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ABSTRACT

We investigate the dynamics of regular fractal-like networks of hierarchically coupled van der Pol oscillators. The hierarchy is imposed in
terms of the coupling strengths or link weights. We study the low frequency modes, as well as frequency and phase synchronization, in
the network by a process of repeated coarse-graining of oscillator units. At any given stage of this process, we sum over the signals from
the oscillator units of a clique to obtain a new oscillating unit. The frequencies and the phases for the coarse-grained oscillators are found
to progressively synchronize with the number of coarse-graining steps. Furthermore, the characteristic frequency is found to decrease and
finally stabilize to a value that can be tuned via the parameters of the system. We compare our numerical results with those of an approximate
analytic solution and find good qualitative agreement. Our study on this idealized model shows how oscillations with a precise frequency can
be obtained in systems with heterogeneous couplings. It also demonstrates the effect of imposing a hierarchy in terms of link weights instead
of one that is solely topological, where the connectivity between oscillators would be the determining factor, as is usually the case.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0010638

Many oscillatory signaling processes in nature are multi-scale,
where the characteristic macro-scale frequency of the signal is
an emergent property of the coupling of oscillators of different
frequencies acting on the micro-scale. Here, we show, using a
combination of numerical simulations and analytical investiga-
tions, how oscillations of a precise frequency can be obtained
from a fractal network of oscillators when the coupling is hetero-
geneous. Our results on various hierarchically coupled networks
shed light on how the frequencies synchronize and the phases
become locked at various scales. Our model also shows how the
concept of hierarchy can be realized when studying synchroniza-
tion in weighted networks.

I. INTRODUCTION

Oscillations are commonly observed in various physical, chem-
ical, and biological systems.1 Often, these oscillations appear as
macro-scale synchronization phenomena. These emerge from the

interactions between a large number of oscillatory elements in a
system, acting at a lower, micro-scale level.2–4 The structure of
these systems can be visualized as a network of nodes or oscilla-
tors connected to other oscillators with interaction links in a certain
topology.5 Often, the oscillatory elements are considered to be of
Kuramoto, van der Pol, or some other type. The links between each
pair of oscillators are either homogeneous or heterogeneous with
a certain weight describing the interaction strength between oscil-
lators, and the topology of the network is either random, regular,
hierarchical, or of other complex type.5–7 The effects of these fea-
tures on macro-scale synchronization of a network of oscillators are
interesting, yet far from being fully understood.

In a pioneering study by Pavlidis,8 it was shown that in an
arbitrary network of N linearly coupled harmonic oscillators, the

fundamental frequency of the system decreases as 1/
√

N. This result
is also found to be exact in the case of non-linear dissipative oscil-
lators when the dissipation coefficient is a function of the coordi-
nate only and the coupling is large enough to induce entrainment.
However, this feature of a system is not desirable in the case of
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biological or physiological processes producing, for example, the cir-
cadian rhythm of a living organism.9,10 Therefore, to describe the
behavior of these kinds of systems, which show a single fundamen-
tal frequency, one needs to go beyond linear network models and
introduce more complex interactions. This we believe is impor-
tant not only for understanding the outcomes of biological and
physiological processes, but also for social processes in large scale
societal networks, which show regular and synchronized circadian
activity patterns.11–16 This issue was addressed in the context of cell-
level circadian rhythms in an earlier paper by some of us.17 There,
it was demonstrated that in a model of heterogeneously coupled
oscillators with a hierarchy of coupling strengths, its fundamental
frequency can be tuned to any desired value lower than the intrin-
sic single oscillator frequency. In the present study, we generalize
the approach of that work to investigate the dynamics of regular
and fractal-like heterogeneously coupled oscillator networks with
respect to the distribution of coupling strengths.

Models incorporating coupling heterogeneity have been shown
to influence the synchronizability of oscillator networks in various
ways. For example, the presence of disorder or heterogeneity was
observed to replace the synchronized state with periodic firings in
pulse-coupled oscillators,18 while synchronizability was enhanced
in networks with heterogeneous connectivity.19,20 Moreover, asso-
ciating different coupling strengths to different oscillators in the
Kuramoto model resulted in the emergence of clusters of syn-
chronized oscillators near the transition.21 Recently, in the case of
Belousov–Zhavotinsky chemical oscillators, it was found that the
parameters that control synchronization are different in the weak
and strong coupling regimes.22

In this paper, we demonstrate that a model consisting of van
der Pol oscillators23–25 with heterogeneous couplings, defined in a
family of regular hierarchical networks, not only stabilizes the fre-
quency, but also results in phase locking and synchronization, which
are properties that are relevant to the modeling of many biologi-
cal and social processes.26–29 The main aim of this work is to show
a way by which the characteristic frequency of a system of cou-
pled oscillators could be tuned using the distribution of coupling
strengths such that this frequency does not depend on the number
of oscillators when their number is large. Beginning with networks
having Sierpinski graph-topologies,30 we define a hierarchy of cou-
pling strengths (weights) on the links using a recursive relation.
To the best of our knowledge, our work is the first that uses this
approach. Previous studies on oscillators in hierarchical networks
have introduced the hierarchy via topological features, reflected in
the adjacency matrix.7,24,31–33

This paper is organized as follows. After the Introduction
(Sec. I), we describe our hierarchical network model with different
topological structures (Sec. II). Then, we present the numerical solu-
tions for these hierarchical network topologies (Sec. III) and develop
a mean-field-like approximate analytical solution (Sec. IV). Finally,
in Sec. V, we present our concluding remarks.

II. THE MODEL

Our model is based on a previous one formulated by some
of the authors of this study,17 in which a hierarchically connected
group of N oscillators is shown to stabilize the collective frequency of

oscillations, while avoiding the universal feature that the frequency

decays like 1/
√

N. This is a peculiar phenomenon since a set of lin-
ear (or non-linear) oscillators with constant interactions between
the nodes of an arbitrary network exhibits a fundamental frequency
that follows the dependence ω(N) = ω(0)

√
1 − r(N − 1), where r is

the strength of the elastic interactions and ω(0) is the fundamental
frequency of a single oscillator. Note that if r ≥ (N − 1)−1, then the
system becomes unstable.

In our model, we assume the oscillator nodes to be of a non-
linear van der Pol type,34 described by the following equation:35

ẍ − µ(1 − x2)ẋ + ω2
0x = 0, (1)

where µ > 0 is the bifurcation parameter, ω0 is a coefficient in units
of frequency, and the dot denotes the time derivative. For a sys-
tem of N identical oscillators coupled with elastic connections rij,
the dynamics can be expressed by the following set of equations:8

ẋi = ω0yi, (2a)

ẏi = −ω0



xi −
∑

j∈n(i)

rijxj



 + µ(1 − x2
i )yi, (2b)

where n(i) is the set of neighbors of an oscillator i placed at a node
of a regular graph with fractal-like topology of L levels and K is
the coordination number (see the top panel in Fig. 1 for L = 3
and K = 3). Also, we assume that the couplings are symmetric; i.e.,
rji = rij. The fractal-like layout of the network is used to determine
the strength of the interactions rij between neighboring oscillators,
assigning them variable weights depending on their relative loca-
tions. In essence, the network consists of many units, each one
with K nodes that are connected in an all-to-all fashion (K-cliques).
These units are, in turn, connected with other units following the
same procedure, forming K-cliques of units. This recursive pro-
cess is repeated L times, i.e., the number of levels, to generate a
fractal-like connected network, denoted by S(L, K) and being of size
N = KL. Here, we follow the nomenclature of the well known finite
Sierpinski graphs.30 In Fig. 2, we show five topologically different
S(L, K) graphs for coordination numbers, K = 2, 3, 4, 5, and 6,
each with L = 5 hierarchical levels or interaction strengths between
neighboring oscillators.

The definition of the hierarchical link strength rij follows a
recursive procedure such that the strength of interaction depends
on the level ν = L, L − 1, . . . , 1, at which the link is located and is
given by the following relation:

rij(ν) = aqL−ν , 0 ≤ q ≤ 1, (3)

where a is the strength at the deepest level ν = L (while ν = 1
represents the shallowest level) and q is a decay parameter of the
strength, which does not depend on ν. Hence, initially, all the
links connecting nodes inside a single unit (K-clique) have strength
rij(ν = L) = a. These links belong to the deepest level ν = L of
the network and thus are the strongest. The next set of links con-
necting different cliques, i.e., forming K-cliques of K-cliques have
diminished strength, rij(ν = L − 1) = aq = qrij(L), and constitute
the second deepest level ν = L − 1 of the hierarchical network. This
process continues until the links connecting the largest possible
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FIG. 1. (Top) Recursively generated fractal-like network with L = 3 levels and
coordination number K = 3. The network [S(3, 3)] has a triangular topology and
contains triads of fundamental oscillators as the basic units K = 3-cliques that
are coupled up to the level L = 3. Links joining oscillators inside each basic unit
or clique are colored in pink, and links joining these basic triangular units are
colored in green, thus forming yet larger triangular units of basic triangular units,
while links joining these larger units of basic units are colored in purple. (Bottom)
Adjacency matrix representing the network [S(3, 3)] shown in the top panel. For
the number of levels L = 3, the network has 3L = 27 oscillators. Colored blocks
encircle the links between each basic triplet of oscillators and the other elements
in the network. The color code is the same as above, with pink, green, and purple
representing links within each unit, between units, and between units of units,
respectively.

FIG. 2. Examples of five different topologies for Sierpinski graphs S(L, K) for
L = 5 levels and K = 2, 3, 4, 5, and 6: (top) K = 2 and 2L = 32 nodes; (mid-
dle-left) K = 3 and 3L = 243 nodes; (middle-right) K = 4 and 4L = 1024
nodes; (bottom-left) K = 5 and 5L = 3125 nodes; and (bottom-right) K = 6 and
6L = 7776 nodes.

units (the cliques of the cliques of . . . of the cliques), constituting
the most shallow level ν = 1, which have the weakest interaction
strength, i.e., rij(ν = 1) = aqL−1. In Fig. 1, the connection strengths
of a hierarchical network with K = 3 (i.e., triangles as basic units) are
shown, where the strength of connections located at different depth
levels ν = 3, 2, 1 is colored in pink, green, and violet, respectively.

To illustrate the structural properties of our model system, let
us consider the example of Fig. 1 for the network S(L = 3, K = 3).
Here, the three nodes at the three corners of the biggest triangle in
Fig. 1 (top) each have one link fewer than the rest of the nodes in
the network; i.e., their coordination number is two. Similarly, for
the general topology of the finite network, S(L, K), having L hierar-
chical levels and coordination number K, there are K corner points
or nodes with coordination number (K − 1) and a total of (KL − K)

nodes with coordination number K. Thus, the role of these K cor-
ner nodes can be assumed small for large L, and they can be used
to introduce external forces or perturbations into the system. If we
number the oscillators in a clockwise manner within each trian-
gle, then we obtain the weighted adjacency matrix shown in Fig. 1
(bottom).

It is obvious that there is no closed-form analytic solution to
the dynamics of the model presented in Eqs. (2a) and (2b) due to
its non-linearity and structural complexity. Thus, to describe the
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evolution of the system in time, these equations of motion need to be
integrated numerically. To do this, we have chosen the fourth order
Runge–Kutta method (RK4), as it has been found to be well suited
for integrating systems of coupled oscillators.

III. NUMERICAL SOLUTION

We are interested in finding the fundamental frequency of
the oscillating units in different regions of the network since these
modes are the ones corresponding to the long wavelength excita-
tions and are the modes that persist longer in the network. In order
to describe such a process, we follow a coarse-grained analysis.

The process starts in a base network S(L, K) with L levels and
link weights as described before. In this base network, the elements
forming the basic K-cliques (connected by the strongest connec-
tions) are considered to oscillate collectively as a single unit, with
frequency ω(ν = L−1), which is, in general, different from the
intrinsic frequency of the individual oscillators. Each new unit has
an associated output s(ν) ≡ s(L−1) defined as the sum of the ampli-
tudes of the internal oscillators in the clique forming the unit. The
set of oscillating units can be visualized as a network, with topology
similar to that of the base network but having one level less and con-
sidered a Sierpinski graph S(L − 1, K) coarse-grained from the base
network. Following this recursive coarse-graining analysis proce-
dure, in the next step, a new graph is constructed from the previous
S(L − 1, K) graph by considering each one of its cliques of nodes as
a new single unit with output s(L−2), and then this set of new oscil-
lating units is visualized as a network of Sierpinski graph topology
S(L − 2, K) with one level less than the former (i.e., two levels less
than the original). This procedure is repeated until the last step of
the coarse-graining process is reached; i.e., a S(0, K) graph (a single
node) is generated by clumping together the oscillating units of the
previous S(1, K) graph (a single K-clique).

In the method described above, for a given step of the coars-
ening process, each of its units is generated from a clique of units
in the preceding network by clumping them together. In general,
for a coarse-grained network S(ν − 1, K) with ν − 1 levels, the out-
put sI

(ν−1) of an oscillating unit I is given by the sum of the outputs
si

(ν) of the oscillating units belonging to the parent network (with ν

levels) from which this network was coarse-grained; thus,

sI
(ν−1) =

∑

i∈ a clique in S(ν,K)

si
(ν), (4)

where the sum is taken over the K units in the corresponding
clique of the parent network. Observe that the coarse-grained level
and the hierarchy level ν are the same and that a scaling factor is
needed to keep the amplitude value within bounds. An example of
this recursive procedure is shown in Fig. 3, where an initial net-
work S(3, 3) is coarse-grained into a single unit [S(0, 3)] in three
coarse-graining steps. In this figure, the process of grouping together
outputs from one network into a new output unit in the child
network is illustrated.

We study initially the temporal evolution of the system S(10, 3),
solving numerically Eqs. (2a) and (2b). The scale of the fundamental
frequency of every oscillator in the system was fixed by ω0, the time
step of integration with RK4 was set to dt = 0.005ω−1

0 , and the total
time of each simulation was tf = 25 periods (5000dt). In the top-left

FIG. 3. Illustration of the recursive coarse-graining analysis procedure. Starting
from the base network of the Sierpinski graph topology S(3, 3), nodes from each
triangle or 3-cliques are grouped together into single nodes. The output sI of each
new node is the sum of the outputs of the 3-clique oscillators forming the group
(sI

(2) =
∑

i xi ). The resulting nodes are connected following a Sierpinski graph
S(2, 3) layout, forming a coarse-grained system one level lower than the previous
one. In the next step, nodes belonging to 3-cliques are grouped by adding their
outputs, forming a coarse-grained network S(1, 3), with the output of each I node
given by sI

(1) =
∑

i si
(2). Following the same procedure, in the final step, the

three nodes are collapsed into a network of one node only, S(0, 3), with output
(sI

(0) =
∑

i si
(1)). The color code is the same as in Fig. 1, with pink, green, and

purple representing links within each unit, between units, and between units of
units, respectively.

panel of Fig. 4, we show the temporal evolution (in units of 1/ω0)
of three oscillators located in one of the corner cliques (with a node
with two links and the other two nodes with three links) of the net-
work S(10, 3). We have tuned the parameters of our model system
to be a = 0.4, q = 0.7, and µ = 1, which stabilizes the final fre-
quency to one half of the fundamental frequency. This configuration
resembles a system with two distinguishable rhythms.

Once we had numerically solved the dynamical equations, we
applied the coarse-graining process to the system and observed the
temporal evolution of the outputs over the recursive process. In the
eight panels of Fig. 4, we show the results for the three nodes of the
coarse-grained corner clique in the S(9, 3), S(8, 3), S(7, 3), S(6, 3),
S(4, 3), S(2, 3), and S(0, 3) networks, respectively. It can be seen that
the oscillators reach a state of synchronization in about ten periods
(one period is measured in units of 1/ω0) and that the coarse-
grained network nodes at different levels of hierarchy oscillate with
a frequency of about ω0/2.
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FIG. 4. Time series of the measured signals at specific locations on the networks of different levels obtained during the coarse-graining process. The amplitude of each signal
shown was scaled to the interval [−2, 2]. In the top-left panel, the amplitude x of three different oscillators in a base network S(10, 3) is shown. The signal of three different
outputs in the coarse-grained networks S(9, 3), S(8, 3), S(7, 3), S(6, 3), S(4, 3), S(2, 3), and S(0, 3), derived from the base network, are shown in a sequential order. For
all these networks, the three nodes chosen for visualization belonged to the first small triangle (from the left) located at one of the three corners of the corresponding network.

The expected dynamics of the coupled system described in
Sec. II is that the fractal nature of the network connecting the oscil-
lators induces the system to shift toward a frequency-synchronized
state, with its frequency of oscillation tending toward an asymptotic
value. This value depends on the baseline frequency coefficient ω0

of each oscillator in the network and on the bifurcation parameter
µ of the van der Pol oscillator, as well as on the network param-
eters, a, q, K, and L, i.e., the base level interaction strength, its
decay factor, coordination number, and number of levels, respec-
tively, but the asymptotic value of the frequency for sufficiently
large networks does not depend on the number of nodes N. From
Fig. 4, it can be seen that the chosen oscillators of the base network
approaches a synchronized state after a transient period. Here, the
frequency of oscillations settles to approximately 0.55ω0, which is
about one half of the fundamental frequency of the van der Pol oscil-
lator [ω(0)]. Similarly, applying the coarse-graining procedure L
times, we end up with the final single node “network” that oscillates
with an asymptotic frequency of about one half of the fundamental
frequency.

To explore the frequency-synchronization process along the
coarse-graining procedure, we have numerically integrated the
dynamical equations describing the following five systems: S(12, 2),
S(10, 3), S(8, 4), S(7, 5), and S(6, 6) with 4096, 59 049, 65 536,
16 384, and 46 656 nodes, respectively. For all these cases, we have set

the bifurcation parameter v = 1 and the RK4 integration time step
dt = 0.005ω−1

0 . The total time tf of the simulations was set to 100
periods (20 000dt), and the initial transient time was set to t0 = 25
periods, such that any quantity averaged over time was calculated for
the time interval of tf − t0 =75 periods. In order to make the system
reach an asymptotic frequency of about one half of the fundamen-
tal frequency, we need to tune the base level interaction strength
a and its decay parameter q for each topology of the hierarchical
network. Thus, for K = 2, 3, 4, 5, and 6, we have set the strength a
to 0.55, 0.4, 0.3, 0.2, and 0.14 and q to 0.8, 0.7, 0.7, 0.8, and 0.7,
respectively. All the calculations were done with random initial con-
ditions for xi(0) = 0.5ζ1 and yi(0) = 0.1 + 0.01ζ2, with ζ1 and ζ2

drawn from a flat distribution in the interval (−1, 1). For each net-
work topology, we calculate the mean frequency of oscillation ω̄ at
each coarse-graining level ν, as the average of the frequencies over
the set of oscillators/units in the network. The results are shown in
Fig. 5, and it can be seen that in all cases, after the coarsening pro-
cess is applied, the (asymptotic) mean frequency is about one half
of the initial frequency. For the hierarchical network topology with
K ≤ 3, we observe that the mean frequency keeps reducing to level 4,
after which it is stabilized to 1/2 of the original frequency for all the
remaining hierarchy levels. For other network topologies (K > 3),
the frequency reaches its asymptotic value faster, after the second
level of the coarsening process.
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FIG. 5. The mean of the observed frequency ω̄ (in units of ω0) as a function of
the level (ν) in the coarse-grained network (gray line). The distribution of mea-
sured frequencies of the outputs for each level is shown in the small histogram
above the corresponding mean value, with the horizontal axis representing fre-
quency values (in units of ω0). In addition, for each level, the frequency of each
output is plotted (dots around the mean value), arranged horizontally according
to a clockwise numbering scheme similar to that shown in Fig. 1. The network
parameters are (top) K = 2, L = 12, 4096 nodes, a = 0.55, and q = 0.8; (mid-
dle-top) K = 3, L = 10, 59 049 nodes, a = 0.4, and q = 0.7; (middle) K = 4,
L = 8, 65 536 nodes, a = 0.3, and q = 0.7; (middle-bottom) K = 5, L = 7,
16 384 nodes, a = 0.2, and q = 0.8; and (bottom) K = 6, L = 6, 46 656 nodes,
a = 0.14, and q = 0.7. The asymptotic frequency, for the last step of the coarse-
graining process, i.e., the coarse-grained network with just one level, is nearly half
of ω0 for all the topologies evaluated. The total time of the simulations was set to
100 periods, with an initial transient time of 25 periods.

To obtain a descriptor of the characteristic frequency of an
oscillator belonging to a coarse-grained network with a certain num-
ber of levels, we calculate the mean frequency ω̄(ν) as the average of

the individual frequencies ω
(ν)
i over the set of all oscillators of the

network with ν levels, given by

ω̄(ν) =
1

Kν

∑

i∈S(ν,K)

ω
(ν)
i , (5)

with K being the coordination number of the network. The fre-

quency ω
(ν)
i = 2π/Ti of output i was measured by calculating the

average time period Ti between pairs of consecutive peaks, and only
the second half of the time series was used when calculating the
average to exclude the initial transients. We find that oscillators
located in different regions of the network have different frequencies
such that they are distributed around the mean, with the observed
shape and width of the frequency distribution depending on the
hierarchy level parameter ν. At the base level network, ν = L, the
frequencies are distributed within the interval [0.5ω0, 0.9ω0] for all
the network topologies, as depicted by the leftmost frequency bands
(in red) in all the panels of Fig. 5. However, as the system is coarse-
grained, the width of the distribution is continuously reduced, and
after some steps of the coarse-graining process, the distribution has
collapsed into a single value, as seen in all the panels by the fre-
quency bands becoming narrower when the number of levels is
decreased from ν = L to ν = 1. The parameter K also influences
the shrinking process of the width of the distribution of oscillation
frequencies. For K = 2, 3, 4, and 5, the width of the distribution
seems to decrease similarly, quite rapidly, and uniformly in the con-
secutive coarse-graining steps in such a way that in the third step
of the coarse-grained process (ν = L − 3), the distribution of fre-
quencies has shrunk to almost a single value. However, in the case
K = 6 (hexagons), a slower shrinking in the frequency distribution
width can be seen for the first three steps, ν = L, L − 1, and L − 2
levels, followed by a more rapid decrease from ν = L − 3 to an
almost single-valued frequency. In order to measure the phase syn-
chronization of the outputs at different steps of the coarse-graining
process, for each hierarchical network, we calculate the index of syn-
chronization occurring between K outputs, which would constitute
a clique in this network.36 For this, we calculate the instantaneous
phase θj(ν, t) of the output sj in the level ν at time t as

θj(ν, t) = tan−1 ṡj
(ν)(t)

sj
(ν)(t)

, (6)

with ṡj
(ν)(t) being the time derivative of the output sj

(ν)(t). Defining
the phase difference 1θjk between two connected outputs sj

(ν)(t),
sk

(ν)(t) as 1θjk(ν, t) = θj(ν, t) − θk(ν, t), we calculate the index of
synchronization R(ν) between all the outputs in a clique at the level
ν as

R(ν) =

∣

∣

∣

∣

∣

∣

1

tf − t0

∫ tf

t0

2

K(K−1)

K−1
∑

j=1

K
∑

k=j+1

ei1θjk(ν,t) dt

∣

∣

∣

∣

∣

∣

, (7)

where the double summation is taken over all pairs of outputs in
the clique, t0 and tf are, respectively, the initial and final time of

observation, and i =
√

−1.
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FIG. 6. The index of synchronization R(ν) as a function of the level ν for hierar-
chical networks with different values of K. The total time was tf = 100 periods,
with an initial transient time t0 = 25 periods.

In Fig. 6, we plot the index of synchronization R(ν) as a func-
tion of the level of hierarchy or coarse-graining, ν, for the five
different topologies with K = 2, 3, 4, 5, and 6. The results indi-
cate that for all of these topologies, the oscillators inside each clique
progressively reach a synchronized state when the level (ν) of the
coarse-graining process is high enough, wherein the units are in
phase.

In the results shown previously, the choice of the parameters,
in particular, the base interaction strength, a, and the decaying fac-
tor, q, was so that the system reached an asymptotic mean frequency
ω̄ that is half of the fundamental frequency of a single van der Pol
oscillator to mimic the possible relation between the circadian and
semi-circadian human cycle. Nevertheless, by a proper tuning of the
parameters a and q, the mean frequency ω̄ of the system can take
any possible value in the interval [0, ω0], changing continuously as
these parameters are varied. The extent and nature of the change in
the frequency at different levels of coarsening is explored next by
varying the parameters a and q and measuring the asymptotic mean
frequency ω̄ that the system reaches in the final coarse-grained net-
work. The results for five hierarchical networks (with K = 2, 3, 4,
5, and 6 and the number of levels 9, 9, 7, 7, and 6, respectively) are
shown in Fig. 7. For all the cases, the base interaction strength a was
varied from 0.1 to 0.4, that is, from a loosely coupled to a tightly cou-
pled system, while q, representing the amount of interaction decay
between two consecutive levels of the hierarchy, was varied from 0.3
to 1.0.

The results in Fig. 7 show a smooth transition between dif-
ferent frequencies as the parameters are changed. Inside the inter-
vals explored, the asymptotic frequency can be tuned to any value
between 0.1ω0 and ω0, and the transition is neither abrupt nor dis-
continuous for any value of the parameters. It can be noticed that
the size of the clique of the network influences the rate at which the
asymptotic frequency falls as the parameters a and q are varied. In

FIG. 7. Asymptotic frequency, ω̄, over the parameter space (a, q). The frequency
is in units of ω0. (Top) 2-cliques, with 12 levels and 512 nodes. (Middle-top)
3-cliques, with 9 levels and 19 683 nodes. (Middle) 4-cliques, with 7 levels and
16 384 nodes. (Middle-bottom) 5-cliques, with 7 levels and 78 125 nodes. (Bottom)
6-cliques, with 6 levels and 46 656 nodes.

the case of the line and triangles (K = 2, 3), the mean frequency ω̄

diminishes slowly, and larger values of a and q are required to force
ω̄ to be zero, i.e., a ≈ 0.9, q ≈ 0.8 for K = 2 and a ≈ 0.7, q ≈ 0.7 for
K = 3, respectively. On the other hand, for network topologies with
larger cliques, i.e., K ≥ 4, the decay of ω̄ is faster, with K = 6 being
the extreme case, where ω̄ tends to zero for values of a and q around
0.3 and 0.6, respectively.

IV. APPROXIMATE ANALYTIC SOLUTION

In order to gain insight into the nature of the dynamics, we con-
struct an analytically tractable system, as an approximation. Let us
consider a single oscillator and couple it with K oscillators with con-
stant strength ri(0) = a [level L = 0; see S(0,K) in Fig. 3] to obtain
Eqs. (2a) and (2b). Then, adding up the coordinates of the coupled
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oscillators, we define a new set of coordinates,

X1 =
K

∑

i=1

xi, Y1 =
K

∑

i=1

yi, (8)

which, at the level L = 1, satisfy the following equations:

Ẋ1 = ω0Y1, (9a)

Ẏ1 = −ω0 (X1 − r1(K − 1)X1) + µ

K
∑

i=1

(1 − x2
i )yi, (9b)

where r1 = qr0 = qa. In Eq. (9b), the second term on the right-hand
side describes the non-linear part. Neglecting this, we obtain a lin-
ear system, the frequency of which is related to the frequency of the
simple harmonic oscillator, ω2

1 = ω2
0

[

1 − qr0(K − 1)
]

. By repeating
this procedure, one can construct a set of KL simple oscillators whose
frequency is

ω2
L = ω2

0

L
∏

i=0

[

1 − qia(K − 1)
]

, (10)

which in the limit of L → ∞ has a finite non-zero value.37 One
recognizes the product on the right-hand side of Eq. (10) as the
q-Pochhammer symbol (a(K − 1); q)L+1. The Euler function is the
special case (q; q)∞.

In Fig. 8, we show the frequency as a function of the level of
renormalization for the cases K = 2, . . . , 6. Here, one finds that the
frequencies obtained from the numerical solution are systematically
higher than those obtained from the approximate analytical solu-
tions, as depicted in the inset of Fig. 8. This is due to the fact that the

FIG. 8. Frequency ω as a function of the number of levels ν of the coarse-grain-
ing process, derived from Eq. (10) for K = 2, . . . , 6 and using the parameters
(a = 0.2, q = 0.70). The frequency is in units of the fundamental frequencyω(0)
of a single van der Pol oscillator. The inset shows the comparison with the full
model. Green circles refer to the analytic approximation of the frequency, and
magenta squares are the numerically computed frequencies of the full model.

non-linearities present in the dynamical calculations contribute by
increasing the frequency from its lower limit, obtained for the linear
system. We also notice that the differences between the predictions
and the actual frequencies increase with K. This is to be expected
since the number of oscillators at the base network increases enor-
mously when K is large, thus leading to the omission of correlations
in the system. Nevertheless, this approximation correctly captures
the qualitative dependence of the frequency on the parameters a, q,
and k.

In Fig. 5, we observed that the number of frequencies differ-
ent from the asymptotic mean frequency decreases rapidly as we
apply more steps of coarse-graining. Thus, the assumption in our
approximate analytic solution that all the units at a given level oscil-
late with the same frequency is well supported when the number
of coarse-graining steps is large. However, to test this numerically
for larger networks, such as K = 6 and L = 12 having more than
2 × 109 oscillators, would take a prohibitively long time to compute.
Nevertheless, we can conclude that our approximate analytical solu-
tion describes qualitatively the main effects found in the hierarchical
networks.

V. CONCLUDING REMARKS

Here, we have studied the dynamical properties of networks of
van der Pol oscillators in fractal topologies where the strengths of the
couplings decrease with successive hierarchy levels in the fractal. We
have characterized the collective behavior at every level by coarse-
graining the signals as outputs. It is worth mentioning that we have
not only corroborated the mean-field results obtained in Ref. 17,
but we have also found new properties of regular networks with
hierarchical interactions, namely, synchronization and phase lock-
ing processes that emerge due to the complexity of the interactions.
To our knowledge, there has been no previous study of non-linear
oscillations in networks with hierarchically weighted interactions.

From the outputs at each level of the hierarchy, we have mea-
sured the mean frequency and the index of synchronization. Using
these two quantities, we have demonstrated that the network can be
tuned to a state of synchronization at different levels of hierarchy,
with a characteristic mean frequency that is smaller than the funda-
mental frequency of an isolated van der Pol oscillator. In addition,
the value of the mean frequency in large networks can be stabilized
to any desired value lower than the intrinsic single oscillator fre-
quency depending on the coordination number K of the network,
the coupling strength, and its decay factor. These observations are
supported by our approximative analytical approach, which seems
to capture qualitatively the dependence of the mean frequency on
the parameters.

Networks where the coupling strengths show a broad distribu-
tion are common in social and biological systems.12,13,38 Our study
shows that in such networks, a robust oscillation with a precise
lower frequency can be obtained if the heterogeneity in coupling
strengths is introduced using a hierarchy. Note that previous stud-
ies on hierarchical coupling of oscillators were mostly concerned
with topological hierarchies.24,39 Moreover, the phase locking phe-
nomenon observed in our model is important because it allows
oscillations to be reset to any desired phase while the system is evolv-
ing dynamically. It should be noted, however, that the phenomenon

Chaos 30, 123146 (2020); doi: 10.1063/5.0010638 30, 123146-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

of synchronization in this system is different from the one observed
in a system of weakly coupled Kuramoto oscillators.2,4

As the present study is for an idealized system, it should be fol-
lowed with more realistic models including, for example, disorder
in the hierarchical network structure or varying the frequency and
phase of individual oscillators. In addition, it would be interesting
to explore in-depth the effects of the local topology in these hier-
archical systems. This could be done, for example, by introducing
local defects to break the clique symmetry or by using some other
fractal-like topology to test the robustness of the dynamics in less
idealized situations. These could be considered realistic approaches
for modeling a wide variety of networks that can be both weighted
and hierarchical, such as social systems,40,41 brain networks,32,42 and
networked swarms,43–45 as well as for the investigation of patterns
such as chimeras.31,33
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