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We consider the role of coordinate-dependent Fermi velocities, equivalent to effective tetrad (or vierbein)
frame fields characterizing momentum space geometry, and torsional Landau levels (LLs) in condensed matter
systems with low-energy Weyl quasiparticles. In contrast to their relativistic counterparts, they arise at finite
momenta and with an explicit cutoff to the linear spectrum. Via the universal coupling of tetrads to momentum,
they experience geometric chiral and axial anomalies with gravitational character. More precisely, at low
energy, the fermions experience background fields corresponding to emergent anisotropic Riemann-Cartan and
Newton-Cartan space-times, depending on the form of the low-energy dispersion. On these backgrounds, we
show how torsion and the Nieh-Yan (NY) anomaly appear in condensed matter Weyl systems with an ultraviolet
(UV) parameter with dimensions of momentum. The torsional NY anomaly arises from the spectral flow of
torsional LLs and the linear Weyl description with a cutoff. We carefully review the torsional anomaly and
spectral flow for relativistic fermions at zero momentum and contrast this with the spectral flow, nonzero torsional
anomaly, and the appearance of the dimensionful UV-cutoff parameter in condensed matter systems at finite mo-
mentum. We apply this to chiral transport anomalies sensitive to the emergent tetrads in nonhomogeneous chiral
superconductors, superfluids, and Weyl semimetals under elastic strain. This leads to previously overlooked
suppression of anomalous density at nodes from momentum space geometry, as compared to (pseudo)gauge
fields. We also briefly discuss torsion in anomalous thermal transport for nonrelativistic Weyl fermions, which
arises via Luttinger’s fictitious gravitational field corresponding to thermal gradients.

DOI: 10.1103/PhysRevB.102.235163

I. INTRODUCTION

Gapless fermionic quasiparticles with linear spectrum pro-
tected by topology arise in many condensed matter systems
in three dimensions [1–5]. In particular, accidental crossings
of two inversion (P) or time-reversal (T ) breaking bands
at the Fermi energy lead to stable quasirelativistic particles
with low-energy dispersion analogous to relativistic Weyl
fermions [6,7]. Fourfold-degenerate crossings with Dirac-
type low-energy excitations occur for combined P, T (and/or
other similar protecting) symmetries [8,9]. Similarly, in chiral
superconductors and superfluids with gap nodes, Majorana-
Weyl excitations arise at low energy [3,10–14].

By a very general theorem from topology [4], the low-
energy linear theory near the three-dimensional Fermi point
node takes universally the (γ -matrix) form of a quasirelativis-
tic Weyl/Dirac spectrum, with the precise form of the metric
and other background fields depending on the microscopic
details. It is then of interest to study the detailed form of this
emergent Dirac operator with an explicit cutoff and compare
to fundamental, Lorentz-invariant fermions. Following this
logic, the concept of so-called momentum space pseudogauge
fields [3,15–26] and “emergent” space-time [3,11–15,27–45]
in nonrelativistic condensed matter systems has emerged,
where the low-energy fermions can experience background
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fields of various physical origins, similar to what appears for
spin- 1

2 (or even higher spin) fermions on curved space-times
in general relativity or its nonrelativistic generalizations with
coordinate invariance.

In the low-energy quasilinear theory, the local Fermi veloc-
ities form emergent tetrads (or spatial dreibein) frame fields
which determine the geometry of the conical dispersion. The
tetrads, and their field strength torsion, couple to the quasi-
particle momentum effectively as in gravity. Moreover, the
appearance of such background fields in condensed matter
Weyl systems is built in in the low-energy theory, thus opening
the possibility of simulating Riemann-Cartan (or Newton-
Cartan) space-times for the low-energy fermions. The effects
of such fields in nonrelativistic systems appearing at finite
density μF and Fermi momentum pF are expected to be
very different from their relativistic counterparts appearing
at p = μ = 0. Notably, the system at finite Fermi or crys-
tal momentum is charged under the geometric background
fields [15,30,38,42–45].

In three spatial dimensions Weyl fermions experience chi-
ral anomalies [46]. Here, the anomalous chiral symmetries
leading to axial anomalies in the system [38,47] correspond
to translational symmetries in momentum space. For rele-
vant condensed matter considerations of the chiral anomaly,
see, e.g., [3,9,11,48–63]. In the case of nontrivial back-
ground torsion, the so-called chiral gravitational Nieh-Yan
(NY) anomaly can appear [64,65]. In contrast to the axial
anomaly with gauge fields, this anomaly depends on a nonuni-
versal high-energy or ultraviolet (UV) cutoff parameter �,
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with canonical dimensions of momentum. While the status of
the torsional anomaly contribution in relativistic systems has
been debated for long [66–72], the appearance of this term
in nonrelativistic condensed matter systems with explicit an
UV cutoff to the Weyl physics is a priori plausible [38,44]. In
this paper, following [38], we point out that geometric (grav-
itational) contributions in the chiral anomaly, second order
in gradients, are expected in generic nonhomogeneous con-
densed matter Weyl systems due to inhomogeneous torsional
deformations. Our central result is simple: from the torsional
Landau levels (LLs), we compute the adiabatic spectral flow.
Due to momentum playing the role of effective charge, the
LL density of states is momentum dependent and leads to a
momentum dependence in the spectral flow. For the anomaly,
this implies the nonuniversal UV cutoff �, arising from the
breaking of the Weyl approximation and no well-defined chi-
rality outside the low-energy spectrum close to the nodes.
We apply this to anomalous transport in chiral superfluids
and superconductors [3,38,54] and semimetals under elas-
tic strain [15,27,28,30]. Although these systems have been
shown to have nonhomogeneous tetrads under deformations,
the gravitational (geometric) nature of the anomaly and the
suppression [38] from the small “low-energy UV scale” � in
momentum space in the latter systems seems to have been
ignored in the literature, to the best of our knowledge. The
suppression is expected to be experimentally significant.

Previous work and detailed organization of the paper

The torsional LLs appeared implicitly already in
Refs. [10,51] and more recently in topological semimetals
in [44] in comparison with Pauli-Villars regularization of
Lorentz-invariant fermions. Such a relativistic regularization
scheme is at best only an approximation in condensed
matter systems since the linear Weyl regime applies to low
energies with an explicit cutoff scale. This linear regime can
be anisotropic and, furthermore, is continuously connected
with the nonrelativistic regime with quadratic dispersion. In
addition, as discussed in this paper, the role of the spectral
flow is drastically altered by the finite node momentum as
compared to relativistic fermions.

Aspects of gravitational anomalies in condensed matter
have been considered in, e.g., Refs. [38,44,58,59,63,73–80]
including Weyl and Dirac fermions in superfluids, super-
conductors, and semimetals. The dimensional hierarchy and
descent relations of the torsional anomaly were recently an-
alyzed in Ref. [79] from a Hamiltonian perspective in a
relativistic model. Nevertheless, it seems that any explicit
value of the cutoff parameter � has not been discussed in
detail, except in the recent papers [38,81] by one of the present
authors. In the simplest possible terms, the nonuniversal UV
scale originates from the regime of validity of the Taylor
expansion and well-defined chirality close to the node. Ex-
perimentally, this is a low-energy scale in the system [38].
Generalizing this observation to arbitrary Weyl fermion sys-
tems, we verify that the NY anomaly nonuniversally probes
the chiral spectrum and transport, and is well defined only
upon a UV completion in some left-right asymmetric way,
as required by global consistency and symmetries. Indeed, at
face value, the spectrum and spectral flow can be terminated in

a multitude of inequivalent ways. If the system is anisotropic,
the interplay of different scales in the system becomes
essential.

Our geometric results clarify the role of pseudogauge fields
with momentum-dependent axial charge from, e.g., elastic
deformations [15,27,28]. Evident in the geometric frame-
work for the axial anomaly presented here, it is incorrect
to assume the universal U(1) axial anomaly for such gauge
fields since the effective momentum space description has
a finite regime of validity leading to a suppression of that
magnitude from the LL density of states. The results coin-
cide only if the Weyl approximation is valid in the whole
spectrum, which is impossible in condensed matter systems;
to our knowledge this has been overlooked thus far in the
literature.

Related to the scale dependence in the torsional anomaly,
the UV scale can be supplemented by an infrared (IR) tem-
perature scale of universal thermal fluctuations with some
caveats. The thermal torsional anomaly and the associated
currents were recently considered in Ref. [81]. Contributions
from torsion at finite temperatures were further discussed
in [82–87] for relativistic fermions at p = 0. The closely
related role of torsion and viscoelastic thermal transport has
been also studied, e.g. in [88–91]. Here, we mostly focus on
the nonuniversal UV contribution at zero temperature. For
completeness, we comment on thermal effects by nonzero
temperature gradients, which point to still new types of
anisotropic torsional anomalies terms not present in systems
with Lorentz invariance.

The rest of this paper is organized as follows. Section II
discusses the low-energy Weyl Hamiltonian, the associated
geometry, and the torsional anomaly in condensed matter
systems. The following Sec. III reviews the torsional LLs
and spectral flow argument for the anomaly, followed by
the extension to finite node momentum and the comparison
with the anomaly for U(1) gauge fields (see also Appen-
dices A and C). In Sec. IV we apply the torsional anomaly
in chiral superfluids and superconductors, where it can be
matched with experiment [38,53,54,81]. This is followed by
(re)considering the torsional anomaly in T -breaking strained
semimetals in Sec. V. We also briefly discuss the role of
torsion in the presence of thermal gradients in Sec. VI. We
conclude with an outlook of our results in Sec. VII. In Ap-
pendix A we review the anomaly and spectral flow for U(1)
gauge fields. Emergent space-times corresponding to con-
sistent background geometries of low-energy Weyl fermions
with nonrelativistic dispersions are discussed in Appendix B.
A detailed comparison of previous results using pseudogauge
fields is given in Appendix C. The Appendices can be skipped
by readers interested in the torsional LL results and the
anomaly only.

II. WEYL FERMIONS, GEOMETRY, AND CHIRAL
ANOMALIES IN CONDENSED MATTER SYSTEMS

A. Weyl fermions in condensed matter

We consider a fermionic system with broken time-reversal
(T ) or inversion (P) symmetry. In the vicinity of a generic
degenerate crossing at pW , ignoring all other bands, the 2 × 2
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Hamiltonian is H = σ aHa in terms of the unit and Pauli
matrices σ a, a = 0, 1, 2, 3. This leads to the expansion

H (p) = σ aei
a(p − pW )i + · · · , (1)

where the matrix coeffiecients with dimensions of velocity

ei
a = ∂Ha

∂ pi

∣∣∣∣
p=pW

(2)

couple the momentum and (pseudo)spin in (1) as effective
tetrad (or dreibein) frame fields [3,92]. pW is the location of
the Weyl point. Due to at least broken P or T , the shift vector

pW,μ = (μW , pW ) (3)

is necessarily nonzero for the existence of the Weyl point. We
will focus on the T -breaking case with two nodes of opposite
chirality at ±pW . The effects from nonzero μW can be incor-
porated independently and we set it to zero. The existence of
the Weyl node degeneracy is protected by topology in a finite
parameter region since there are three parameters and three
constraints [3,4,6,7]. The expansion (1) is, of course, valid for
|p − pW | � pW since the remainder is (typically) of the order
of |p − pW |2. This provides an explicit cutoff for the linear
Weyl regime that is, nevertheless, continuously connected
with the nonrelativistic dispersion at higher energies.

After rotations and scalings, we define vF p̃a = ei
a pi with

uniform Fermi velocity vF playing the role of the speed of
light. The Hamiltonian becomes the right- or left-handed rel-
ativistic Weyl Hamiltonian, at Fermi momentum p̃W ,

H̃ (p) = χvF σ a( p̃ − p̃W )a = χvF σ aq̃a, (4)

where χ = ±1 = sgne is the chirality of e = det ei
a, defined as

the direction of (pseudo)spin with respect to the propagation
momentum. The band energies are E = q̃0 ± |q̃|, where q̃a =
( p̃ − p̃W )a, q̃0 being a constant energy shift.

The role of the tetrad coefficients ei
a is simply to determine

the (anisotropic) Fermi velocities of the conical dispersion
ω2 = −gi jqiq j via the (inverse) metric [3,92]

gi j = −
∑

a,b=0,1,2,3

ei
ae j

bδ
ab ≡ −ei

ae j
bδ

ab, (5)

where the Einstein summation convention for repeated latin
and greek indices will be henceforth assumed. The spatial
tetrad ei

a is extended to a nondegenerate matrix eμ
a by consid-

ering the operator σ aeμ
a i∂μ = i∂t − H (p) with μ = t, x, y, z.

The tetrad matrix and its inverse give the relation between the
metrics in coordinate and orthogonal bases,

gμν = ea
μeb

νηab, ηab = eμ
a eν

bgμν, (6)

where ηab = diag(1,−1,−1,−1) is the Lorentz metric. In
particular, the coefficient eμ

0 = {1, vi} has nontrivial off-
diagonal components vi in type-II Weyl semimetals and in
superfluids and superconductors with superflow. The case
with nonzero spatial et

a, a = 1, 2, 3, was considered in [33].
The tetrad coefficients break different symmetries: While the
timelike components transform like velocities, the spacelike
tetrads transform like gauge potentials corresponding to axial
magnetic and electric fields. The Hamiltonian (1) is usually
analyzed for translationally invariant systems but it remains
valid for weak deformations in coordinate space. This can

be seen in any consistent gradient expansion scheme, e.g.,
the semiclassical gradient expansion of the Bogoliubov–de
Gennes (BdG) Hamiltonian for superconductors and su-
perfluids, or the Schrieffer-Wolff transformation for Bloch
Hamiltonians [34,36].

B. Geometry and chiral anomalies

We conclude that the Hamiltonian (1) has striking similar-
ity to relativistic fermions coupled to nontrivial background
geometry or gravity, albeit with some important caveats re-
lated to the nonrelativistic condensed matter system. More
precisely, if we consider the low-energy Weyl fermion �W in
terms of the original excitations �, we see

�(x, t ) = e±ipW ·x�W (x, t ), (7)

which, however, corresponds to the anomalous (chiral) rota-
tions in the system, thus making the finite node momentum
pW very important [38].

The chiral anomaly pertains to the breaking of the classical
symmetry (7) of the massless Weyl fermions. For a pair of
fermions with opposite chirality χ = ±1 and U(1) gauge field
Aμ with electric charge q, (1) becomes

i∂t − Hχ (p̂) = σ a
χ eμ

a (x)[−i∂μ − qAμ(x)] (8)

with σ a
χ=+1 = σ a and σχ=−1 = σ a ≡ (1,−σ i ). The shifted

momentum is −i∂i ∼ q = p ∓ pW from (7). The quantum
anomaly is the nonconservation of the axial current jμ5 ≡
jμ+ − jμ− for the two nodes (see Appendices A and B 3). The
ensuing relativistic anomaly of (8) with U(1) gauge field and
torsional tetrads is [1,3,38,43,44,46,56,68,78,79,93]

∂μ

(
e jμ5

) = εμνλρ

16π2

(
q2FμνFλρ + �2ηabT a

μνT b
λρ

) + · · · , (9)

where the torsion T a
μν = ∂μea

μ − ∂νea
μ is a geometric field

strength from the tetrads similar to the electromagnetic field
Fμν = ∂μAν − ∂νAμ. The ellipsis signifies neglected higher-
order and mixed gauge-torsional terms [72,93] not relevant
here. Loosely speaking, the difference in the anomaly terms
from gauge fields and tetrads can be understood from the
coefficients in (9) combined with the chiral rotation (7). The
anomaly, and chiral rotation, for U(1) gauge fields is propor-
tional to electric charge q and all charged states contribute
universally. In contrast, since the the tetrads are dimensionless
(in canonical units where vF = 1), the torsional anomaly term
from (7) must be supplemented with a dimensionful parameter
�2ηab with dimensions of momentum squared.

In the rest of the paper, we consider the anomaly implied
by (7) and (9) in the presence of nontrivial background fields
eμ

a (x) from Eq. (2) when U(1) gauge fields are absent. We
will focus here on T -breaking systems, where in the sim-
plest case one finds two Weyl nodes of opposite chirality at
±pW , whereas for inversion P-breaking systems one has at
minimum four Weyl points, which are invariant under T and
transform nontrivially under inversion [9]. The momentum (or
energy) scale � is computed using LLs, and its manifesta-
tions are discussed in relativistic and nonrelativistic systems.
The anomaly coefficient � is related to the node momen-
tum, the breaking of Lorentz symmetries, and chirality in the
UV [68], and can be anisotropic in condensed matter systems.
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For the torsional LL problem, the nonuniversal prefactor �

simply results from the spectral flow with momentum-
dependent charge and density of states in Sec. III. See
Appendix A for a review of the U(1) anomaly in terms of
LL spectral flow. The relevant gravitational background ge-
ometries that arise in the low-energy theory in the form of
quasirelativistic and nonrelativistic low-energy space-times
are discussed in Appendix B. We also review the gravitational
anomaly term from torsion in more detail in Appendix B 3.
Readers interested only in the the torsional LLs and the final
expression for the anomaly can move directly to the next
section.

III. TORSIONAL ANOMALIES AND LANDAU LEVELS

Now, we proceed to compute the torsional NY anomaly (9)
in nonrelativistic systems utilizing the Landau level argument.
To set the stage and remove confusions before presenting
our main results, we briefly review (quasi)relativistic torsional
Landau levels with linear spectrum (see, e.g., [44]). The com-
putation of the Landau levels is close to and inspired by the
spectral flow obtained in [10,51] for momentum space gauge
fields at pW �= 0 but the end result will be different. Simi-
lar considerations for Weyl fermions at p = 0 can be found
in [79,84].

The Weyl particles are governed by the effective Hamilto-
nian (1). Throughout the paper, we assume that the coordinate
dependence of the Hamiltonian arises solely from the tetrad
eμ

a (x), while the location of the node pWa is assumed to be con-
stant. Note that the coordinate node momentum pW μ ≡ ea

μ pWa

can still vary and when T a
μν �= 0 there is nonzero torsion.

Torsional LLs arise when, say, 1
2εi jkT 3

jk = TBẑi is constant
with the other torsion components and spin connection van-
ishing. We discuss later in Secs. IV and V on how to make
the identification between low-energy emergent gravitational
fields and microscopic background fields in specific examples.

A. Torsional anomaly and spectral flow at pW = 0

The (semiclassical) tetrads ea = ea
μdxμ and the inverse

ea = eμ
a ∂μ with torsion perpendicular to the xy plane are,

following [10,44,51],

e0 = dt, e1 = dx, e2 = dy, e3 = dz − T (y)dx,

e0 = ∂t , e1 = ∂x + T (y)∂z, e2 = ∂y, e3 = ∂z. (10)

Now, we compute the spectrum of the Weyl fermions in the
presence of a constant torsional magnetic field T (y) = T 3

B y.
The corresponding metric is

gμνdxμdxν = ηabeaeb

= dt2 − [1 + T (y)2]dx2 − dy2

+ 2T (y)dx dz − dz2. (11)

The torsion is given as T 3
i j = ∂μe3

ν − ∂νe3
μ, i.e., with non-

vanishing T 3
xy = −∂yT (y) = T 3

B . In differential form notation
of Appendix B 3, T 3 = de3 = 1

2 T 3
B dx ∧ dy. In analogy with

the electromagnetic tensor, we will call 1
2 e−1εi jkT a

jk and T a
0i

torsional magnetic and electric fields, respectively.

FIG. 1. Dispersion of left-handed (LLL in blue) and right-handed
Weyl fermions (LLL in red) at pW = 0 under a torsional magnetic
field, respectively.

The Weyl Hamiltonian couples to the nontrivial vierbein
as, χ being the chirality,

Hχ = χ

2
σ aei

a p̂i + H.c.

= χ

[
p̂z p̂x + p̂zT 3

B y − i p̂y

p̂x + p̂zT 3
B y + i p̂y −p̂z

]
. (12)

As usual, the eigenvalues are obtained from squaring the
Hamiltonian

H2 = σ aei
a p̂ie

j
bσ

b p̂ j

= ei
ae j

bσ
aσ b p̂i p̂ j + ei

aσ
aσ b

{
p̂i, e j

b

}
p̂ j

= ei
ae j

b(−ηab + iεabcσ c) p̂i p̂ j + iT 3
B

2
[σ 2, σ 1] p̂z

= −gi j p̂ j p̂ j − T 3
B σ3 p̂z

= p̂2
y + p̂2

z + (
p̂x + T 3

B ŷp̂z
)2 − T 3

B σ3 p̂z.

We see (12) is equivalent to a LL problem in a magnetic field
[Eq. (A7) for Bz = T 3

B and q = pz in Appendix A]. With those
identifications, the spectrum is consequently [from Eq. (A17)]

E (pz ) =
{

±
√

p2
z + 2

∣∣pzT 3
B

∣∣n, n � 1

sgn
(
T 3

B

)
χ |pz|, n = 0.

(13)

The lowest Landau level (LLL) is chiral and unpaired, with

the momentum-dependent density of states NLL(pz ) = T 3
B

4π2 |p|z
and simple eigenfunctions

�σ 3=±1(y, px, pz ) ∼ ei(pxx+pzz)e±(pyy−pzT 3
B y2/2), (14)

where the (pseudo)spin or helicity is determined by
sgn(pzTB). We stress that the shape of the spectrum is in
general also modified due to the momentum replacing the
electric charge: left-handed states now disperse as E < 0 and
right-handed states as E > 0 (or vice versa, depending on the
sign of the field) (see Fig. 1).

Analogously to the Landau level calculation with electro-
magnetic fields, we may turn on a constant torsional electric
field parallel to T 3

B by introducing time dependence to the
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FIG. 2. Relativistic spectral flow at pW = 0 in the presence of
torsion, with the adiabatic transfer of states. Dashed line indicates
the location of the cutoff �.

vierbein as e3
z = 1 + T 3

E t where T 3
E t � 1. Then, we have

ez
3 = (1 + T 3

E t )−1 ≈ 1 − T 3
E t . This induces adiabatic time de-

pendence ∂t pz = (∂t e3
z )p3, analogous to the Lorentz force,

which leads to spectral flow of states through the torsional
electric field. The number currents, in the vicinity of the node
pz = e3

z p3 = pW z = 0, are for both chiralities

e j0
χ (t ) =

∫ �

−�

NLL(pz )d p3 = T 3
B

2π

∫ �

−�

d p3

2π
|pz|

= −�2
T 3

xye3
z

4π2
= −�2 T 3

B

(
1 + T 3

E t
)

4π2
, (15)

where a cutoff � has been introduced to regularize the
momentum-dependent density of states integrated over the
spectrum. Then, taking into account the fact that the tensorial
current density is modified by the volume element e d4x in the
presence of torsion (see, e.g., [69,89]), we obtain

˙e j0
χ = ∓�2

T 3
xy∂t e3

z

4π2
= ∓�2 T 3

B T 3
E

4π2

= ± �2

32π2
εμνρσ T 3

μνT3ρσ . (16)

We see that for E < 0 particles flow below the cutoff, whereas
for E > 0 holes flow above the cutoff, depending on the
direction of the torsional electric field (see Fig. 2). This
is the vacuum regularization nvac = e j0

vac = ∑
|En|�� sgn(En)

that was also used in Ref. [44], where an additional factor of
1
2 was present, presumably due to comparison with anomaly
inflow from five dimensions. Generalizing this to a fully co-
variant expression (see Appendix A) gives

1

e
∂μ

(
e jμ5

) = 1

e

�2

16π2
εμνλρT a

ρσ Taρσ , (17)

and in particular ∂μ(e jμ) = 0 as required. We discuss the
relativistic vacuum and the spectral flow leading to (17), as

FIG. 3. Left-handed Weyl particles at pz = pW (LLL in red) and
right-handed Weyl holes at pz = −pW (LLL in blue) under a tor-
sional magnetic field. Spectral flow is indicated with the arrows.

compared to nodes at finite momenta and axial U(1) fields,
more in Sections IIIB and IIIC.

B. Torsional anomaly and spectral flow for pW �= 0

If we now displace the Weyl nodes in the relativistic
case (12) by pz = ±pW in momentum space, corresponding to
a T -breaking Weyl system, the spectrum (13) takes the form

E (pz ) =
{

±
√

(pz ± pW )2 + 2
∣∣pzT 3

B

∣∣n, n � 1

sgn
(
χ pzT 3

B

)
(pz ± pW ), n = 0.

(18)

The lowest, chiral Landau level looks exactly like that of a
Weyl fermion in an axial magnetic field [Eq. (A26)]. Higher
levels are distorted due to the effective charge carried by the
particles being their momentum (see Fig. 3).

Since the node is at finite momentum pW �= 0, also the
spectral flow summation (15) is centered around pW ± �′,
where �′ is a cutoff naturally bounded by the validity of
the linear spectrum. For notational convenience and com-
parison to Eq. (17), we introduce the momentum cutoff as

�′ = �2
rel
2 pW , where we expect �2

rel � 1, this being the di-
mensionless ratio of the cutoff of the linear spectrum to pW .
This scale is absent in the relativistic case at p = 0. Repeating
the above arguments for the torsional spectral flow results in
the expression

1

e
∂μ

(
e jμ5

) = 1

e

p2
W �2

rel

16π2
εμνλρT 3

μνT3λρ, (19)

which shows that the NY anomaly cutoff is proportional to
the node momentum pW [38], and is suppressed by a factor
�2

rel � 1 corresponding to the validity of the linear Weyl
approximation.

C. Comparison of torsion to U(1) fields

From Figs. 1–3, we see that the spectrum of torsional LLs
resembles the LL spectrum of charged particles in U(1) axial
and vector fields, with the effects of the momentum-dependent
charge of torsion kept in mind. The contribution of torsion
for chiral Weyl fermions can be equivalently cast in terms of
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the axial gauge field γ 5Sμ ≡ γ 5e−1εμνλρTνλρ corresponding
to the totally antisymmetric torsion (see, e.g., [68,69]). See
Appendices A and C about the U(1) case for comparison.
We stress that while the spectral equivalence of torsional and
U(1) LLs is of course expected, the physical appearance of
the anomaly is drastically different: the density of states of
the LLs depends on momentum and thus the dimensional
coefficient �2 and the need for an explicit UV cutoff appear.
Similarly, the physics of Figs. 2 and 3 is completely different,
although both arise from spectral flow in momentum space
under torsion.

Although the relativistic result in (16) is familiar, there
seems to remain confusion in the literature about the role of
torsional Landau levels in momentum space and the validity of
the NY anomaly due to the explicit UV cutoff. For relativistic
Weyl fermions with Lorentz invariance up to arbitrary scales,
the spectral flow is symmetric around p = 0, leading to the
conclusion that the anomaly indeed can cancel. This is simply
by the observation that, in the absence of Lorentz symmetry
breaking at high energy, no net transfer of occupied and empty
states in the vacuum takes place during the adiabatic spectral
flow (cf. Fig. 2). The net transfer of j5 requires left-right
asymmetric regularization at the scale of �, with chirality
undefined above that scale, while maintaining ∂μ jμ = 0 [44].
At the very least, there is a divergence as � → ∞.

In contrast, for quasirelativistic Weyl fermions at finite
node momentum and an explicit finite cutoff to the Weyl spec-
trum, the spectral flow can terminate due to the nonrelativistic
corrections at the cutoff scale of �′, where also chirality is no
longer well defined. This leads to net transport of states and
momenta relative to the vacuum (and other quantum numbers
of the Weyl fermions, if present). A related fact is that the
(sign of) momentum pz plays the role of chirality, which
remains physically well defined irrespective of the scale. The
flow is composed of particles and antiparticles (holes) at the
different nodes.

It would be interesting to study the detailed role of the
breakdown of relativistic spectrum and chiral spectral flow
numerically, following Ref. [22]. There, only the charge den-
sity at finite chemical potential from the node is analyzed,
corresponding to Fig. 6, and the expected deterioration away
from the Weyl node is verified.

IV. CHIRAL WEYL SUPERFLUIDS AND
SUPERCONDUCTORS

Now, we discuss the role of the torsional anomaly in p-
wave superfluids and superconductors with gap nodes and
associated Weyl-Majorana quasiparticles [13,14,49,73,74,94].
Close to the nodes, the Fermi energy is tuned to the Weyl
point due to the existence of the p + ip pairing amplitude.
The chiral anomaly is related to the nonconservation of mo-
mentum flux ∝pF e jμ5 of the nodal Weyl quasiparticles and
the pair condensate [48,54]. The relation of this to the tor-
sional gravitational anomaly and the LL spectral flow was
pointed out in Ref. [38]. Earlier related work can be found
in [10,12,13,50,51,95,96].

The spinless p + ip gap amplitude, with equal spin pairing
understood, takes the form

�(p) = �0

pF
(m̂ + in̂), (20)

where c⊥ = �0/pF has units of velocity. The direction l̂ =
m̂ × n̂ is a low-energy Goldstone variable for the condensate.
At low-energy, the direction of l̂ can fluctuate and there is
combined U(1) gauge symmetry [97] in the m̂-n̂ plane, lead-
ing to the Mermin-Ho relations between l̂ and vs [3,94,98].
In the following, we focus on the Landau levels and torsion,
keeping the magnitudes of pF and �0 fixed. Related to this,
for superconductors, the end results apply to the case where
the electromagnetic potential Aμ = 0 which amounts to the
gauge where vs − A → vs. In the following computations,
we will set vs = 0 as well, since this corresponds to the
case where one has only torsion and no spin connection (see
Ref. [38] for the general case with superfluid velocity). The
orientation of the orthonormal triad l̂ can still rotate for the
torsional textures.

Considering first the homogeneous case, the linearization
of the BdG Hamiltonian takes the form of a Weyl Hamiltonian
close to the nodes of E (p) at p = ∓pF l̂:

HBdG(p̂) =
(

ε(p̂) 1
2 {p̂,�(p)}

1
2 {p̂,�†(p̂)} −ε(−p)

)

≈ ±τ aei
a(pi ∓ pF,i ). (21)

Note that the BdG excitations are Majorana, �†(p) =
τ 1�(−p), as expected in a Bardeen-Cooper-Schrieffer (BCS)
paired system. Here we have taken the normal state dispersion

ε(p) = p2−p2
F

2m , where m is the 3He atom mass. The tetrads are

ei
1 = c⊥m̂, ei

2 = −c⊥n̂, ei
3 = −c‖ l̂, (22)

where c‖ ≡ pF

m = vF . Henceforth, to conform with relativistic
notation, we will work with dimensionless tetrads in units
of c‖ = 1. The dispersion is E (p) = ±

√
ε(p)2 + |�(p)|2 ≈

±
√

c‖q2
‖ + c2

⊥q2
⊥, with q = p − pF for the Weyl quasipar-

ticles. The linear expansion is valid when |p − pF | � pF ,
requiring that the remainder

1

2

∂ε(k)

∂ki∂k j

∣∣∣∣
pF

(p − pF )i(p − pF ) j = 1

2m
(p − pF )2

� ei
a(p − pF )i. (23)

This leads to the condition, in addition to the trivial |p −
pF | � pF from the Taylor expansion of ε(p), that

EWeyl � mc2
⊥ =

(
c⊥
c‖

)2

EF , (24)

which will prove important later. In particular, the energy
cutoff for the Weyl quasiparticles is anisotropic in momenta
q = p − pF around the Weyl point,

q⊥ �
(

c⊥
c‖

)
pF , q‖ �

(
c⊥
c‖

)2

pF , (25)

in the parallel and perpendicular directions [38]. Here, both
are relevant since the three directions are coupled by l̂ = m̂ ×
n̂ and the corresponding Mermin-Ho relations.
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A. Landau levels in linear approximation

To compute the LL levels in the order-parameter texture
corresponding to a torsional magnetic field, we can take the
“weak-twist” texture m̂ + in̂ = x̂ + iŷ − iTBxẑ with |TBx| �
1, which corresponds to l̂ = ẑ + TBxŷ ≈ ẑ [10,50,51]. The
BdG Hamiltonian then takes the form

HBdG =
[

ε(p̂) 1
2 {�i, p̂i}

1
2 {�† i, p̂i} −ε(−p̂)

]

=
[

ε( p̂x, py, pz ) �0
pF

[ p̂x + i(py− TB pzx)]
�0
pF

[ p̂x − i(py− TB pzx)] −ε(−p̂x,−py,−pz )

]
.

(26)

Near the gap node pW = −pF l̂ we may linearize the op-
erator ε(p̂) as ≈ −vF l̂ · (p̂ + pF l̂) ≈ −vF (pz + pF ). This
leads to

H+ = ei
aτ

a
(
pi − pF e3

i

) = τ a
(
ei

a p̂i − pF δ3
a

)
(27)

with

ei
a = (

c⊥δi
1,−c⊥

[
δi

2 − TBxδi
3

]
,−c‖δi

3

)
, (28)

where we remind that c‖ ≡ vF and c⊥ ≡ �0
pF

. This corre-
sponds, up to the sign of the field TB and the tetrad, to the
case (10) after a rotation in the x̂-ŷ plane.

In terms of the dimensionless and scaled momenta
pa ≡ ei

a pi, we can define the annihilation operator â ≡
1√

2|TB pz | [(|TB pz|x̃ − pỹ) + i p̂x̃] to arrive at the Hamiltonian

Hpz<0 =
[

p3 + pF
√

2|TB pz|iâ†

−√
2|TB pz|iâ −(p3 + pF )

]
, (29)

which is (A7) after p3 → p3 + pF . The eigenstates are then

�n,pz<0 =
(

unφn

vnφn−1

)
ei(pzz+pyy), (30)

where φn ≡ φn(x), for n � 0, are harmonic oscillator eigen-
states and vanish otherwise. The condition for normalization
is |un|2 + |vn|2 = 1, corresponding to the BdG particle and
hole amplitudes. We compute v0,pz<0 = 0 [see Eq. (36)]. Car-
rying out a corresponding calculation at the Weyl point p =
pF l̂, we have the Hamiltonian

Hpz>0 =
[

p3 − pF −√
2|TB pz|iâ√

2|TB pz|iâ† −(p3 − pF )

]
, (31)

which can be identified as the left-handed Hamiltonian H− =
−ei

aτ
a pi after a rotation about l̂ such that m̂ → −m̂ and n̂ →

−n̂. Its eigenstates are

�n,pz>0 =
(

unφn−1

vnφn

)
ei(pzz+pyy), (32)

and now u0,pz>0 = 0. Depending on the chirality, i.e., sign of
momentum at the node, the LLL is either particlelike or hole-
like as in Eq. (14). The conclusion is that the spectrum looks
like the quasirelativistic spectrum in Fig. 3, when the linear
approximation for ε(p) ≈ ±c⊥(pz − pF ) is valid [Eq. (25)].
This corresponds to the spectrum of axial U(1) fields with
momentum-dependent charge and density of states per LL.

The density of states follows from (A19) in the scaled coordi-
nates, with e0

μ = δ0
μ,

j0dV = e j0dṼ = |pzTB|
4π2

dṼ . (33)

B. Anisotropic Newton-Cartan model

We just showed that the simple order-parameter texture in
chiral superfluid or superconductor gives rise to the torsional
LLs for the low-energy Weyl quasiparticles, in the linear
regime close to nodes. We can, however, consider nonrela-
tivistic quadratic dispersion beyond the linear approximation

ε(p) = p2

2m
− μF → p2

z

2m
− μF , (34)

which corresponds to the anisotropic Newton-Cartan space-
time with a (Majorana-Weyl) fermion in Appendix B 2.

The above model has the same regime of validity in the
chiral superfluid or superconductor as the linear approxima-
tion in Eq. (25) since it also neglects the rotationally invariant
dispersion ε(p) of the normal state (see also Ref. [38]). The
chiral p-wave BCS state and low-energy Weyl description has
the uniaxial anisotropy of Eq. (34), however, and this carries
to the anomaly and the form of the emergent space-time in
Appendix B 2. The other benefit of the anisotropic UV com-
pleted model is that the LL spectrum can be computed for
momenta far from pF , up until p = 0, corresponding to the
filled levels of the nonrelativistic Fermi system, which are
absent in the relativistic linear model. This is important for the
global properties of the anomaly, including the contribution
to the anomalous current from the superfluid vacuum (see
Sec. IV C).

The spectrum follows simply from Eqs. (29) and (31) by
the substitution ∓(p3 ± pF ) → ±ε(±pz ). From squaring the
Hamiltonian, the corresponding eigenvalues are at both nodes

En = ±
√

ε(pz )2 + c2
⊥|TB pz|2n,

(35)
E0 = ±sgn(pzTB)ε(pz )

for n � 1. The LLL state retains the Gaussian form (14). The
condition for normalization is |un|2 + |vn|2 = 1, and conse-
quently the particle and hole amplitudes are just

un =
√

En + ε(pz )

2En
, vn = i

√
En − ε(pz )

2En
. (36)

With E0 = ε(pz ) we have v0 = 0, meaning that the lowest-
level particles appear only for pz < 0. For pz > 0, u0 = 0
when E0 = −ε(pz ), so for positive momenta only holes ap-
pear at the lowest level, as we found for the linear model. In
this case we must, however, remember that the hole spectrum
arises due to the Majorana doubling of the BdG spectrum and
is not physical. This cancels with a corresponding factor of 2
from spin degeneracy in the Fermi system. This leads to the
LL spectrum in Fig. 4.

C. Spectral flow, anomalous axial density, and vacuum current

Now we are equipped to compute the spectral flow re-
sulting from torsional Landau levels, corresponding to the
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FIG. 4. The torsional LL spectrum for the anisotropic Newton-
Cartan model in chiral superfluids and conductors with the spectral
flow indicated. Note that we have inverted the holelike right-handed
Landau level at −pF and the spectrum is particle-hole doubled.
Overall, there is a corresponding factor of 2 from spin degeneracy.

covariant torsional NY anomaly. For the anisotropic Newton-
Cartan model, we can also compute the vacuum current of
the condensate since the dispersion takes into account the
filled states below the Fermi level, in contrast to the linear
model. Interestingly, the resulting anomalous current is the
one corresponding to the consistent anomaly [18,99].

1. Axial density and covariant anomaly

In chiral p + ip system, the torsional spectral flow leads
to the anomalous density corresponding to the covariant
anomaly

e j0
± =

∫ ∓pF + pF �2
rel

2

∓pF − pF �2
rel

2

d p3NLL(pz ) = ±
p2

F

( c⊥
c‖

)2

4π2
TBe3

z , (37)

where the cutoff for the anomaly (19) is taken at �2/p2
F =

�2
rel = ( c⊥

c‖
)2. This cutoff corresponds to Eq. (25) with the

condition “ 1
2 � 1” in terms of the validity of the Weyl spec-

trum. Remarkably, although outside the strict validity of the
Weyl approximation, the LL results match the more gen-
eral torsional contribution for the NY anomaly including
curvature [38]. This result was found by matching the NY
anomaly on emergent space-time to the hydrodynamic lin-
ear momentum anomaly of the chiral BCS p-wave system.
There, inclusion of the effects of superflow leads to a spin
connection and curvature perpendicular to l̂, as required by the
Mermin-Ho relations [98], producing the leading p2

F term in
the NY anomaly. The cutoff Eq. (25) in typical 3He-A liquid

is actually �2
rel = c2

⊥
c2
‖

∼ 10−6.

In the chiral superfluid (or superconductor) the above result
holds for both the linear quasirelativistic and the anisotropic
Newton-Cartan (NC) space-time, as defined by the tetrad (22).

This simply follows from the fact that the cutoff for the va-
lidity of both models coincides with (25) since l̂ = m̂ × n̂,
making the triad dependent on all directions [38,97,98]. In the
LL model we also approximated l̂ ≈ ẑ which for the general
nontrivial textures is valid up to higher-order corrections [50].

2. Anomalous axial current and consistent anomaly

In contradistinction to the anomalous density at the nodes,
we can compute the anomalous vacuum (momentum) current
for the nonrelativistic anisotropic NC model (34). This corre-
sponds to the anomalous superfluid momentum from the filled
states below pF [10]. From the UV completion, the global
spectrum is consistent with the nonrelativistic symmetries
also outside the vicinity of the Weyl points. The anomalous
vacuum momentum current is given by

janom,‖ = −2
∫ pF

0
d p3NLL(pz )p3 = − p3

F

6π2
l̂(l̂ · ∇ × l̂) (38)

and, formally, even extending to pz = 0, there is no need for a
cutoff (see Fig. 4). The current (38) is pF l̂ times the consistent
anomaly [99], and arises from the integration over the filled
Fermi states [18,58] in contrast to the node density (37).

This is actually the correct hydrodynamic result for the
(weak-coupling) BCS system [10,48,50] to lowest order in
gradients since the final answer for the anomalous vacuum
current is sensitive only to the e3 = l̂ direction, even in the
presence of vs (corresponding to curvature in the perpen-
dicular plane). Using superfluid hydrodynamics, the time
derivative of (38) produces the covariant anomaly implied by
the Weyl nodes [10,38,48]. If we assume, without any sup-
porting arguments, that the curvature and torsion contribute
to the current (38) as they enter the anomaly (B14), we get
the same result if we apply the cutoff (25) as above, even in
the linear model. We note that these findings are corroborated
by the thermal contribution to the NY anomaly and superfluid
free energy in Ref. [81]. In this way, the proper inclusion of
curvature in the low-energy theory is expected to ensure that
states far away from the Fermi surface do not contribute to the
currents.

These considerations are beyond the LL spectral flow ar-
gument and we emphasize that the current (38) should be
derived from a corresponding Wess-Zumino term, generalized
for torsional space-times [18,70,76,79,100–102]. See espe-
cially [76], where the consistent and covariant anomalies are
discussed in an anisotropic Lifshitz model, closely related
to Eq. (B13). We leave the study of the consistent vacuum
current from the perspective of gravitational anomalies with
torsion for the future.

V. STRAINED WEYL SEMIMETALS

Semimetals with Weyl fermions arise in solid-state sys-
tems where the Fermi energy is tuned to a band crossing
in the Brillouin zone [1,5]. The tetrads arise universally via
the coefficients of the linear expansion of Sec. II. In this
case, the electrons are charged and can experience the U(1)
anomaly with electromagnetic fields [1,9]. Effective back-
ground axial fields from the constant shift of the Weyl node
in momentum space lead to the existence of the protected
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Fermi arc states at interfaces with vacuum [18,19,103]. Here
we would like to analyze and clarify the related, but physi-
cally distinct, contribution from elastic strains. In fact, due to
the universal coupling of the tetrads to momentum [15,27–
29,44], as in gravity, one expects that deformations of the
lattice geometry lead to effects that probe the Weyl fermions
via the background tetrads. The close connections of tor-
sionful geometry and elasticity are discussed in, e.g., [104].
The geometric framework below correctly takes into ac-
count the anomalous physics of the momentum-dependent
fields (see nevertheless [17,19,20,59,77,78,84,93,105,106]).
Torsional LLs of Sec. III from strain in two dimensions have
been recently considered in [107,108].

We start in a roundabout way, first discussing the low-
energy Weyl Hamiltonian and then considering a T -breaking
lattice model for a realistic material [20].

A. Bloch-Weyl fermions in crystals

The low-energy Bloch-Weyl Hamiltonian is of the
form [1,5,9]

h±(k) = ±σ a(ka ∓ kW,a) + H.c.

= ±σ a

2
ei

a(ki ∓ kW,i ) + H.c., (39)

where now

ei
a = ∂HaTB(k)

∂ki

∣∣∣∣
kW

(40)

are simply the linear coefficients of the expansion of the
underlying (tight-binding) Bloch Hamiltonian HTB(k) near
the Weyl nodes. Before we consider lattice deformations and
nontrivial tetrads in this model, we remark on the interplay
with lattice momentum [15]

p̂a = i

2a

∑
x

c†
xcx+â − c†

x+âcx =
∑

k

sin(kaa)c†
kck. (41)

Under nontrivial background fields, the Weyl system itself
is anomalous under the lattice translation symmetry T3 = Tẑ
along the node vector, corresponding to the conservation of
the lattice momentum p̂3,

T †
ẑ c±kTẑ = e±iakW c±kW , (42)

since this is an anomalous chiral rotation of the low-energy
Weyl fermions at the T -breaking nodes ±kW . Here, c†

k creates
the state corresponding to the lattice periodic Bloch state
|vk〉 = |vk+K〉, with wave function

ψk(x) = eik·xvk(x). (43)

In the presence of elastic deformations corresponding to
torsion, i.e., phonons, the anomalous chiral symmetry corre-
sponding to translations is manifested as the nonconservation
of (lattice) node momentum flux kW e jμ5 between the Weyl
fermions and the background phonons [38,47], as found in su-
perfluid 3He-A for the (p + ip)-wave paired Fermi liquid [3].
See also [16,76,78,109].

B. Elastic deformations

Now we consider general elastic lattice deformations, lead-
ing to deformed tetrads [15,27,28]. The original unstrained
lattice momenta entering the Weyl Hamiltonian are repre-
sented as ka and the deformed lattice is given as ki = e a

i ka

in the coordinate system of the laboratory, where e a
i �= δa

i to
first order in the strains. In particular, this means that Fermi
momentum kW,a in the Hamiltonian is held fixed, whereas
kW,i with δkW,i = w a

i kW,a is deformed in the laboratory co-
ordinates. These will couple as expected in the continuum
model, if we take into account the finite lattice properly, as we
now recall following [15,28]. See also [27,29,78]. We have the
continuum linear strain tensor

e a
i = δa

i + w a
i = δa

i + ∂iu
a,

(44)
ei

a = δi
a − wi

a = δi
a − ∂ ju

bδabδ
i j,

where ua/a � 1, in terms of the lattice constant. On the finite
lattice, this becomes

ka → ka − wi
a

sin kia

a
≈ ei

aki,

(45)

ki → ki + w a
i

sin kaa

a
≈ e a

i ka,

where wi
a = ∂ jubδabδ

i j is defined above and in the last ap-
proximation, the linear approximation for strain as well as
kia � 1, close to the � point, are used. In addition we as-
sume that we work with low frequencies corresponding to the
acoustic phonons, below the Debye energy [15].

C. Lattice model

In general, a model for a T -breaking Weyl semimetal con-
sists of layered two-dimensional (2D) Wilson fermions tuned
to a zero-energy crossing in three dimensions [3,22]. For a
model of this kind pertaining to a real material under strain,
Ref. [20] considered a “doubled” time-reversal invariant k · p
model close to the � point, with four Weyl nodes in the
Brillouin zone, the minimum for a P-breaking system. They
equated the anomaly from strain with U(1) gauge fields, in
contrast to torsion. For the ease of direct comparison, we
will adopt their model with similar notations. While the k · p
model is realistic, it is more convenient to work with an an ex-
plicit lattice regularization that produces the same low-energy
results independent of lattice constant a. The full lattice tight-
binding model is [20]

Hlat (k) = ε(k) +
(

hlat (k)
−hlat (k)

)
, (46)

where we exclusively focus on the time-reversal odd block
hlatt (k) of the T -invariant model [3,20,22]

hlat (k) = tz

(
M −

∑
i=x,y,z

ci cos kia

)
σ 3

+ (tx sin kxa)σ 1 + (ty sin kya)σ 2. (47)
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For −1 <
M−cx−cy

cz
< 1 the model hlat (k) has Weyl points at

akW = ±akF =
(

0, 0,± arccos
M − cx − cy

cz

)
, (48)

otherwise it is gapped. The dimensionful tetrads are

ei
a(±kF ) = a(tx, ty,±tzcz sin akF,z )δi

a. (49)

The inversion symmetry P acts as hlat (k) → σ zhlatt (−k)σ z.
For simplicity, we set cz = 1, cx,y = c⊥, tx,y = t⊥ and assume
uniaxial symmetry along ẑ in the following. We expect (45) to
hold for the Weyl semimetal model (46), originating from the
k · p model close to the � point.

We can moreover ignore the difference of lattice and co-
ordinate indices in the strains, with ui j = 1

2 (∂iu j + ∂ jui ) +
O(u2) the symmetric strain tensor. The strain induces the
deformation considered in Refs. [16,19,20]:

δhlat (k) = −tzβeluzzσ
3 cos akz

+ t⊥βel(uxzσ
1 + uyzσ

2) sin akz (50)

which gives

δei
a = atzβeluiiδ

i
a sin(kF a) + at⊥βel

∑
i′ �=i

uii′δ
i′
a cos(kF a),

(51)

where βel is the Grünesein parameter. Restricting to a uniaxial
strain corresponding to the axis of the Weyl node orientation,
with the approximation that akF � 1,

ez
a → atz(1 + βeluzz )δa3 + at⊥

∑
i=x,y

βeluz jδ
j
a,

δez
3 = atzβeluzz, δez

1 = at⊥βeluzx, δez
2 = at⊥βeluyz.

(52)

This has the (dimensionless) inverse tetrad, up to the neglected
terms O(u2) in strains,

e1
i = x̂, e2

i = ŷ, e3
i = ẑ − βel

((
tz
t⊥

)
uzx,

(
tz
t⊥

)
uzy, uzz

)
.

(53)

This is what we expected, based on the corresponding uni-
versal continuum limit (44) and the lattice substitution (45)
coupling to geometry, apart from the (nonuniversal) couplings
βel, ( tz

t⊥
) between the phonons and electrons of the lattice

model [15]. Now in the presence of a time-dependent strain
vector e3

z ∼ uzz and torsion T 3
μν ∼ ∂xuzy − ∂yuzx, spectral flow

will arise. For, e.g., torsionally twisted and compressed sam-
ples along the z direction [19,20], the Landau level arguments
of Secs. III and IV apply for a torsional magnetic field in the
“symmetric” gauge and an adiabatic electric field from uzz(t ).

D. Torsional density of states in anomalous transport

Armed with the geometric background fields correspond-
ing to torsional (magnetic) field, we can consider the anomaly
resulting from the chiral rotation (42) in momentum space.
For that, we need to analyze the validity of the Weyl approxi-
mation and chiral transport in momentum space as in Sec. III.

The linear Weyl model is defined by the expansion

tz

(
M −

∑
i=x,y,z

ci cos kia

)

≈ tza2

2

[
c⊥

(
k2

x + k2
y

) + (kz ∓ kF )2
]

(54)

≈ tzaei
3(ki − kF,i )

= (tza sin kF a)qz (55)

which is accurate up to the ignored terms of the remainder in
the expansion. Apart from the trivial qz � kF � 1/a, also

cx cos qxa + cy cos qya ≈ c⊥a2

2

(
q2

x + q2
y

)
= c⊥a2

2
q2

⊥

� tx
tz

aqx + ty
tz

aqy

= t⊥
tz

aq⊥ (56)

leading to the constraint q⊥ � 2t⊥
c⊥atz

, meaning

EWeyl � t2
⊥

c⊥tz
(57)

for the perpendicular direction. We are working in the
units where −1 < M − 2c⊥ < 1 and cos kF a = M − 2c⊥ ≈
1. This leads to the anomalous density from magnetic strain,
or the chiral densities at the nodes,

n±(�) = e j0
± =

∫ ±kF (1± �2
rel
2 )

±kF (1∓ �2
rel
2 )

dk3NLL(kz )

= ∓k2
F �2

rel

4π2
β2

el

(
tz
t⊥

)
TBe3

z . (58)

This leads to the anomaly (19) when TE = ∂t uzz �= 0. Here
we have separated the microscopic parameters from the
tetrad (53) and TB is the elastic/gravitational torsion TB =
∂xuzy − ∂yuzx, etc. In addition to the lattice model parameters,
Ref. [20] also estimates that TB � π/L could be sustained,
where L is the length of a torsionally twisted semimetal wire.

It is interesting to recall that for the chiral superfluid, while
strictly it must be that �2/k2

F = �2
rel � 1 since qz � kF , we

found that the cutoff for chiral transport was still paramet-
rically high, implying “ 1

2 � 1” in terms of the validity of
the Weyl description. There, however, due to the orthonormal
triad, also the perpendicular direction necessarily couples to
the transport, with the cutoff Eq. (25) which in real 3He-A is
∼10−6 pF .

For the semimetal, the case where qz ∼ t⊥
tz sin kF a q⊥ � kF

arises when assuming that we isotropically couple to the per-
pendicular directions for general strain field configurations
in the anomaly. Plugging in real parameters, we expect that
for, e.g., Cd3As2, t⊥ ∼ tz sin kF a [20]. This leads to the cutoff
of the order of (57). Another option would be to consider
the anisotropic Newton-Cartan model in Appendix B with
quadratic spectrum M − 2c⊥ − cos kza along the Weyl node
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FIG. 5. Dispersion and spectral flow of right-handed (red) and left-handed (blue) particles (q > 0) under parallel B, E.

direction with uniaxial strain only, with the constraint �2
rel �

1, equivalent to qz � kF . It is possible that higher orders of kz

could be incorporated, following [76]. Here, the same model
with different parameters also applies for the Dirac semimetal
Na3Bi (cf. Ref. [20] and references therein).

Independent of whether one has an axial torsional electric
field ∂t e3

z �= 0 or an electric field Ez driving the spectral flow,
as in Figs. 6 and 8, or other chiral effects [43,55,57,58,82]
the result is the suppression of the anomalous density pro-
portional to �2

rel, corresponding to the validity of the linear
Weyl approximation. We note that this reduction is due to
the momentum-dependent density of states in the problem.
This, as we have explained, naturally follows from the tetrads
and torsion coupling to momenta and should be contrasted
with a U(1) (pseudo)gauge field [19,20] and universal den-
sity of states proportional to electric charge. Since the lattice
model (46) arises by a UV completion designed to match only
the low-energy k · p model, and thus is not valid at sufficiently
high energies, experiments are needed to fix �rel besides the
rough order of magnitudes above.

VI. THERMAL EFFECTS

Finally, we briefly recall and discuss thermal contributions
to the torsional anomaly. There are two possible effects: (i)
The small but finite temperature enters the NY anomaly as the

scale of thermal fluctuations in momentum space [81,84,85].
(ii) There is a related finite thermal gradient in the system and
one computes the thermal response via Luttinger’s fictitious
gravitational field [110]. We note that nonzero timelike torsion
for the Luttinger space-time implies the non-single-valued
time coordinate in the fictitious gravitational field [89]. See
also [90,91,95,111–113]. Here we focus on the effects of a
gravitational field in (ii). Specifically, we assume a thermal
gradient

∇σ = − 1

T
∇T (59)

which is equivalent to a weak gravitational potential g00 =
1 + 2σ in the system. The perturbation δg00 couples to the
Hamiltonian (energy current) H ∼ T 00, where T μν is the
energy-momentum tensor. In units where the velocity of prop-
agation is vF = 1, the metric is

ds2 = e+2σ dt − δi jdxidx j

≈ (1 + 2σ )dt2 − δi jdxidx j (60)

from which the linear response to the thermal gradient σ can
be calculated [110]. This can be generalized to a metric

ds2 = e2σ (dt + e−σ Nidxi )2 − δi jdxidx j

= e0
μe0

νdxμdxν − δi jdxidx j, (61)

FIG. 6. Spectral flow of parallel B5, E with the same conventions as in Fig. 5.
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FIG. 7. Spectral flow of parallel B, E5 with the same conventions as in Fig. 5.

now with a small gravimagnetic potential [3,112]

Ag
μ = (eσ , Ni ) ≈ (1 + σ, Ni ) ≡ e0

μ, (62)

where Ni describes an inverse velocity field in the units where
vF = 1. The gravitational thermal potential is [3,82,112]

− 1

T
∇T = ∇σ − ∂t Ni, (63)

hence,

e0
μ = (eσ , Ni ), ea

μ = δa
μ, a = 1, 2, 3

eμ
0 = (e−σ , 0), eμ

a = (
e−σ Ni, δ

i
a

)
, a = 1, 2, 3. (64)

In this case Eq. (63) becomes

− 1

T
∇T = ∇σ − ∂t Ni = ∂ie

0
t − ∂t e

0
i = T 0

it , (65)

where T 0
μν = ∂μe0

ν − ∂νe0
μ is the temporal torsion, assuming

zero temporal spin connection ω0
μb ≡ 0. It is expected also

that one would have possibility for anomalous transport in
terms of the combination of thermal gradient and vorticity
T 0

i j = ∂iNj − ∂ jNj in the velocity field Ni(x), as in the chiral
vortical (and magnetic) effect [82,83].

A Weyl node at pWa = pW δ3a represents a finite momen-
tum density (Pi )node = T ti = pW ei

3e j0
5 at low energy [38]. We

get momentum density

eT t3 = p3
W �2

16π2
ε0νλρe3

νT 3
λρ (66)

from the anomalous density e j5
0 induced by torsion. From the

temperature gradient, we similarly expect an energy density
of the form

Jt
ε = eT t

0 = vF pW e j0
5 = pW T 2

12v2
F

εt i jke0
i T 0

jk, (67)

where ei
0 ∼ vF and T μ

a ≡ 1
e

δS
δea

μ
is the (unsymmetrized)

energy-momentum tensor. The anomaly of this current would
be proportional to T ∇T , and is indeed reminiscent of the chi-
ral vortical effect [63,82,90,114]. We can also expect mixed
terms, in the sense that there should be a corresponding energy
current from both the momentum density and thermal current
at the node

Ji
ε = eT i

0 = pW T 2

6v2
F

ε0i jke3
jT

0
0k + pW T 2

12v2
F

ε0i jke0
t T 3

jk, (68)

these “mixed” thermal contributions to the anomalous cur-
rents were identified and discussed in Ref. [86].

Equation (68) is a “mixed” contribution to the con-
densed matter torsional anomalies, where the Lorentz-
invariant anomaly coefficient �2ηab → �a�b, a generalized

FIG. 8. Spectral flow of parallel B5, E5 with the same conventions as in Fig. 5.
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anisotropic tensor. We expect such terms in general in vari-
ous condensed matter systems depending on the symmetries,
perturbations, and cutoffs. We leave the detailed discussion
of such thermal gravitational contributions for the future; see,
however, [84,86] and the general discussion in [81].

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have argued for the emergence of nonzero
torsional anomalies in Weyl (and Dirac) systems with simple
Landau level arguments. In particular, we were motivated
by the possibility of nonzero torsional Nieh-Yan anomalies
in condensed matter systems with an explicit cutoff and the
lack of relativistic Lorentz symmetries. For the anomaly, the
spectral flow in the presence of torsion clearly renders nonzero
results for Weyl nodes at finite momentum. Although obtained
with simple field configurations corresponding to Landau lev-
els, they are expected to generalize covariantly to the general
gravitational anomaly in terms of the relevant spatial symme-
tries of the system. Low-energy tetrads and geometry couple
to the Weyl fermions in an almost universal way, even in
lattice models [15,16], giving our results wide applicability.
In Appendix B, we discussed two idealized space-times re-
lated to these symmetries, the linear Riemann-Cartan and the
anisotropic Newton-Cartan space-time with quadratic disper-
sion. We find that the symmetries, low-energy dispersion,
and ∇μkW ν = 0 under deformations constrain the low-energy
geometry giving rise to the anomaly (see Appendix B).

More formally, what we did amounts to applying the K-
theory theorem of Horava [4] to the geometry of specific
Weyl nodes in three dimensions, by keeping track of the UV
symmetries and scales in the problem for the precise form
of the emergent geometry coupling to the quasiparticles. The
topology only guarantees the effectively Dirac-type spectrum,
with everything else depending on the microscopics.

We also briefly discussed the thermal torsion via Lut-
tinger’s fictitious space-time since we can expect mixed
anomalies already from the inclusion of thermal gradi-
ents. This connects to gravitational anomalies and transport
in general [81]. The relation to anomaly coefficients in
linear-response thermal transport arising from high-order
gravitational anomalies [61,62,80,114–116] should be fur-
ther explored. From the nonuniversal torsional anomaly the
expected gravitational anomaly polynomials at finite tem-
perature arise already at the level of linear response [81].
Moreover, we expect that the emergent tetrads with coordinate
dependence arise rather generally in any Weyl system, making
sense of evaluating the linear response to these, even in flat
space.

We clarified the relation between momentum space pseu-
dogauge fields and the emergent tetrads (cf. Sec. IIIC
and Appendices A and C). Importantly, the spectral or
Hamiltonian correspondence between the torsional and elec-
tromagnetic LL problems is not yet enough for the anomalies
to match in general. Remarkably, the simple LL spectral flow
argument is enough to identify the nonuniversal UV cutoff
� appearing in the NY anomaly term. More generally, the
UV scale appears due to the termination of anomalous chi-
ral transport from such emergent fields and is related to the
Weyl point momentum pW and the regime of validity of the

effective Weyl-Dirac description, as anticipated in [68,69].
For the chiral superfluid or superconductor, the scale � is
essentially fixed by the spontaneous symmetry-breaking pat-
tern [38,48] and matches with experiment [54]. This is similar
to two-dimensional (torsional) Hall viscosity [35,117,118]
from spontaneous symmetry breaking. On the other hand, for
the Weyl semimetal such a scale is absent [75,76] but � is
still proportional to kW , although presumably much smaller.
Experiments in strain-engineered fermionic Weyl systems are
needed.

In the presence of independent U(1) fields and momentum
space tetrads, we should also expect many mixed torsional
terms, as studied, e.g., in [44,72,93]. These should also be
carefully reconsidered with regards to finite node momentum,
where again we expect differences to relativistic fermions.
On this note, our results for the anomaly at finite momentum
are in contrast to [105], where a relativistic model at p = 0
with torsion is analyzed with (pseudo)gauge fields without
consideration of finite node momentum and the cutoff of the
quasirelativistic dispersion.

Many interesting avenues remain in the geometric descrip-
tion of emergent gapless fermions with background fields,
including also nodal line systems [37,119]. It would be inter-
esting to study the gravitational anomalies in Weyl and Dirac
systems with many nodes, taking fully into account the rel-
evant space-group symmetries and defects [16,42,120–122].
More generally, the appearance of low-energy quasirelativistic
fermions with exotic geometric backgrounds within feasible
experimental reach is expected to give more insight also to
the physics of gravity with torsion, although the symmetries
and status of the background fields are dramatically different.
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APPENDIX A: REVIEW OF THE CHIRAL ANOMALY AND
THE SPECTRAL FLOW ARGUMENT

In this Appendix, we compute the U(1) anomaly with LL
spectral flow in order to fix notations and provide the LL
formulas used in the main text.

1. Weyl fermions in vector and axial U(1) fields

The simplest way to argue for the axial anomaly in con-
densed matter systems is the spectral flow argument, utilizing
Landau level spectrum in 3 + 1 dimensions [1,10]. The lin-
earized Hamiltonian is of the form

HR,L = ±σ i(i∂i − qAi;R,L ), (A1)

where Ai is some U(1) gauge field with charge q, i.e., the
charges in the system are quantized in terms of q. Note that
we assume that the vector and axial gauge field combinations
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could be both nonzero:

Aμ = 1
2 (AR + AL )μ, A5,μ = 1

2 (AR − AL )μ. (A2)

Under these gauge fields, the chiral fermions always experi-
ence the chiral anomaly, where the classical conservation laws
corresponding to these fields are broken.

These are summarized by the anomaly equations
[18,21–24]

∂μ jμ = q2

8π2
εμνλρFμνF5λρ,

(A3)

∂μ jμ5 = q2

16π2
εμνλρ (FμνFλρ + F5μνF5λρ ),

where Fμν = ∂μAν − ∂νAμ, etc.
Evidently, if the particles couple to both axial and vector

gauge fields, extra currents must be introduced to the system
to conserve the total particle number, as required by conserva-
tion of charge. This is done by adding Bardeen counterterms
to the effective action [18,99]

�[A, A5] → �[A, A5] −
∫

d4x

4π2
εμνρσ FμνAρA5

σ , (A4)

introducing the countercurrents

δ jμ = 1

4π2
εμνρσ

(
2FρνA5

σ + F 5
ρσ Aν

)
,

δ jμ5 = 1

4π2
εμνρσ FνρAσ . (A5)

These modify the axial anomaly in Eq. (A3) to the consistent
anomaly in A5 (that differs by a factor of A5 → 1

3 A5 or, equiv-
alently, a Chern-Simons current), so that conservation of jμ

and the vector part of the jμ5 anomaly is maintained:

∂μ jμ = 0,

∂μ jμ5 = q2

16π2
εμνρσ

(
FμνFρσ + 1

3
F 5

μνF 5
ρσ

)
. (A6)

Please see Refs. [18,99] and [22–24] for more discussion.

2. Landau levels

We consider the minimally coupled Weyl Hamiltonian with
vector potential A = (−By, 0, 0),

Hχ = χσ i( p̂i − qAi ) (A7)

= χ

[
p̂z p̂x + qBy − i p̂y

p̂x + qBy + i p̂y −p̂z

]
, (A8)

where χ = ±1 denotes the chirality for the fermion. With
an eigenstate ansatz ψ = ei(pzz+pxx)φ the eigenvalue problem
becomes

Hχψ = χ

[
pz px + qBy − i p̂y

px + qBy + i p̂y −pz

]
ψ. (A9)

For qB > 0 the off diagonals can be identified as raising and
lowering operators for a harmonic oscillator in the y direction

(displaced by px),

â =
√

2qB
−1

[qBy + px + i p̂y],
(A10)

â† =
√

2qB
−1

[qBy + px − i p̂y],

which satisfy the properties {â, â†} = 1, âφn = √
nφn−1, and

â†φn = √
n + 1φn+1 for eigenstates of the harmonic oscillator

φn. The eigenvalue equation becomes

Hχψ = χ

[
pz

√
2qBâ†

√
2qBâ −pz

]
ψ. (A11)

The energy eigenvalues are obtained from considering the
squared Hamiltonian operator:

H2
χ = (p̂ − qA)2 − qσ · B

= p̂2
y + p2

z + (px + qBy)2 − qBσ3, (A12)

hence,

E2 = p2
z + 2|qB|(n + 1) − qBσ3,

E = ±
√

p2
z + 2|qB|n, n � 0. (A13)

Looking now at the action of the ladder operators on compo-
nents of the eigenstates ψ , they must be of the form

ψ = ei(pzz+pxx)

[
φn

Cnφn−1

]
, (A14)

where φn are eigenstates of the harmonic oscillator, φn−1 = 0,
and Cn is a factor determined from the eigenvalue equation to
be Cn =

√
2qBn

±E+pz
for n �= 0. The n = 0 state is “half”-occupied

since

ψ = ei(pzz+pxx)φ0

[
1
0

]
with chiral dispersion relation E = pz for H+ and E = −pz

for H−, after the elimination of the trivial zero modes Hχ� =
0.

For qB < 0 the spectrum is the same but the eigenstates are
now

ψn = ei(pzz+pxx)

[
Dnφn−1

φn

]
, n � 1 (A15)

ψ0 = ei(xpx+zpz )φ0

[
0
1

]
, (A16)

where Dn =
√

pz∓E
2|qB|n . The zeroth Landau level dispersion rela-

tion is E = −pz for H+ and E = +pz for H−.
In summary,

E =
{±√

p2
z + 2|qB|n, n � 1

sgn(qBχ )pz, n = 0.
(A17)

The degeneracy of each state can be determined from contain-
ing the system within a finite volume LxLyLz and requiring the
center of the harmonic oscillator be within it:

0 � px

|qB| � Ly. (A18)

The x direction is free and is therefore quantized as px = n 2π
Lx

with n ∈ N. The z direction is similarly quantized in units of
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�pz = 2π
Lz

, so the number of states in the xy plane per �pz is

n = |qB|
4π2

LxLyLz. (A19)

3. Spectral flow

When an electric field parallel to B is turned on adiabat-
ically, for example, as A = (−By, 0,−Ezt ), the states flow
in the spectrum according to Lorentz’s law as ṗz = qEz. The
unpaired LLL chiral modes flow to specific direction, whereas
the higher LLs cancel. The states consequently move in or out
of the vacuum depending on their chirality as

∂t j0
χ = sgn(qχ )

q2EB

4π2
= −sgn(qχ )

q2

32π2
εμνρσ FμνFρσ .

(A20)

We need to generalize (A20) from Minkowski space-time
(with metric signature + − −−) to a general space-time with
or without torsion. The Landau level calculation generalizes
to a nontrivial metric and coordinate-dependent tetrads, when
we work in the momentum space p̃a ≡ ei

a pi, edṼ = dV , B̃ =
eB, where e = det ea

i , compared to the local Minkowski space.
The invariant density of states and fields to be (for e0

μ = δ0
μ)

dN

dV
dV = |qB|

4π2
dV = |qB̃|

4π2
dṼ , (A21)

which we need to use when we do not want the (scaling of the)
tetrads to affect the physical density or flux, the divergence
of which we are interested in. With ṗz = −Ez the anomaly
becomes in coordinate space

1

e
∂t

(
e jχ0

) = 1

e

χq2

32π2
εμνρσ FμνFρσ , (A22)

which matches (A3) after covariantly generalized to a
nontrivial metric.

4. Inclusion of axial fields

As discussed, left- and right-handed chiral fermions may
also couple independently to different gauge fields AR and AL

depending on the chirality:

Hχ = χσ i(p − qAR,L )i. (A23)

We then define the axial electric and magnetic fields B5 and
E5, corresponding to the axial vector potential A5 = 1

2 (AR −
AL ). The vector potential is A = 1

2 (AR + AL ). The correspond-
ing currents are from (A20):

j̇0 = ∂t j0
++ ∂t j0

− = 1

2π2

(
EzB

5
z + E5

z Bz
) = q2

8π2
εμνρσ FμνF 5

ρσ ,

(A24)

j̇0
5 = ∂t j0

+ − ∂t j0
−

= 1

2π2

(
EzBz + E5

z B5
z

)
= q2

16π2
εμνρσ

(
FμνFρσ + F 5

μνF 5
ρσ

)
. (A25)

This is the covariant chiral anomaly (A3), represented as
spectral flow under parallel electric and magnetic fields. The

pictorial version for these equations in form of the LL spectral
flow can be found in Figs. 5–8. In a system with both vector
and axial fields, the total anomaly must become the consistent
anomaly (A6) that maintains charge conservation. This modi-
fication affects the coupling of all states to A5, including away
from the node or requires extra Chern-Simons contributions
to the currents.

5. Weyl node at finite momentum

In condensed matter systems the Weyl nodes are displaced
from p = 0. Let us fix the symmetry by setting the node at
pz = pW . It is straightforward to see that shifting the momen-
tum as p̃i = pi ± δ3

i pW in the Hamiltonian

H± = ±σ i( p̃i − qA±
i ) (A26)

simply shifts the spectrum by ±pW and the spectral flow in
Figs. 5–8.

More importantly, the axial anomaly can then arise from
the momentum space structure itself since one has to shift
� by � → e∓ipW ·x�W to obtain the low-energy Weyl exci-
tation �W . While this gives almost the same Hamiltonian and
spectrum as for of U(1) fields, the momentum dependence is
crucial in the case of the protected Fermi arcs [19], anomalous
quantum Hall effect [47,56], as well as the torsional anomaly
with the tetrads analyzed in the main text.

APPENDIX B: EMERGENT LOW-ENERGY SPACE-TIMES

We have discussed how the geometry of the low-energy
dispersion affects the anomaly in terms of nonhomogeneous
tetrads with torsion in Sec. II. This geometry is dependent on
the form of the low-energy dispersion and the nonrelativistic
symmetries present in the condensed matter system.

In this section, we describe the full low-energy background
geometry corresponding to a nontrivial space-time [35,38].
The original torsional anomaly is derived for relativistic
fermions on the background of a torsional Riemann-Cartan
space [65,67]. We discuss the detailed form of the emergent
space-times we should associate to the low-energy geom-
etry in nonrelativistic systems, contrasting Riemann-Cartan
and Newton-Cartan space-times. The low-energy geometry
in terms of a tetrad and connection can be fixed only by the
symmetries in the problem, related to the UV completion.

1. Quasirelativistic Riemann-Cartan fermions

We briefly summarize quasirelativistic fermions on
curved Riemann-Cartan space-times here (for more see,
e.g., [35,38,44,64,67,68]). These space-times are defined via
an orthonormal frame ea = ea

μdxμ, giving rise to metric as
in (6), and a (matrix) spin connection ω̂μdxμ = ωa

μbdxμ, both
of which couple to the Dirac (and Weyl) equation [Eq. (B6)
below]. Informally, the ea

μ is a space-time “translation gauge
field” which is also the matrix square root of the metric, while
ω̂ is the gauge connection corresponding to local (Lorentz)
rotations (see, e.g., [65,67]).

As discussed in the Introduction and Sec. II, analogous
fields arise in the low-energy Weyl Hamiltonian in condensed
matter systems on flat space, giving rise to emergent space-
times for the low-energy fermions close to the nodes. These
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are, however, not strictly relativistic in the sense that the emer-
gent metric does not follow from locally Lorentz-invariant
space-times implied by general relativity, but rather from
the low-energy expansion of the microscopic nonrelativis-
tic UV theory. This is what we refer to as quasirelativistic
and emergent. Note that the spin connection ω̂μ is a gauge
field of a local symmetry entering the Dirac operator and
its emergence needs a corresponding local symmetry in the
condensed matter system. In chiral superconductors and su-
perfluids, a nonzero spin connection is due to the local
combined U(1) symmetry, corresponding to gauge and orbital
rotations [35,38,97]. The tetrad and connection fields give rise
to the torsion T a = dea + (ω̂ ∧ e)a and curvature R̂ = dω̂μ +
ω̂ ∧ ω̂ field strengths. These tensors equivalently characterize
the space-time. From the tetrad one can derive the space-time
metric, which enters as a secondary object, in contrast to usual
Riemannian space-times where the connection is symmetric
in lower indices and uniquely fixed by the metric.

In terms of equations, the basic quantities are the tetrad
ea
μ and the connection ωa

μb. Tensors X a...μ...

b...ν...
can carry local

orthonormal (Lorentz) indices and coordinate indices; the two
bases can be transformed by contracting with ea

μ or the inverse
eμ

a . The tetrad is the metric matrix square root

gμν = ea
μeb

νηab, eμ
a eν

bηab = gμν (B1)

defining a local orthonormal frame in terms of ηab =
diag(1,−1,−1,−1). The connection ∇ determines geomet-
ric parallel transport in the system as

∇μX a
ν = ∂μX a

ν − �λ
μνX a

λ + ωa
μbX b

ν , (B2)

etc., extended by linearity and the chain rule. Without loss of
generality, the spin connection can be written as

ωa
μb = ea

λeν
b�

λ
μν − ea

ν∂μeν
b, (B3)

where �λ
μν is the coordinate connection with torsion

T λ
μν = �λ

μν − �λ
νμ. (B4)

The metric compatible connection defined by (B3) is consis-
tent with basis changes, as follows from ∇ea

μ = 0, and consist
of two parts, ωa

μb for local orthonormal indices and �λ
μν for

coordinate indices. The connection can be decomposed in
terms of torsion as

�λ
μν = �̊λ

μν + Cλ
μν, (B5)

where �̊λ
μν = 1

2 gλρ (∂μgνρ + ∂νgμρ − ∂ρgμν ) is the torsion-
free Christoffel connection fully determined from the metric
and Cλ

μν = 1
2 (T λ

μν + T λ
μ ν − T λ

μν ) is the contorsion tensor.
The low-energy quasirelativistic Weyl fermion theory is, in

the chiral Dirac fermion basis ψ = (ψL ψR)T , where ψR,L are

Weyl fermions and γ a = ( 0 σ a

σ a 0 ) with σ a = (1,−σ i ),

SD =
∫

d4x e
1

2
ψγ a

(
eμ

a iDμ − pWa
)
ψ + H.c., (B6)

where H.c. stands for Hermitian conjugate, e ≡ det ea
μ, and

Dμ is the covariant derivative corresponding to the canonical
momentum

Dμ = ∂μ − i

4
ωab

μ σab − iqAμ, (B7)

where γ ab = i
2 [γ a, γ b] and Aμ is a U(1) gauge potential

with charge q. They enter the covariant derivative or canon-
ical momentum due to local Lorentz (rotation) and gauge
symmetries. For the emergent spin connection to exist, the
local rotation symmetry has to be dynamically generated (see
Sec. IV and [38]). Importantly to our applications, the quantity
pWa = (μW , pW ) is the shift of the of the Weyl (or Dirac)
node at chemical potential μW = eν

0 pW ν and pWa = ei
a pWi in

momentum space. The magnitude of pWa is a UV parameter
that is fixed (up to small deformations of eμ

a in coordinate
space) in the low-energy theory.

2. Anisotropic Newton-Cartan fermions

A related nonrelativistic version of the Riemann-Cartan
space-time (B6) is an anisotropic Newton-Cartan (NC) space-
time [31,32,123,125]. In the latter, we single out a Newtonian
time and, in our case, a preferred spatial direction with
quadratic dispersion in contrast to the linear Riemann-Cartan
case. In what follows in Secs. IV and V, this preferred
direction is along the Weyl node separation, with uniaxial
symmetry and anisotropic scaling. Compared to the standard
NC case, there is an additional gauge symmetry correspond-
ing to a U(1) number conservation and a local Milne boost
symmetry along the anisotropy direction [31,75,76,126].
These will both be gauge fixed to zero and will be applied
mostly in the case of the chiral superconductor and super-
fluid, where they are absent naturally for Majorana-Weyl
fermions. With the time coordinate fixed, the symmetries
of the NC space-time then correspond to the generalized
Galilean transformations xi → xi + ξ i(x, t ) [31,32,40,123–
125], which were utilized in [38] within the linear approxi-
mation.

The metric is

gμν = nμnν + hμν, (B8)

where now nμ is a spacelike vector, ea
μ a (degenerate) tetrad

with metric hμν restricted to the orthogonal subspace, with
e0
μ = δ0

μ representing Newtonian time,

hμν = ηabea
μeb

ν, a, b = 0, 1, 2 (B9)

with inverses

nμ�μ = 1, ea
μ�μ = 0, ea

μeμ

b = δa
b, a = 0, 1, 2. (B10)

The connection and torsion follow as [75]

�λ
μν = �̊λ

μν[h] + �λ∂μnν, (B11)

from the condition that L�hμν = 0, equivalent to ∇μnν =
∇λhμν = 0. The torsion is given as

T 3
μν ≡ nλT λ

μν = −∂μnν + ∂νnμ (B12)

and the standard spin connection perpendicular to �μ, ω̊μν[h],
as in Eq. (B3), amounting to local rotation symmetry along
�μ. The fact that nμ is covariantly constant is natural since it
can be identified with the direction corresponding to nonzero
Weyl node separation in, e.g., T -breaking Weyl systems.

We discuss in Sec. IV B the Landau level problem of
Majorana-Weyl fermions corresponding to such a space-time,
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with the (right-handed Weyl) action

SW =
∫

d4x
√

gψ†
[(

τ ac⊥eμ
a iDμ − τ 3ε(i∂�

)]
ψ + H.c.,

(B13)

where ε(∂�) = ∂2
� /(2m) − μF in the anisotropic direction

with ∂� = �μ∂μ, corresponding to the nonrelativistic disper-
sion and degenerate metric �μ�ν = gμν − hμν . Dμ is (B7) with
Aμ = 0 in the perpendicular direction. In this case, the relative
anisotropy of the two terms is c⊥/c‖ = mc⊥/pF , where pF =√

2mμF and c‖ = vF the Fermi velocity. This NC model can
be matched to the results discussed [38]. Note that a very
similar model with Lifshitz anisotropy was considered in [75],
and the ensuing torsional anomalies for momentum transport
in [76]. For a semimetal under strain, the model in Sec. V
is correspondingly anisotropic and defines a model for NC
space-time with dispersion ∝cos akz but the precise connec-
tion to a realistic model with crystal symmetries remains to be
worked out in full detail.

3. Torsional Nieh-Yan anomaly

We now review the anomaly from torsion [64,65,67,68]
and discuss the condensed matter realizations. In general,
Weyl fermions coupled to a tetrad and spin connection, rep-
resenting gravitational fields distinct from the metric gμν , are
anomalous in the presence of nonzero torsion and curvature.
In the main text the spin connection has been set to vanish for
the torsional LL backgrounds. It arises in chiral p + ip sys-
tems [35,38] with a local symmetry, while rotational effects
are higher order in derivatives in semimetals (see, e.g., [27]).

We focus on a pair of complex fermions of opposite chiral-
ity with currents jμ±. The (covariant) torsional anomaly for the
axial current jμ5 = jμ+ − jμ− is [66–70]

∂μ

(
e jμ5

) = �2

4π2
εμνλρ

(
1

4
T a

μνTaλρ − 1

2
ea
μeb

νRabλρ

)
+ O(∂4)

= �2

4π2
(T a ∧ Ta − ea ∧ eb ∧ Rab) + O(R2),

(B14)

where on the second line, we utilize differential form nota-
tion ea = ea

μdxμ, ωa
μbdxμ and T a = dea + ωa

b ∧ eb and Ra
b =

dωa
b + ωa

c ∧ ωc
b. For a discussion of the relativistic torsional

anomaly term, we refer to [64,65,67,68,71], and for applica-
tions in topological condensed matter systems to [38,44,76–
78,84,86]. For the mixed terms between torsion and U(1)
gauge potentials, see, e.g., [72,93]. We focus on the anomaly
contribution solely due to the geometry (tetrads), and we
will not consider them. Reference [78] also considered novel
“axial” tetrads ea

μR �= ea
μL at two Weyl nodes R, L, with (vec-

torlike) T 5 appearing as in Eqs. (A2) and (A3). We will
require eR = ±eL but this is actually a rather strong constraint
basically only allowing for (improper) rotations that can be
gauged away. In the chiral Weyl superfuid or conductor or
minimal time-breaking semimetal, eR = −eL but this just the
chirality of the nodes and is built in the axial nature of the
coupling to torsion. Intriguingly, the trace part of torsion arises
as the gauge field of local Weyl scalings but this comes, since
nonunitary, with a complex gauge coupling [64]. The presence

of different (chiral) tetrad couplings and overall symmetry
considerations would be highly interesting for, e.g., parity
breaking and other nonminimal Weyl systems with several
nodes, some of which can coincide in momentum space.

To conclude, we note the following salient properties re-
lated to the NY anomaly term: (i) Despite appearances, it
is given by the difference of topological terms, albeit in
terms of an embedding in five dimensions [68]. (ii) The NY
anomaly term is of second order in gradients and therefore
the leading contribution from the background geometry in
linear response. (iii) The UV cutoff is isotropic in momen-
tum space by (local) Lorentz invariance but is multiplied by
the geometric term, which can be anisotropic. In condensed
matter applications, there is no Lorentz invariance, so differ-
ent anomaly coefficients can arise (see, e.g., Sec. VI). (iv)
The total derivative NY term is a Lorentz scalar with con-
tributions from the torsion and curvature, dictated by local
exactness d (ea ∧ Ta) = T a ∧ Ta − ea ∧ eb ∧ Rab. The contri-
butions from torsion and curvature are a priori independent
before the geometry (the torsionful connection) is fixed. The
anomaly is therefore physical input for the space-time geome-
try or connection [38]. In more pragmatic terms, the anomaly
coefficient �2 can be computed in the case when ω̂μ = 0
from torsional LLs, although the constraints of a consistent
space-time geometry should be kept in mind, cf. Eq. (C2).

APPENDIX C: ON THE RELATION OF EMERGENT
TORSION AND PSEUDOGAUGE FIELDS

Here we summarize our findings in relation to earlier lit-
erature, where the momentum space field corresponding to
the shift of the node is often considered as an axial gauge
field [3,10,16,17,19–21,24,78,93]. We note that torsion can be
shown to enter as an axial gauge field constructed from the
totally antisymmetric torsion γ 5Sμ = e−1εμνλρTνλρ [68,69]
coupling to the momentum. This is essentially what we found
in Secs. III and IV with the momentum-space-dependent LL
density of states. Still, the LL calculation and anomaly itself
should be performed by taking this momentum dependence
into account, as we have done in this paper.

How are tetrads with torsion otherwise different from the
momentum gauge field? The symmetries corresponding to the
tetrads are translations which for finite node momenta, req-
uisite for condensed matter Weyl fermions, correspond to the
anomalous chiral symmetry. The geometric formulation with
tetrads reveals the background space-time emerging from the
node [4]. The overall geometry can be made consistent with
the nonrelativistic symmetries away from the Weyl node for
a finite momentum range where the low-energy expansion is
valid. For the anomalous axial density and anomaly, this leads
to the parametric suppression compared to U(1) anomaly
and the UV momentum scale � ∼ �rel pW . As discussed, the
phenomenological implications of this are significant, even
without the theoretical recourse to the emergent geometry.

References [15,27,28] for elastic deformations take an
explicitly geometrical viewpoint with the strain-induced non-
homogeneous tetrad formalism proposed here. In the simplest
possible terms, we start with the Weyl (or Dirac) Hamiltonian
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in flat space with the small deformation ei
a = δi

a + δei
a:

H+ = σ a(k̂a − kWa) → σ a

2
ei

a(k̂i − kWi ) + H.c.

= σ a

2

(
ei

aki − kWa
) + H.c.

≈ σ a

2

([
δi

a + δei
a

]
qi + kW δei

a

) + H.c.,

(C1)

where now kW δei
a = −kW δea

i is the momentum space
gauge field in the Hamiltonian with (almost) constant
tetrads [10,15,19,20,27,51,78]. The right-hand side is the
Hamiltonian in coordinate (or laboratory) space, which is
the one we have experimental access to, and is deformed
with respect to the orthogonal frame of ka. We see that the
momentum ki couples to ei

a, as expected, and the shift kWa

is constant in the Hamiltonian, irrespective of the deforma-
tion. At the same time, the laboratory value is deformed as
kWi = ea

i kWa. In the chiral superfluid and superconductor we
explicitly have pW,i = pF e3

i , giving pFa = pF δ3
a . Similarly, for

the strained semimetal, the unstrained lattice Fermi wave vec-
tor kWa(x) → k′

Wa(x + u) ≈ kWa(x) + ∂iuakWa(x) ≡ ea
i kWa for

the displacement x′ = x + u(x), giving Eq. (44) as expected.

Reference [78] discusses torsion (and the conservation of
momentum) in strained semimetals in terms of a model with
both the axial gauge field from the node and the tetrad with
elastic deformations [27]. While such a “splitting” between
low- and high-energy momenta is in principle allowed, it
makes the consideration of the momentum-dependent anoma-
lies more involved. In particular, the momentum anomaly
(without EM gauge fields) should be proportional kW ∂μ(e jμ5 ),
as found in [38].

The geometric framework means more generally that we
expect

∇kFa = 0 (C2)

to hold under the emergent low-energy geometric deforma-
tions. This fixes the connection corresponding to the emergent
space-time, as discussed in Appendix B and can be taken
as the requirements for the consistent assignment of the
low-energy geometry for the Weyl fermions. Finally, all the
torsional space-times we considered in this paper are gravito-
electromagnetic [3] since the relevant fields can be identified
as Abelian, amounting to what was called “minimal cou-
pling” trick in [15,44]. Irrespective of the formulation, the
gravitational character of the Abelian fields is evident in the
(energy-)momentum dependence, including thermal effects.
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