deployed VNFIs. The first observation that we can draw from
this figure is that the optimal solution outperforms the heuristic
EQRSO in terms of number of deployed VNFIs. Also, we
observe that the number of edges/clouds has a positive impact
on the number of deployed VNFIs for both solutions. This can
be explained as follows: Increasing the number of edges/clouds
leads to increase the possibility to get locations (i.e., clouds)
that satisfy many SFCs, hence reduces the number of needed
VNFIs to be deployed.

Meanwhile, Fig. 6(b) shows the impact of the number of
SFCs on the number of deployed VNFIs. The first observation
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Figure 6: Performances of the proposed solutions in terms of average number of deployed VNFIs

that we can draw from this figure is that the number of SFCs
harms the number of deployed VNFIs for both solutions.
Increasing the number of SFCs leads to an increase in the
number of VNFs in the network, and hence we need more
VNFIs to be deployed for serving these VNFs. We also
observe that the optimal solution has better performances
comparing to the heuristic EQRSO. The gap between the two
solution increases to reach 10 VNFIs. Finally, Fig. 6(c) depicts
the impact of the number of VNF types on the number of
deployed VNFIs. We observe from this figure that the increase
in the number of VNF types hurts the number of deployed
VNFIs. Increasing the number of VNF types leads to increase
the likelihood to get VNFs that do not have the same type,
and hence they cannot use the same VNFI.

VIII. CONCLUSION

This paper has presented a cost-efficient ZSM orchestra-
tion model, aimed to optimize the allocation and scheduling
of network services and efficiently deal with the life cycle
management (LCM) of different SFC. The proposed solutions
consider different aspects during the LCM of different SFCs,
encompassing QoS (including end-to-end delay, bandwidth,
jitters), actual capacities of VNFs in terms of resources (CPU,
RAM, and storage) and current network security levels. The
paper has extensively evaluated the efficiently of the proposed
solutions and their performances in terms of deploying cost,
time complexity, end-to-end delay, and VNF instances distri-
bution, varying the numbers of SFCs, edges/clouds available
and VNF types, as demanded in softwarized and complex
virtualized IoT scenarios (up to 125 clouds/edges, 100 VNF
types). The obtained results show the benefits brought by
the proposed solutions to efficiently schedule the network
services as the number available edges/clouds increases, reduc-
ing overall end-to-end delay, minimizing the number of VNF
instances to be deployed, and optimizing the average cost.
The obtained results demonstrate the efficiency of the heuristic
for achieving good performances in a reasonable time. As
future work, we envisage leveraging our orchestration model
to dynamically orchestrate network services, even in more
complex scenarios, when considering mobile edges nodes
(MEC) (e.g. drones as MEC), in which additional constrains

and contextual information are need to be considered for cost-
efficient zero-touch SFC across networks edges.
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