
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Alpirez Bock, Estuardo; Amadori, Alessandro; Brzuska, Chris; Michiels, Wil
On the Security Goals of White-Box Cryptography

Published in:
 IACR Transactions on Cryptographic Hardware and Embedded Systems

DOI:
10.13154/tches.v2020.i2.327-357

Published: 02/03/2020

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Alpirez Bock, E., Amadori, A., Brzuska, C., & Michiels, W. (2020). On the Security Goals of White-Box
Cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(2), 327-357.
https://doi.org/10.13154/tches.v2020.i2.327-357

https://doi.org/10.13154/tches.v2020.i2.327-357
https://doi.org/10.13154/tches.v2020.i2.327-357

IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 327–357. DOI:10.13154/tches.v2020.i2.327-357

On the Security Goals of White-Box
Cryptography

Estuardo Alpirez Bock1, Alessandro Amadori2, Chris Brzuska1 and Wil
Michiels2,3

1 Aalto University, Finland, {estuardo.alpirezbock,chris.brzuska}@aalto.fi
2 Technische Universiteit Eindhoven, Netherlands, A.Amadori@tue.nl

3 NXP Semiconductors, Netherlands, wil.michiels@nxp.com

Abstract. We discuss existing and new security notions for white-box cryptography
and comment on their suitability for Digital Rights Management and Mobile Payment
Applications, the two prevalent use-cases of white-box cryptography. In particular,
we put forward indistinguishability for white-box cryptography with hardware-binding
(IND-WHW) as a new security notion that we deem central. We also discuss the
security property of application-binding and explain the issues faced when defining
it as a formal security notion. Based on our proposed notion for hardware-binding,
we describe a possible white-box competition setup which assesses white-box imple-
mentations w.r.t. hardware-binding. Our proposed competition setup allows us to
capture hardware-binding in a practically meaningful way.
While some symmetric encryption schemes have been proven to admit plain white-box
implementations, we show that not all secure symmetric encryption schemes are
white-boxeable in the plain white-box attack scenario, i.e., without hardware-binding.
Thus, even strong assumptions such as indistinguishability obfuscation cannot be
used to provide secure white-box implementations for arbitrary ciphers. Perhaps
surprisingly, our impossibility result does not carry over to the hardware-bound
scenario. In particular, Alpirez Bock, Brzuska, Fischlin, Janson and Michiels (ePrint
2019/1014) proved a rather general feasibility result in the hardware-bound model.
Equally important, the apparent theoretical distinction between the plain white-box
model and the hardware-bound white-box model also translates into practically
reduced attack capabilities as we explain in this paper.
Keywords: White-box cryptography · Hardware-binding · Application-binding ·
Security Notions · Feasibility · AES

1 Introduction
The white-box attack model was introduced in 2002 by Chow, Eisen, Johnson, and van
Oorschot (CEJO [CEJvO03, CEJv03]). In this model, we consider an adversary which is
in complete control of the execution environment of a cryptographic program and which
obtains the implementation code of the cryptographic program with an embedded secret
key. The goal of a white-box implementation is to remain secure even in the presence of
such a powerful adversary.

Since the introduction of white-box cryptography, constructing white-box cryptographic
implementations that achieve security against key extraction w.r.t. a white-box attacker
has been a central research topic. A prominent demonstration of these efforts are the
WhibOx Competitions of 2017 and 2019 [ECR17, cyb19], where designers were invited to
submit white-box AES implementations with embedded secret keys. However within a

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.327-357
mailto:estuardo.alpirezbock@aalto.fi,chris.brzuska@aalto.fi
mailto:A.Amadori@tue.nl
mailto:wil.michiels@nxp.com
http://creativecommons.org/licenses/by/4.0/

328 On the Security Goals of White-Box Cryptography

few days up to several weeks, attackers succeeded to extract keys from all candidates that
were submitted.1

Since achieving security against key extraction for standard ciphers seems tremendously
challenging and, in a way, a minimal goal, studies on further security goals for white-box
cryptography have received less attention. To some extent, it seems natural to associate
white-box cryptography with a special-purpose obfuscation technique for hiding embedded
secret keys in ciphers. However, it is folklore —and we elaborate more later in this paper—
that a white-box program which achieves only security against key extraction does not
provide any meaningful security in most use cases. To clarify this, we now reflect on
Digital Rights Management and Mobile payment applications as the most popular use
cases of white-box cryptography. We study the considerations that lead to the deployment
of white-box cryptography and explicate the expected security properties, in each of the
application scenarios. As it turns out, even Virtual Black-Box obfuscation [BGI+01] alone
does not suffice to prevent misuse of the cryptographic programs in the use-cases that
we discuss, since the security goals of white-box cryptography and Virtual Black-Box
obfuscation are incomparable.

Digital Rights Management (DRM). The purpose of DRM applications is to perform
access control on a user’s device, typically allowing the user to access content they have paid
for and limit access to content beyond. Usually, content is encrypted under a symmetric
key, and the DRM applications contain an embedded secret key to decrypt and thereby
retrieve the content. White-box cryptography here shall prevent the user from extracting
the secret key and sharing it with other users. However, instead of extracting the key, a
user could simply copy the entire decryption program with the embedded secret key and
share this copy with other users. Therefore, effective white-box decryption programs for
DRM applications need to implement countermeasures against such code-lifting attacks.

Motivated by the DRM application scenario, Delerablée, Lepoint, Paillier, and Rivain
(DLPR [DLPR14]) formulate several security notions. In addition to (basic) security
against key extraction, DLPR suggest the notion of one-wayness, which captures that an
encryption program should not allow to decrypt. In general, one-wayness is known not to
be a suitable formalization of confidentiality as one-wayness does not prevent the leakage
of a few bits of information about the encrypted message, unlike standard confidentiality
notions such as indistinguishability under chosen-message attacks (IND-CPA). However, in
the DRM setting, one can argue that strong confidentiality is less essential and that illegal
re-distribution is thwarted already if significant parts of the content cannot be recovered
by the adversary.

In order to address the threat of code-lifting attacks and illegal re-distribution of
decryption software, DLPR propose the notions incompressibility and traceability. A
white-box implementation of a cryptographic primitive is called incompressible if it is
of very large size and only remains functional in its complete form. If the program is
compressed or if fragments of the program are removed, the program loses its functionality.
The underlying motivation is that if a program is incompressible and of a very large
size, then it should be difficult for an adversary to re-distribute it online. See [DLPR14,
BI15, BIT16, BBK14, FKKM16, AAB+19] for constructions that achieve incompressibility.
Traceability, on the other hand, consists of watermarking a decryption program such that,
if used for unintended purposes and re-distributed illegally, it is possible to determine the
user who corresponds to that program. DLPR define a white-box tracing scheme based on
the fully collusion resistant traitor tracing scheme defined by Boneh, Sahai and Waters in
[BSW06].

1Three design candidates of the 2019 edition resisted attacks during the competition phase and
were broken a few weeks after the end of the competition (see https://www.cryptolux.org/index.php/
Whitebox_cryptography).

https://www.cryptolux.org/index.php/Whitebox_cryptography
https://www.cryptolux.org/index.php/Whitebox_cryptography

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 329

Mobile Payment. White-box cryptography for mobile payment applications should serve
a somewhat different purpose than previously described for DRM applications. For the
description of the application scenario, we now follow the presentation of Alpirez Bock,
Brzuska, Fischlin, Janson and Michiels [ABF+19]. A mobile payment application stores
sensitive data (e.g. transaction credentials) in encrypted form. When the owner of the
application wishes to make a payment, a credential is decrypted and used to generate
a valid transaction request. Note that in this case, the adversary and the owner of the
application are distinct entities. I.e., the adversary is a third party whose ultimate goal is to
recover the value of a transaction credential in order to use it for their own purposes against
the interest of the owner of the application. Therefore, we need to prevent the adversary
from reading out the content of the transaction credentials contained in the ciphertexts
stored within the application. I.e., we (should) aim for the confidentiality of the transaction
credentials. Analogously, we need to prevent an adversary from modifying the values of
the ciphertexts in such way that the ciphertexts decrypt into new, maliciously modified
transaction credentials. That is, we (should) aim for ciphertext integrity. Moreover, we
also need to protect the secret key used to decrypt those ciphertexts. Additionally, it is
desirable to achieve confidentiality and integrity also for the requests that are generated
using the decrypted transaction credential.

An adversary located in the user’s phone (e.g. in the form of malware) might attempt
to extract the decryption key and use it for recovering the transaction credentials. In
addition, the adversary might attempt to simply copy the entire application and run it on
a phone of their choice, communicating with a payment terminal of their choice. That is,
mobile payment applications also need protection against code-lifting attacks.

The observations for both use cases discussed above show that indeed, a white-box
program needs to achieve more than only security against key extraction and, in particular,
that mitigating code-lifting attacks is central to the application of white-box cryptography.
The relevance of code-lifting attacks is an attack vector that is usually not considered
for obfuscation, which is one of the distinguishing features of the two tools. As the
attack threats on a DRM application differ from the attack threats on a mobile payment
application, we now discuss why the DRM-specific security notions might not be suitable
for payment and that further security notions are needed.

1.1 Security notions for white-box cryptography beyond DRM
As explained above for mobile payment applications, we wish to achieve properties such as
confidentiality, integrity, security against key extraction and security against code-lifting
attacks. Neither confidentiality nor integrity properties are inherited from incompressibility,
traceability or security against key extraction, and one-wayness only ensures hiding of
part of a ciphertext. Moreover, the concepts of incompressibility and traceability do not
seem to fit the use case of white-box cryptography for mobile payment. The concept of
implementing cryptographic programs of a very large size seems to stand in contrast with
desired design properties of applications used by mobile devices and in the internet of
things (see Section 5 for an extended discussion). As for traceability, it seems unlikely that
the owner of the payment application might want to illegally re-distribute their application
for unintended purposes. In this paper, we thus focus on the properties of hardware- and
application-binding for protecting white-box programs in mobile payment applications.

Hardware-Binding. The property of hardware (device) binding captures that white-box
cryptography shall only be executable on the intended device. That is, a white-box
program can be evaluated when having access to a specific device, but becomes useless
when not having access to the device. Hardware-binding has been remarked as a desirable
goal for white-box cryptography in the literature [CdRP14, SdHM15, BBIJ17]. In fact,
commercial implementations offer hardware-binding as an additional security feature [Mic],

330 On the Security Goals of White-Box Cryptography

while evaluation boards provide security assessments of white-box implementations with
respect to software protection methods such as device binding [Ris]. Moreover in a recent
work by Alpirez Bock, Brzuska, Fischlin, Janson and Michiels (ABFJM [ABF+19]), the
authors present a feasibility result for white-box cryptography with hardware-binding,
based on the assumption of indistinguishability obfuscation and a puncturable pseudo-
random function as a secure hardware component. The authors construct a white-box
key derivation function (KDF) with hardware-binding and use it as a building block for
a payment application. As the authors point out, their proposed application achieves
properties which align with security guidelines proposed by Mastercard [Mas17].

In this paper we abstract and generalize the security notion for hardware-binding for
white-box encryption. We define the notion of hardware-binding such that an adversary is
unable to generate a valid ciphertext, in the case that the encryption program does not
have access to the hardware device it is bound to. We explain how we can construct a
secure white-box encryption program based on the approach presented by ABFJM.

Application-Binding. In order to increase the security of a cryptographic program running
on a mobile device, one can bind it to another application implementing authentication
or filtering functions. For instance, before performing any cryptographic operation, an
application might require its user to provide a valid password.

Similarly, the application might first verify the validity of the input message the user
wishes to encrypt, and only in case that it is a valid message, the encryption will take
place. For these countermeasures to be effective in the white-box attack model, we need to
have an encryption program which can only be executed within a designated application
and cannot be separated from it. We refer to this technique as application-binding. The
goal of application-binding is to prevent an adversary from circumventing computations
that shall be performed by an application before encrypting a message.

Having a white-box program which achieves the property of application-binding only,
and does not implement any hardware-binding functions, has one particular advantage.
Namely, the owner of the program can freely choose on which hardware device they want to
use their program. For the case that the application implements authentication operations,
only the owner of the program should be able to authenticate themselves and thus, an
adversary who code lifts the program is not able to use it. Combining the notions of
application- and hardware-binding achieves even stronger security properties than hardware-
binding alone, as was observed by Cooijmans, de Ruiter and Poll (CRP) [CdRP14] in
the context of secure storage solutions. The authors consider hardware- and application-
binding as properties jointly, i.e., they deem application-binding as more useful when
combined with hardware-binding.

In this paper, we discuss application-binding as a useful security design concept in the
white-box attack model. We point out several issues that arise when trying to formalize the
intuitively desired security guarantees provided by application-binding as a formal security
notion. A central difficulty is to abstract and/or generalize the different functionalities that
an (a priori) unknown application can perform together with its associated desired security
properties. A useful special case is binding a white-box program to an application that
performs authentication operations, i.e., the white-box program can only be executed in
case that a valid input (such as a password) is provided. Even in this special case, defining
security is non-trivial: Recall that in the white-box attack model, we consider an adversary
in control of the execution environment of the program. Thus, it is fair to assume that
the adversary might intercept the valid authentication input and then use it for running a
copy of the encryption program. One might exclude this particular attack interface, but
this appeared a rather arbitrary restriction to us, inconsistent with the general white-box
attack scenario rationale. We thus refrained from formalizing such a notion.

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 331

1.2 On the Feasibility of White-Box Cryptography
Based on our security notions, we put forward suggestions for alternative white-box
competitions. Here, we consider white-box programs that are bound to a (hardware)
functionality. That is, the white-box program can only be executed in the presence of
a specific hardware module (emulated by the competition server). We speculate that
such a competition not only reflects the application of white-box cryptography in real
life applications more closely, but, in addition, is also more likely to yield more robust
implementations. Our speculation is fueled by several results from the foundations of
cryptography, but also from the competition framework as we explain later. When a
white-box encryption program is not bound to a functionality, then its desired functionality
is strikingly close to that of public-key cryptography and/or trapdoor functions. By the
seminal result of Impaglizzo and Rudich [IR90], turning symmetric-key cryptography
into public-key cryptography via a generic transformation seems unlikely. Similarly, the
foundational impossibility result for Virtual Black-Box Obfuscation by Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan and Yang [BGI+01] points into the same direction.
However, since the breakthrough of indistinguishability obfuscation (iO), it is well-known
that iO can turn any one-way function into a public-key encryption scheme. In addition,
ABFJM transform arbitrary symmetric encryption schemes into hardware-bound white-box
encryption schemes. Does the same approach apply to the non-hardware-bound setting?

The answer to this question is not known, and iO-inspired candidates have been broken
in prior competitions [GPRW18]. However, one might argue that the approach seems
conceptually promising, and the failure in a practical competition is merely due to the
tremendous inefficiency of current iO candidates for concrete parameters. However, we
argue that generic transformations that works for arbitrary secure symmetric encryption
schemes seems indeed hard to get by. Namely, we show that a generic transformation from
symmetric-key to public-key cryptography while maintaining the input-output-behavior of
the encryption (as required in the white-box scenario) seems unlikely. Inspired by [BGI+01],
we give a contrived, yet black-box secure symmetric encryption scheme that is not white-
boxeable in the plain white-box model. Here, we can give a very efficient attacker that is
able to extract the key from any white-box version of the symmetric encryption scheme.
Perhaps surprisingly, the same symmetric encryption scheme can be securely used in the
hardware-bound setting, thus demonstrating a conceptual separation between the two
settings.

Based on our impossibility result and the (theoretic) ABFJM feasibility result, we
speculate that in general, white-box programs which implement hardware-binding are more
likely to achieve the desired security. As we also argue, white-box programs implementing
such binding properties align better to the use case of white-box cryptography in real-life,
and reduce the attacker capabilities. Thus, there are good reasons to believe that the
suggested new white-box competitions reflect the need of practical applications more
accurately and reflect security goals that are easier to achieve than those in current
competitions.

Summary of Contributions and Outline of the Paper. In Sections 3 and 4, we discuss
existing security notions for white-box cryptography and limits of their usefulness in the
context of payment applications. In Section 5, we define indistinguishability of white-box
encryption with hardware-binding (IND-WHW). In contrast to ABFJM, our IND-WHW
security notion is general and not tailored to a specific setup of payment applications.
From IND-WHW security, we derive a new white-box competition setup that captures
the desired property in Section 6. We then turn to studying a conceptual separation
between the plain white-box model and the hardware-bound white-box model. Namely,
in Section 7, we show that generic compilers for white-box cryptography cannot exist in
the plain model. The result is technically inspired by the impossibility result for Virtual

332 On the Security Goals of White-Box Cryptography

Black-Box obfuscation [BGI+01]. In Section 8, we discuss and reflect on the ABFJM
construction for white-box cryptography with hardware-binding in the payment setting.
In Section 9, we summarize the conceptual separation between the plain white-box model
and the hardware-bound white-box model and reflect on the practical differences between
them. We conclude with speculations that a competition for hardware-bound white-box
cryptography not only reflects use-cases of white-box cryptography in a more suitable way,
but might also put designers in an advantageous position where it becomes feasible to
submit designs that resist attacks for more than 8 weeks.

2 Preliminaries and Notation
1n denotes the security parameter in unary notation. Given a bit string x, we denote by
x[j : i] the bits j to i of the bit string x. We denote by binn(i) the integer i, encoded as an
n-bit string. For the concatenation of two bit strings a and b, we write a||b. For a program
P , we denote by |P | its bit-size. We leave the choice of encoding of the program implicit
in this work.

By ←, we denote the execution of a deterministic algorithm while ←$ denotes the
execution of a randomized algorithm. We denote by := the process of initializing a set,
e.g. S := ∅, while ←$ denotes the process of randomly sampling an element from a given
set, e.g. x←$ {0, 1}n. When sampling x according to the probability distribution X, we
denote the probability that the event F (x) = 1 happens by Prx←$ X [F (x)]. We write
oracles as superscript to the adversary AO. Sometimes, when we have many oracles, we
additionally use the subscript of the adversary, e.g., AO1,O2,O3

O4,O5,O6
. All algorithms receive the

security parameter 1n as input. For ease of notation, we omit the security parameter for
the rest of the article.

Definition 1. A nonce-based symmetric encryption scheme SE is a tuple of three algo-
rithms (KgenSE, Enc, Dec) such that KgenSE is a probabilistic polynomial-time algorithm
(PPT), and Enc and Dec are deterministic polynomial-time algorithms. The algorithms have
the following syntax: kSE←$ KgenSE(1n), c← Enc(kSE,m, nc), and m/⊥ ← Dec(kSE, c, nc).
The encryption scheme SE satisfies correctness, i.e., for all messages m ∈ {0, 1}∗ and all
nonce values nc ∈ {0, 1}∗,

Pr[Dec(kSE, Enc(kSE,m, nc), nc) = m] = 1

where the probability is over the randomness of kSE←$ KgenSE(1n).

Remark. Throughout this paper, we use the term cipher for a deterministic algorithm
that is a building block for an encryption scheme, but is not an encryption scheme itself.
That is, we call AES a cipher, not an encryption scheme, while, e.g., we call AES-CBC
or AES-GCM symmetric encryption schemes. Our security notions are specified for
encryption schemes rather than only for their building blocks, as security for ciphers
does not necessarily translate to the security of the scheme that uses the cipher. While
for security against key extraction, such a transformation should (almost trivially) hold,
transformations for advanced properties such as integrity and confidentiality are more
difficult to achieve, see Fischlin and Haag [FH19].

Below, we specify the security of an authenticated encryption scheme [BN00, Rog02] via
the security game shown in Figure 1. Here, the adversary is provided with a left-or-right
encryption oracle and a decryption oracle where it can submit arbitrary ciphertexts except
for the ciphertexts obtained from the encryption oracle. If b = 0, the decryption oracle
returns a decryption of the submitted ciphertext. If b = 1, the decryption oracle returns ⊥.
As the adversary can distinguish the two games whenever the adversary is able to forge a
fresh, valid ciphertext, this distinguishing game models not only confidentiality, but also

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 333

ExpAE
SE,A(1n)

b←$ {0, 1}
kSE ←$ KgenSE(1n)
b′ ←$AENC,DEC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
nc←$ {0, 1}n

c← Enc(kSE,mb, nc)
C := C ∪ {c}
return (nc, c)

DEC(nc, c)

assert c /∈ C
if b = 1 then

return ⊥
else

return m← Dec(kSE, c, nc)

Figure 1: The ExpAE
SE,A(1n) security game

integrity. In the security game, we use assert as a shorthand to say that if the assert
condition is violated, then the oracle returns an error symbol ⊥. Note that we consider
only deterministic authenticated encryption schemes, and therefore, the adversary is not
allowed to re-use a previous queries (m,nc), or else it could trivially determine b from
two queries (m0,m1, nc) and (m0,m

′
1, nc) with m1 6= m′1. For simplicity, we ensure this

condition by generating the nonce at random for each query.

Definition 2 (AE-security). A nonce-based symmetric encryption scheme SE = (KgenSE,
Enc, Dec) is called an authenticated encryption scheme or AE-secure if all PPT adversaries
A, the advantage AdvAE

SE,A(n) :=
∣∣∣Pr
[
ExpAE

SE,A(1n) = 1
]
− 1

2

∣∣∣ is negligible. See Figure 1 for
the description of experiment ExpAE

SE,A(1n).

White-Box Cryptography

In the following, we provide a definition for white-box cryptography compilers. That is, we
define a randomized compiler which, based on a symmetric encryption scheme, generates a
white-box encryption program with an embedded secret key. Here, the generated white-box
encryption program is functionally equivalent to the encryption program of the symmetric
encryption scheme. Note that in this definition, the generated white-box program is in the
plain white-box model and does not implement any binding functionalities. This general
definition serves as a starting point for discussions on feasibility and infeasibility as well as
the definitions of white-box compilers we present and discuss later in this paper, which
generate white-box programs with hardware- and input-binding. We also note that in
our notation, the subscript of the compiler denotes which type of white-box program is
generated by the compiler, in this case, an encryption program in the plain white-box
model.

Definition 3 (White-Box Encryption Compiler). A white-box encryption compiler Compen
for a symmetric encryption scheme SE is a randomized algorithm that takes as input the
symmetric key kSE and generates a white-box encryption algorithm

EncWB←$ Compen(kSE).

For all key values kSE ∈ {0, 1}n, all messages m ∈ {0, 1}∗ and all nonce values nc ∈ {0, 1}n,
we have Pr[Enc(kSE,m, nc) = EncWB(m,nc)] = 1, where the probability is taken over the
randomness of kSE←$ KgenSE(1n) and EncWB←$ Compen(kSE).

For completeness, we include the definitions of (length-doubling) pseudorandom gener-
ators (PRGs) and pseudorandom functions (PRFs) in Appendix A.

334 On the Security Goals of White-Box Cryptography

3 Basic Security Properties for White-Box Cryptography
In this section we first discuss the popular notions of security against key extraction and
one-wayness for white-box cryptography. Achieving security against key extraction has
been a central focus of researchers and designers in the white-box crypto community. For
this reason, we believe it useful to clarify the usefulness and limits of this security goal. As
we explain via folklore-inspired counterexamples, achieving security against key extraction
alone does not provide any useful security. For one-wayness, we explain that in many cases
it might not suffice either. However we discuss some possible, more useful variations of the
one-wayness notion and possible use-cases. We conclude this section by explaining that
aiming for notions such as confidentiality and integrity might be more useful for white-box
cryptography. Note however that as expressed throughout this paper, we also wish to
achieve security against code-lifting attacks and therefore, confidentiality and integrity
are only basic goals that should be achieved in combination with security anchors against
code-lifting attacks.

3.1 On Security against Key Extraction and One-wayness
Security against Key Extraction. The concept of the security notion for security against
key extraction captures that it should be impossible for an adversary to extract the value
of the secret key embedded in a white-box implementation. Key extraction attacks are
indeed the most popular practical attack strategies against white-box implementations,
and achieving security against key extraction is a necessary condition for all meaningful,
stronger properties. DLPR capture security against key extraction via a suitable formal def-
inition, which the authors call Unbreakability (see Definition 1 in [DLPR14]). Additionally,
Bogdanov and Isobe [BI15] also discuss security against key extraction as a security goal
for white-box cryptography. DLPR observe that achieving security against key extraction
is not very useful on its own. One can think of, e.g., artificial counterexamples whose
symmetric key is hardcoded in a way which is difficult to extract, but which only returns
the identity function of the plaintext. Such an implementation is indeed not useful and
does, in particular, not satisfy confidentiality and integrity, as is usually desired for an
encryption scheme.

DLPR also remark that an adversary usually has the goal of recovering plaintexts
rather than extracting the secret key of an implementation. In this context, an adversary
could attempt to use a white-box encryption program in order to decrypt ciphertexts
which the adversary is not meant to be able to do. For this reason, DLPR propose the
notion of one-wayness as a stronger alternative to security against key extraction.

On One-Wayness. One-wayness captures the property that an adversary, even when
given a white-box encryption algorithm, should not be able to use that algorithm to
decrypt. A similar property is called asymmetry property in [BBK14], which captures that
a decryption program should not enable encryption.

The following folklore-inspired example illustrates a difference between one-wayness
and confidentiality. Consider a symmetric encryption program with two symmetric keys
harcoded into it such that the first key is difficult to extract whereas the second key is
stored in plain. On an input message, the encryption scheme splits the message into two,
and encrypts the right half of the message using the first key and the left half of the
message using the second key. As the white-box adversary can read the second key off the
program, the adversary can recover the second half of the message. Yet, the white-box
encryption scheme remains one-way since the adversary cannot recover the entire message.
In Appendix B we provide more details of this illustrating example for completeness.

One approach to strengthen the security of one-wayness to better capture confidentiality
is to, e.g., consider the adversary as winning, if the adversary is able to recover, say, half of

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 335

the bits of the message or some other substantial fraction. Unlike in distinguishing attacks
such as IND-CPA security, for one-wayness to be meaningful, recovery of a single bit is not
enough - unless one demands that the bit be not guessable with probability significantly
greater than 1

2 , but then, one recovers indistinguishability under random message attacks,
a weak variant of IND-CPA security. As messages are usual structured and not random,
standard black-box security notions for symmetric encryption have converged to IND-CPA
and IND-CCA security, and Saxena, Wyseur and Preneel [SWP09] suggest to follow this
approach also for white-box cryptography, essentially recovering security guarantees of
public-key cryptography.

Possible use cases for one-wayness and asymmetry.

One can argue that a standard notion of one-wayness can still be useful in a scenario in
which, for instance, recovering half of a message is not really useful for an adversary and full
confidentiality properties are not needed. E.g., in the use case of white-box cryptography
for streaming services, legitimate users have a white-box decryption program for recovering
encrypted content, which usually consists of visual and audio data. Here, it would be an
unsatisfactory attack to recover only, say, interrupted intervals of the content (assuming
that collusion for reconstruction is not possible). Moreover, the use of encryption here
only serves access control and not confidentiality, since it is often public information which
content is being streamed (e.g., in the case of a live sports event). Similarly, we explain in
Appendix C that in certain application scenarios, asymmetry might suffice.

3.2 Confidentiality and Integrity
In the previous subsection, we discussed very specific application scenarios in which one-
wayness and/or asymmetry might suffice, but in general, we consider it beneficial to focus
on confidentiality for white-box encryption instead of one-wayness. Similarly, for white-box
decryption, we suggest to focus on integrity. We give a brief overview over definitions of
these properties.

Confidentiality for white-box encryption. In the paper Towards Security Notions for
White-Box Cryptography Saxena, Wyseur and Preneel (SWP [SWP09]) suggest to adapt
the standard public-key security notions indistinguishability under chosen plaintext attacks
(IND-CPA) and indistinguishability under chosen ciphertext attacks (IND-CCA) to define
confidentiality for plain white-box encryption programs. I.e., one can define the IND-CCA
game for white-box encryption simply by using the public-key cryptography variant of
IND-CCA security and replacing the public key with a white-box encryption program.
Following DLPR, one can additionally provide the adversary with a recompilation oracle
that returns to the adversary several versions of a white-box program compiled for the
same key. The standard implications that IND-CCA/IND-CPA implies one-wayness also
hold for white-box cryptography.

Integrity for white-box decryption. For white-box decryption, integrity captures that a
white-box decryption program should not help to generate fresh ciphertexts or ciphertexts
for fresh messages. As common for symmetric encryption (see, e.g., Paterson, Ristenpart
and Shrimpton [PRS11]), integrity comes in two flavours, plaintext integrity (INT-PTXT)
and the stronger ciphertext integrity (INT-CTXT). Note that similarly to the discussion
provided by Fischlin and Haagh (see Appendix C), in the plain white-box model, these
notions can only be achieved if the challenge message is not chosen by the adversary but
rather, e.g., at random. Following DLPR, one can augment both security notions with a
recompilation oracle.

336 On the Security Goals of White-Box Cryptography

4 Usefulness and Limits of Incompressibility & Traceability
In this section we discuss the popular security notions of incompressibility and traceability
for white-box cryptography. In some application scenarios, these properties might mitigate
code-lifting attacks. However, we do not consider either of the two properties a suitable
choice to provide security against code-lifting attacks in the context of mobile payment
applications, and thus suggest to define alternative different properties.

Possible use cases of incompressibility. Incompressibility captures that the implementa-
tion of a cryptographic primitive is large and only remains functional in its complete form.
For DRM application, the hope is that the size of the program makes online redistribution
harder. More precisely, incompressibility can be useful in a context where hardware
(with large sized memory) is delivered to a client, such as common for some traditional
cable-streaming services, while online redistribution of the same programs might be harder.

In addition, Bogdanov and Isobe [BI15] discuss that incompressibility might help
thwart mass surveillance. Namely, an increase of a reasonably large factor in terms
of storage might be permissible for a local user in their own device, as it only implies
small additional costs for the local user. However, if sufficiently many users make use of
incompressible cryptographic programs with large sized keys, it might not be feasible for a
broad-scale surveillance project to store the large keys of all users. This scenario is similar
to the bounded retrieval model (BRM), where we assume that the adversary can only
learn a limited amount of information with respect to the secret keys in a cryptographic
implementation.

Recent works by Bellare, Kane and Rogaway (BKR) [BKR16] and Bellare and Dai
[BD17] put forward the use of big-key symmetric encryption as a practical method for
achieving security in the BRM. The authors propose the use of large symmetric keys
within a symmetric encryption scheme. Thereby, the large symmetric keys are used to
derive subkeys of smaller length via a key encapsulation algorithm. The subkeys have a
conventional length and they are used for performing the actual encryption operations
within the scheme. In this case, incompressible schemes which only remain functional in
their complete form might be a good basis for constructing big-key symmetric encryption.
Similarly, Alpirez Bock, Amadori, Bos, Brzuska and Michiels [AAB+19] construct an
incompressible PRF which uses a key K of very large size. The incompressible PRF is
functionally equivalent to a smaller PRF which uses a key k of conventional size. I.e.
key K is incompressible and equivalent to k. One could construct an encryption scheme
which uses the incompressible PRF for deriving subkeys of conventional length and use
those subkeys for encryption. Then, on the decryption side, one could use the small-sized,
functionally equivalent PRF for deriving the corresponding decryption keys.

Limits of incompressibility. Incompressibility does not seem to provide appropriate
guarantees for white-box programs to protect mobile payment applications. Firstly, the
definition of incompressibility does not capture any further security properties such as
confidentiality and authenticity, which as discussed earlier, are two desirable security
goals for white-box crypto in the setting of mobile payment. As an example we consider
the work presented in [AAB+19], where the authors present incompressible white-box
encryption and decryption schemes based on the assumption of one-way permutations. The
encryption construction uses a message authentication code (MAC) which is generated with
an incompressible key K of a very large size, and an authenticated encryption scheme which
makes use of a different key k′′ of smaller size. k′′ is thereby used to encrypt plaintexts
together with the MAC. The construction achieves incompressibility as an adversary is only
able to generate a valid MAC by using the complete large key K. Via the authenticated
encryption scheme, the plain construction also achieves confidentiality. However an

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 337

adversary with white-box access to the scheme is able to break the confidentiality property.
Namely, if no additional white-box countermeasures are applied to that construction, the
symmetric key k′′ can be read out of the implementation.

Additionally, while incompressibility is suggested as a mitigation technique against
code-lifting attacks, it does not seem suitable for protecting applications running on mobile
devices and the internet of things. Namely, the general concept of incompressibility seems to
stand in contrast with the ongoing goal of achieving small sized and efficient cryptographic
designs suitable for small sized devices. Moreover, large-size programs also harm their
own legal distribution. That is, when the legal distribution of an application needs to
take place in a fast and efficient way, and on a regular basis, then their cryptographic
algorithms shall not to be too large.

Traceability. The notion of traceability as defined by DLPR consists of watermarking
a cryptographic program such that if illegally re-distributed, the owner of the original
program can be identified. Such a property also finds its use case in DRM applications, as
the owner of a decryption program might make copies of it and re-distribute them online.
If a copy is found, the traceability property can help identify the owner of the original
program. For mobile payment applications however, this notion of traceability does not
seem to be useful. Namely as stated before, we want to achieve protection against external
adversaries trying to misuse the payment application, and not owners re-distributing their
own applications.

5 Hardware- and Application-Binding
In this section we define security of white-box cryptography w.r.t. hardware-binding and
discuss the difficulty of formalizing application-binding.

5.1 Hardware-Binding
Hardware-binding captures that a white-box cryptographic program shall only be executable
on one intended hardware device. That is, the white-box algorithm can be evaluated when
having access to a specific device, but becomes useless when not having access to the device.
For defining hardware-binding, we consider a white-box compiler which returns a white-box
encryption algorithm based on a symmetric key and a hardware-related subkey. The idea
is that the symmetric key is used for encrypting messages, while the hardware subkey is
used to verify that the algorithm is running on the determined hardware. Both keys are
hard coded in the program. For completeness, we define our compiler based on a hardware
module HW, as defined in [ABF+19] (see Appendix D). The hardware module specifies
how the binding functionalities are implemented with regard to one particular hardware
device, as we explain below. Note however that for understanding the hardware-binding
definition, it is enough to think about a white-box program compiled based on the two
keys as described above.

In the hardware module, we consider a randomly generated hardware key, located in the
device to which we wish to bind our white-box program. We refer to the hardware key as
a master hardware key kHWms. From this master key, we will derive hardware sub-keys kHWsl
which we will use for the compilation of the encryption program. To derive a hardware
subkey, we run a subkey generation algorithm on the hardware master key and a label
value, which identifies the white-box program. Using the subkey value for the compilation
of the white-box program instead of the master key value has one particular advantage.
Namely, if the subkey value gets compromised, a new subkey value can be generated for
recompiling a new version of the white-box program.

338 On the Security Goals of White-Box Cryptography

Before the white-box program performs an encryption, it first submits a query value
q to the hardware. The hardware runs a deterministic response algorithm on the query
value q, the Label identifying the program and the hardware master key kHWms and returns
a value σ to the white-box program. The white-box program verifies the correctness of
the value σ, e.g., by re-calculating it, via a deterministic checking algorithm run on the
subkey kHWsl, the query value q and the response value σ. If verification goes through, the
white-box program gained assurance that it is running on the intended device. Note that if
the white-box encryption program is run on the correct hardware, the white-box program
is functionally equivalent to the encryption program of the symmetric encryption scheme.

Querying Algorithm. Implementing hardware-binding as described above provides us
with the desired functionality that the white-box program can only be run on a single
device, namely the one that generates valid response values. However, we also need to
consider the possibility that a white-box adversary might intercept a valid response value.
In this case, the adversary could copy the white-box encryption program and simply provide
the intercepted response value when running the program. In a way, this attack cannot be
avoided. However, its usefulness can be limited by ensuring that, using a single intercepted
hardware value, the adversary can also only run the program on a single program input.
Namely, the query value q as well as the response σ should depend somehow on the message
we wish to encrypt. That way, for each message we encrypt, a different response value is
needed and intercepting a response value only lets the adversary encrypt a single message.
Therefore, our syntax includes a querying algorithm which is used in combination with
the white-box program. A straight forward approach is to generate the querying values
directly based on the message we wish to encrypt. Note that since an adversary might
still be able to intercept the generated querying value, the confidentiality of the message
needs to be protected and it should not be possible for an adversary to derive the message
from the querying value. That is, the querying algorithm needs to be one-way.

Attack scenario. Below we define the syntax for hardware-binding, followed by its
corresponding security notion. We here summarize the attack scenario we wish to capture
via this security notion. We consider an adversary (e.g. in the form of malware) which finds
itself in a user’s device (i.e. in the mobile phone used to perform payment transactions).
The adversary has thus access to the program code of the white-box implementation.
The adversary is also able to execute the implementation itself, since it is able to run it
directly on the phone. Note however that, even if the adversary can execute the payment
application, we do not assume that an adversary is able to redirect the outputs of the
payment application to a terminal of their choice (i.e. performing a relay attack). This is
because for payment applications, we usually implement other countermeasures against
relay attacks, independently of white-box cryptography. Therefore, we consider the case
where an adversary wants to gain independence of the user’s device, either by code-lifting
the application or extracting its secret key. Our security notion captures that once the
white-box program is removed from the specific device, an adversary is unable to use
that program to generate a valid ciphertext. In other words, the encryption program
should satisfy a notion of integrity. Additionally, our security notion captures that an
adversary should not be able to distinguish between two ciphertexts encrypted with the
given encryption program, i.e. the program should satisfy a notion of confidentiality.

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 339

ExpIND-WHW
CompHW,A (1n)

b←$ {0, 1}n

kSE ←$ Kgen(1n)
kHWms ←$ KgenHW(1n)
state,Label ←$A(1n)
kHWsl ← SubKgen(kHWms,Label)
QueryHW, EncHW ←$ CompHW(kSE, kHWsl)
b∗ ←$AResp,ENC

SUBK,DEC(QueryHW, EncHW, state)
return (b = b∗)

Resp(q)

assert q /∈ Q
Q := Q ∪ {q}
σ ← Resp(kHWms,Label, q)
return σ

ENC(m0,m1)

assert |m0| = |m1|
nc←$ {0, 1}n

c← Enc(kSE,mb, nc)
if m0 6= m1

q0 ← QueryHW(m0, nc)
q1 ← QueryHW(m1, nc)
assert q0, q1 /∈ Q
Q := Q ∪ {q0, q1}
C := C ∪ {(c, nc)}

return c, nc

DEC(c)

assert (c, nc) /∈ C
if b = 1

return ⊥
else
m← Dec(kSE, c, nc)
return m

SUBK(Label ′)

assert Label 6= Label ′

k′HWsl ← SubKgen(kHWms,Label ′)
return k′HWsl

Figure 2: The ExpIND-WHW
CompHW,A (1n) security game

Definition 4 (HW-white-box encryption compiler). A HW-white-box encryption compiler
CompHW for a symmetric encryption scheme SE and a hardware module HW is a randomized
algorithm that takes as input a symmetric key kSE and a hardware-related sub-key kHWsl
and generates a white-box encryption algorithm with hardware-binding together with a
querying algorithm

QueryHW, EncHW←$ CompHW(kSE, kHWsl).

For all genuine kHWms, for all kSE, for all m, for all nc, for all kHWsl = SubKgen(kHWms,Label)
and σ = Resp(kHWms,Label, q), we have Pr[Enc(kSE,m, nc) = EncHW(m,nc, σ)] = 1, where
the probability is taken over compiling QueryHW, EncHW←$ CompHW(kSE, kHWsl).

Fig. 2 presents the ExpIND-WHW
CompHW,A (1n) security game, capturing the desired security

properties described above. In this game, the adversary is able to choose the label he
wants to use for the program. Based on this label, the hardware subkey kHWsl will be
generated. The adversary gets as input the white-box program, the querying algorithm and
a state value corresponding to the previous phase where he determined the label value. The
adversary can run the white-box program by querying a response oracle Resp and obtaining
valid response values. This lets him analyze the program and collect some input-output
pairs. The adversary can also obtain (and see) different subkey values from a subkey
generation oracle SUBK. This represents the fact that an adversary might extract the
hardware subkeys of some (previous) versions of the white-box programs. The adversary
then plays a distinguishing game with the encryption and decryption oracles.

Definition 5 (IND-WHW). We say that a HW-white-box encryption compiler CompHW is
IND-WHW-secure if for all PPT adversaries A, the advantage

AdvIND-WHW
CompHW,A (1n) :=

∣∣∣Pr
[
ExpIND-WHW

CompHW,A (1n) = 1
]
− 1

2

∣∣∣
is negligible, where the experiment ExpIND-WHW

CompHW,A is defined in Figure 2.

340 On the Security Goals of White-Box Cryptography

5.2 On Application-Binding
We now study the security property of (software) application-binding for white-box crypto-
graphic programs. Application-binding shall ensure that an encryption program can only
be used within a particular application and that, in particular, an adversary should not be
able to separate the encryption program from the application. We deem application-binding
a useful property for white-box programs and would like to postulate as an open question
to find a suitable definition for application-binding for white-box cryptography. For such
a definition to be meaningful, it needs to bypass a number of conceptual and technical
issues that we now discuss.

On a general security notion. A general security notion for application-binding should
be suitable for arbitrary applications. Yet, in that case, also the security properties of the
application will be application-specific, and need to be carefully analyzed in each individual
case, including the set of relevant attack vectors. One possible approach would be to
define a simpler notion, where a program is considered secure as long as the adversary is
not able to isolate the encryption process from the application. However, such a security
notion seems to be significantly too weak. An adversary might be able to, e.g., alter the
messages that are encrypted within the application, violating the main security goals of
the application. Although the adversary breaks the security provided by the application,
such a white-box implementation might still be considered secure in this simpler notion as
long as a full separation of encryption program and application is not achieved.

Authentication-binding. A useful restriction on the class of applications are those per-
forming authentication, defining thus authentication-binding (cf. Section 1.1). Here, we
would consider an encryption program which is only functional in case that a particular
auxiliary input is provided, such as a password or fingerprint. This in fact adds a useful
layer of security to our white-box programs, since an adversary can only run a copy of the
program if they know the value of an auxiliary input. Note however that in the white-box
attack model, we usually consider an adversary that is able to intercept the inputs that
are provided to the programs. Thus, we can only define security for such programs if
we modify (and weaken) our attack model so that we assume that the adversary cannot
intercept the auxiliary input. We discuss the consequences of such a weakening next.

Weaker attack model. Consider that we define security of authentication-binding in a
weaker model where we assume that the adversary cannot intercept auxiliary inputs. I.e.,
the adversary has obtained a copy of the program, but it cannot observe the program
while it is running on the user’s device. To capture the notion that an adversary cannot
run the encryption program without knowing a valid auxiliary input, the model needs to
rely on sufficiently long inputs, e.g., 128 in the concrete setting or n in the asymptotic
security scenario. Else, a brute-force attack over all input values allows the adversary
to run the program even without intercepting an auxiliary value. Such long secrets can
be implemented via smartcards, biometrics or long passwords (e.g. a string consisting of
ca. 19 ASCII characters). However, then the white-box implementation could be entirely
keyless or contain no information about the key, e.g, if we mask the key k by auxiliary
input aux and store k′ := k ⊕ aux = k′ within the application. Such a security definition
seems rather unrelated to white-box cryptography.

Combining hardware- and authentication-binding. One possible avenue towards useful
definitions of application-binding could be the combination of hardware- and authentication-
binding, similar to the suggestion [CdRP14]. Here, the hardware-binding might ensure
that only a limited number of auxiliary inputs can be tested by the user, allowing to deploy

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 341

short passwords and PINs, as is common in banking. This assumes that the hardware
implements a counter to ensure an upper bound on the number of hardware queries or
that the hardware itself checks the user input. This requires the hardware to maintain
a secure state, moving towards more advanced hardware features and thus, potentially,
a platform where white-box cryptography might not be used, as the device has strong
hardware security features at its disposal already.

6 Advanced White-box Competitions
In this section we suggest a new variant of the white-box competition to capture hardware-
binding, based on the IND-WHW security notion introduced in the previous section.
The CHES 2017 Capture the Flag Challenge [ECR17] focused on key extraction. The
participants submitted candidate white-box programs and attackers would try to extract
the embedded secret key from the candidate programs. More recently, the second edition of
the white-box competition, the CHES 2019 Capture the Flag Challenge [cyb19] additionally
introduced message recovery attacks so that white-box implementations are assessed with
respect to key extraction attacks and one-wayness. As before, participants are invited
to submit a candidate white-box encryption program. Security against key extraction is
assessed as before, while one-wayness is assessed by asking the attackers to find a pre-image
for a certain target ciphertext.

It is fundamental for the progress of white-box cryptography that we achieve programs
which remain secure against key extraction attacks. However, as discussed in Section 3, a
white-box implementation which is only secure against key extraction attacks might not
provide meaningful security in many use cases – especially due to code-lifting attacks (see
Sections 3 and 5). As we have identified hardware-binding as a central security goal of
white-box cryptography, we now describe how to derive a white-box competition setup
from our IND-WHW security game.

In the IND-WHW security game, the adversary obtains a white-box encryption pro-
gram and plays an indistinguishability game with an encryption oracle. Considering the
adversarial capabilities, we see that the adversary might attempt to distinguish in one of
the following ways.

1. First the adversary can attempt to extract the encryption key from the white-box
program it receives as input. If the adversary succeeds, it can simply use the key to
decrypt the ciphertexts obtained from the encryption oracle and then distinguish.

2. If key extraction is not possible, the adversary can attempt to isolate the encryption
program from the rest of the white-box implementation, i.e. from the part of
the implementation which performs the binding functionality. If it succeeds, the
adversary would have a standard (possibly still obfuscated) encryption program
which is not bounded to any further functionality. In that case, the adversary can
simply encrypt one of the challenge messages using the corresponding nonce received
from the encryption oracle. The adversary compares the generated ciphertext with
the challenge ciphertext and distinguishes this way.

3. Finally, the adversary can attempt to forge a valid (fresh) querying value and use
it for running the encryption for distinguishing as explained for the previous point.
The adversary can attempt to do this by de-obfuscating the binding function of the
white-box program and thereby try to learn a valid hardware value for running the
white-box program.

From the description above, we understand that a white-box implementation with
hardware binding at least needs to achieve that an adversary is unable to (1) extract its
secret key, (2) separate the encryption functionality of the program form the functionality

342 On the Security Goals of White-Box Cryptography

implementing the binding operations, and (3) extract information for forging a valid input
value for running the white-box program. Thus, all three properties of candidate white-box
implementations with hardware-binding are assessed by the white-box competition that
we suggest in the following.

For the competition, we consider a competition server which simulates a hardware
module (see Appendix D) for each candidate implementation. That is, for one candidate
white-box implementation, the server generates a master “hardware” key, from which
it derives a subkey. That subkey should be used for compiling the candidate white-box
implementation. When the program is submitted to the competition server, the server can
generate valid input values for running the candidate program. In this way, the organizers
can also test the functionality of the submitted implementation. Moreover, participants
attempting to break an implementation can obatin a limited number of valid input values
for running the program, simulating the hardware module interface (corresponding to Resp
oracle in the IND-WHW game). Below we summarize the further competition setup. We
refer as designers to the participants submitting white-box implementations and attackers
to the participants trying to break candidate implementations.

• Designers are invited to submit candidate white-box implementations of a symmetric
encryption algorithm, which is bound to a hardware functionality. A designer receives
a secret subkey value kHWsl from the competition server (which needs to be securely
transmitted). The participant generates a white-box program based on a secret
encryption key kSE and kHWsl and sends the compiled program and the key kSE to
the server (key kSE needs to be securely transmitted). The functionality requirement
on the submission is that the encryption program works in case that a valid input
(related to kHWsl) is provided. As the server knows kHWsl, the server can then test
the functionality of the program by generating valid input values for running the
white-box program.

• Attackers select a candidate implementation they wish to attack. Upon selection,
an attacker downloads the candidate implementation and obtains n valid σ values
to run the candidate implementation on inputs of their choice. The attacker now
plays an indistinguishability game with the server in the following way. The attacker
sends 100 pairs of selected plaintexts {(m0,m1)1, (m0,m1)2, ..., (m0,m1)100}. For
each pair (m0,m1)i, the server draws a bit bi←$ {0, 1} at random and encrypts mi

bi
,

i.e., the attacker receives back 100 ciphertexts {cb1 , cb2 , ..., cb100}. The attacker is
tasked with submitting a bitstring ~b∗. The server compares the hamming distance
between ~b∗ and b1, ..., b100. The attacker is considered successful if it submits the
correct bit for some threshold, say, 80%. Additionally, the server checks that there
were no trivial attacks, i.e., the hardware values given to the adversary should not
allow the adversary to encrypt any of the messages (m0,m1)i that the adversary
submitted with the same nonces as used by the server, and for each message pair,
mi

0 needs to have the same length as mi
1.

The number of σ values, the number of message pairs and the passing threshold for being a
successful distinguisher can all be adapted to reflect different security levels. Additionally,
attackers might repeat the game—obviously, the threshold and the number of allowed
repetitions need to be chosen in such a way that it is unlikely that an attacker submits a
suitable bit vector merely by guessing and repeated trying.

Gamification. The gamification of a competition shall reflect the current state-of-the-art
and promote to push the boundaries of what is possible/known. In the past competitions,
most candidates were vulnerable to key extraction attacks. Therefore, it is meaningful
to continue to award competition points (known in previous competitions as strawberry

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 343

points) for key extraction attacks in future competitions. Once the state-of-the-art in
white-box design advances and security against key recovery attacks has become achievable
for AES, we suggest to remove strawberry points for key recovery to encourage participants
to focus on advanced properties rather than break the weakest candidates.

In the remainder of the paper, we give reasons, theoretically and practically, concep-
tually and formally, why it might be feasible to build robust hardware-bound white-box
implementations. In fact, there are reasons to believe that IND-WHW might be possible
to achieve even when plain security against key extraction is not. In Section 7, we start by
showing that in the plain white-box model, there are (contrived) black-box secure sym-
metric encryption schemes that do not admit a secure functionality-preserving white-box
implementation. Thus, indistinguishability obfuscation and not even Virtual Black-Box
Obfuscation [BGI+01] suffice to build a generic white-box compiler in the plain white-box
model. In turn, as we discuss in Section 5, Alpirez Bock, Brzuska, Fischlin, Janson and
Michiels show that in the hardware-bound white-box model, arbitrary (black-box) secure
symmetric encryption schemes can be white-boxed. In Section 9, we inspect the practical
attack capabilities in the hardware-bound model more closely and find that, although a
designer needs to achieve more properties, the attacker’s ability to, e.g., collect traces has
been reduced in the hardware-bound white-box attack scenario.

7 On Generic Compilers in the Plain White-Box Model
In this section, we show that there is no generic compiler that transforms any black-box
secure symmetric encryption scheme into an implementation that is secure in the plain
white-box model. Concretely, Construction 1 provides a (contrived) symmetric encryption
scheme SE′ = (KgenSE

′, Enc′, Dec′) that is (a) black-box secure and (b) not white-boxeable
by a compiler that preserves input-output behaviour. The conceptual idea for SE′ is to
start with a black-box secure symmetric encryption scheme SE and modify it as follows:
The encryption algorithm Enc′ inspects its input message, and if the input message is
a functional encryption scheme, then SE′ returns its key, and else, it returns the same
ciphertext as SE would have returned. This idea is loosely inspired by the impossibility
result for Virtual Black-Box Obfuscation [BGI+01], where an obfuscated point function
program is fed as an input to an obfuscated program that tests the point function and
returns a secret, if the point function passes the test. The idea in our construction is that
when the white-box program takes its own encoding as input, then it returns the secret
key, while in a black-box setting, such a program is not available (and is hard to construct)
and thus, the modified symmetric encryption scheme remains secure in a black-box setting.

To implement this idea formally, we need to ensure that SE′ satisfies correctness. Thus,
in the case that Enc′ returns its key, it will also output the input message (in plain).
Additionally, it distinguishes normal ciphertexts from ciphertexts with embedded keys by
prepending the former with a 0 and the latter with a 1. Another technicality is that program
equivalence testing cannot be done efficiently and thus, Enc′ tests program equivalence
approximately by observing and comparing the inputs on several random message-nonce
pairs. To avoid that Enc′ uses too much randomness, the message-nonce pairs for testing
are derived via two pseudorandom functions. We provide SE′ in Construction 1. In
Appendix E, we prove (1) that SE′ is AE-secure in the black-box setting (assuming AE
security of SE) and (2) that SE′ is not secure against key extraction attacks.

Claim 1. If SE is AE-secure and if PRF is a secure pseudorandom function, then SE′ is
AE-secure.

Claim 2. There exists a PPT adversary A, such that for all white-box compilers Compen
for SE′, it holds that Pr[kSE←$A(EncWB)] = 1 − negl(n), where the probability is over
kSE′ ←$ KgenSE

′ and EncWB←$ Compen(kSE′).

344 On the Security Goals of White-Box Cryptography

Construction 1. Let SE = (KgenSE, Enc, Dec) be a symmetric encryption scheme and let
PRFbe a pseudorandom function. We define SE′ = (KgenSE

′, Enc′, Dec′) as follows

Kgen′(1n)

kSE ←$ KgenSE(1n)
km ←$ {0, 1}n

knc ←$ {0, 1}n

kSE′ ← kSE||km||knc

return kSE′

Enc′(kSE′ ,m, nc)

C← PARSE(m)
kSE||km||knc ← kSE′

d← 1
for i from 1 to n
mi ← PRF(km, binn(i)||nc)
nci ← PRF(knc, binn(i)||nc)
if C(mi, nci) = 0||Enc(kSE,mi, nci)

d← d ∨ 1
else d← d ∨ 0

c′ ← Enc(kSE,m, nc)
if d = 0
c← 0||c′

else c← 1||c′||kSE′

return c

Dec′(kSE′ , c, nc)

d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← Dec(kSE, c̃, nc)

else
c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

8 Constructions from indistinguishability obfuscation
Given the success of indistinguishability obfuscation (iO), we now explore the usefulness of
iO for white-boxing symmetric encryption schemes. Indeed, simply using the iO technique
by Sahai and Waters [SW14] yields a straightforward security argument for white-boxing
certain stream-ciphers (known in the theory community as pseudorandom functions (PRF)).
Namely, Sahai and Waters suggest to obfuscate puncturable PRFs that allow to puncture
the key k of the PRF at a point z such that the punctured key kz allows to compute
the PRF on all points except for z. The Sahai-Waters argument implies that applying
iO to a puncturable PRF with a hardcoded key k yields a program from which k cannot
be extracted. ABFJM use a variation of this argument for constructing a white-box key
derivation function, which additionally implements the property of hardware binding. For
completeness, we now review the security argument of using iO with punctured PRFs.
Afterwards, we review how a variation of this approach is adapted by ABFJM and we
explain how we can use it to construct a hardware-bound white-box encryption program.

8.1 A White-Box Perspective on Sahai-Waters

P0[k](x)

c← PRF(k, x)
return c

P1[z, kz, y](x)

if x = z

c← y

else
c← PPRF(kz, x)

return c

Security of iO captures that the obfuscations of two
functionally equivalent programs cannot be efficiently
distinguished. Thus, we start with a program P0[k](.)
with hard-coded key k that evaluates the PRF on key
k and an input, i.e., for all x, it holds that P0[k](x)
is equal to PRF(k, x). By the security of iO, it suffices
to find a program P1 that is functionally equivalent
to P0[k](.) but that does not leak the key k. Program
P1[z, kz, y] has as hard-coded parameters a point z, a punctured key kz punctured at z
and the value y = PRF(k, x). Program P1[z, kz, y](x) first checks whether x = z and if
so, returns y. Else, it uses its punctured key kz to return PPRF(kz, x) which is equal to
PRF(k, x). Thus, for all x, the two values P0[k](x) and P1[z, kz, y](x) are both equal to

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 345

PRF(k, x) and hence, the two programs are functionally equivalent.
Finally, due to the security of puncturable PRFs, from z, kz and y, the key k cannot be

efficiently extracted and thus P1[z, kz, y] does not leak k, and neither does an obfuscation of
P1[z, kz, y](x) (since obfuscating cannot add information). By iO security, the obfuscations
of P0[k](x) and P1[z, kz, y](x) cannot be distinguished and thus, the obfuscation of P0[k](x)
does not leak k either, which concludes the argument.

The above simple example shows that obfuscating a puncturable PRF via indistin-
guishability obfuscation allows to hide the key of the puncturable PRF. Let us take a
step back and contemplate the above argument. Reconsidering the argument, one might
argue that actually, puncturable PRFs can also be white-boxed without iO. Namely, a
white-box compiler could simply return P1[z, kz, y] as a white-boxed version of P0[k].
Indeed, by puncturable PRF security, P1[kz, y, z] does not allow to recover k. While Sahai
and Waters [SW14] use iO for a more elaborate confidentiality argument, security against
key extraction seems to be achievable by puncturable PRFs alone (albeit by a slightly
non-intuitive argument since the punctured key can still be considered substantial leakage).

By the above observation, we see that the key of a puncturable PRF can be hidden in
two ways: Either, one runs an indistinguishability obfuscator on P0[k], or one punctures the
key k. In the security argument, however, the security of the puncturable PRF appears in
both cases. Thus, it is not straightforward how to apply the iO argument to AES. However,
due to the tremendous success of iO as a general-purpose obfuscator, one could be tempted
to hope that any secure symmetric encryption scheme, when obfuscated with iO, yields a
secure white-box version of the same symmetric encryption scheme. However, as we have
seen in Section 7, this is not the case. Thus, in the plain white-box model, a symmetric
encryption scheme has to satisfy certain additional properties to be white-boxeable.

8.2 A hardware-bound white-box payment application
The aforementioned work by ABFJW [ABF+19] presents a hardware-bound white-box
payment application. Surprisingly, ABFJW are able to compile arbitrary AE-secure
symmetric encryption schemes. The way in which they achieve this property is tokenization
and the use of a puncturable key derivation primitive. Namely, each message is encrypted
under a fresh key that was derived via a key derivation function. This key derivation
function, in turn, is (a) hardware-bound and (b) puncturable. This way, simply using
indistinguishability obfuscation to bind the key derivation function and the symmetric
encryption scheme together suffices to obtain a secure payment application. The proof
techniques are a variation of the Sahai-Waters argument. Our more general security
notion can be achieved in the same way. I.e., if we vary the encryption key, then every
AE-secure symmetric encryption scheme can be white-boxed in the hardware-bound model
and achieves full AE-security. Interestingly, when porting the approach of using a key-
derivation function together with a symmetric encryption scheme in the plain white-box
model, the security argument does not seem to carry through. Namely, it does not seem
straightforward to argue that one can hide the derived key that is used for symmetric
encryption while performing the encryption. In the hardware-bound model, the argument
that the key for the symmetric encryption scheme can be hidden/removed follows from
the Sahai-Waters trick of using a pseudorandom generator (PRG) on a random input.
Namely, it is first checked whether a PRG, applied to some input, yields a certain value
and only then, the branch containing the encryption scheme is executed. As long as the
random input is not known, the PRG value can be replaced by a uniformly random string
which, with high probability does not have a pre-image, and then, the branch performing
encryptions under the key of concern, can be removed. However, this approach only works
in the hardware-bound model, because the hardware and the white-box program share
additional secrets, and the adversary learns only limited information computed based on
these secrets.

346 On the Security Goals of White-Box Cryptography

9 Concluding Reflections
We started by justifying our prioritization of integrity and confidentiality properties for
white-box cryptography. We then addressed code-lifting attacks on white-box applications
and generalized the notion of ABFJW to formulate IND-WHW-security. We then derived
a new competition setup to assess white-box designs w.r.t. the hardware-binding property.
The remainder of the paper focused on comparing the plain white-box model and the
hardware-bound white-box model conceptually in terms of the positive results to be
expected in either model. We now review this conceptual discussion and then provide
additional practical considerations.

In Section 7, we established an impossibility result in the plain white-box model
showing that there is a secure (but contrived) symmetric encryption scheme which is not
securely white-boxeable, since, regardless of the compiler, the key can be extracted from the
white-box implementation of the symmetric encryption scheme. Recall that the idea was
that if the encryption scheme is fed a functional implementation of itself, then it returns
its secret key. This impossibility result does not carry over to the hardware-bound model,
since the hardware-bound white-box program is, by itself, not a functional implementation
of the encryption scheme. Thus, we have an impossibility result in the plain white-box
model that does not seem to carry over to the hardware-bound model.

In Section 8.2, we discuss a hardware-bound white-box construction by ABFJW that
relies on a puncturable key derivation primitive and, thereby, allows to derive a distinct
key for each application of the symmetric encryption scheme. Thanks to this, ABFJW
can white-box arbitrary AE-secure symmetric encryption schemes in the hardware-bound
white-box model. The same approach does not seem to carry over to the plain white-box
model, roughly, again, because in the plain white-box model, the white-box program always
needs to be fully functional on all possible inputs and thus, there is no argument to remove
or hide the key that can be used for a specific encryption operation. In conclusion, we
have a feasibility result in the hardware-bound model that does not seem to carry over to
the plain white-box model.

While the results do not fully allow to conclude that generic feasibility is more tangible
in the hardware-bound white-box model than in the plain white-box model (since the
positive and negative results are not complementary), we speculate that indeed, a white-
box competition on hardware-bound white-box programs might be more likely to yield
designs that cannot be attacked for a long time. In fact, in our competition scenario
discussed in Section 6, the attacker has indeed less capabilities than in the first editions
of the white-box competitions. Most importantly, the attackers are only able to run the
white-box implementation a limited number of times. This reduces the attackers’ capability
to collect input-output pairs, execution traces and perform cryptanalysis and automated
attacks on the implementations [ABB+19]. Recall that this is not an artificial weakening
of the adversary but rather an adaptation motivated by the practical use case of white-box
cryptography in mobile payment applications, where an adversary is not the owner of the
application (unlike in the DRM scenario). Conveniently, the hardware-bound setup also
allows for benchmarking of white-box implementations, e.g., by specifying the number of
hardware values and thus software-traces that the adversary can obtain.

Acknowledgments
We would like to thank Heye Everts for helpful discussions in the early stages of this
work. Part of this work was done while Estuardo Alpirez Bock and Chris Brzuska were
working at TU Hamburg. They are greatful to NXP Semiconductors for the support of
their chair for IT Security during that time. This work was supported by COST Action
IC1306 Cryptography for Secure Digital Interaction.

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 347

References
[AAB+19] Estuardo Alpirez Bock, Alessandro Amadori, Joppe W. Bos, Crhis Brzuska,

and Wil Michiels. Doubly half-injective prgs for incompressible white-box
cryptography. In Mitsuru Matsui, editor, Topics in Cryptology - CT-RSA
2019 - The Cryptographers’ Track at the RSA Conference 2019, San Francisco,
CA, USA, March 4-8, 2019, Proceedings, volume 11405 of Lecture Notes in
Computer Science, pages 189–209. Springer, 2019.

[ABB+19] Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain, Wil
Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and
Alexander Treff. White-box cryptography: Don’t forget about grey-box attacks.
Journal of Cryptology, 32(4):1095–1143, Oct 2019.

[ABF+19] Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian Janson, and
Wil Michiels. Security reductions for white-box key-storage in mobile payments.
Cryptology ePrint Archive, Report 2019/1014, 2019. https://eprint.iacr.
org/2019/1014.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard
Jepsen. Analysis of software countermeasures for whitebox encryption. Cryp-
tology ePrint Archive, Report 2017/183, 2017. http://eprint.iacr.org/
2017/183.

[BBK14] Alex Biryukov, Charles Bouillaguet, and Dmitry Khovratovich. Cryptographic
schemes based on the ASASA structure: Black-box, white-box, and public-
key (extended abstract). In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 63–84. Springer, Heidel-
berg, December 2014.

[BD17] Mihir Bellare and Wei Dai. Defending against key exfiltration: Efficiency
improvements for big-key cryptography via large-alphabet subkey prediction.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pages 923–940, New York, NY, USA, 2017.
ACM.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18.
Springer, Heidelberg, August 2001.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 1058–1069. ACM Press, October 2015.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards practical
whitebox cryptography: Optimizing efficiency and space hardness. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031
of LNCS, pages 126–158. Springer, Heidelberg, December 2016.

[BKR16] Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric encryp-
tion: Resisting key exfiltration. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, pages 373–402, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

https://eprint.iacr.org/2019/1014
https://eprint.iacr.org/2019/1014
http://eprint.iacr.org/2017/183
http://eprint.iacr.org/2017/183

348 On the Security Goals of White-Box Cryptography

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
531–545. Springer, Heidelberg, December 2000.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor
tracing with short ciphertexts and private keys. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer, Heidelberg,
May / June 2006.

[CdRP14] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of secure key storage
solutions on android. In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, SPSM ’14, pages 11–20.
ACM, 2014.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003.

[CEJvO03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, volume 2696 of LNCS, pages 1–15. Springer, 2003.

[cyb19] cybercrypt. Ches 2019 capture the flag challenge - the whibox contest - edition
2, 2019. https://www.cyber-crypt.com/whibox-contest/.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 247–264. Springer, Heidelberg, August 2014.

[ECR17] ECRYPT. Ches 2017 capture the flag challenge - the whibox contest, 2017.
https://whibox.cr.yp.to/.

[FH19] Marc Fischlin and Helene Haagh. How to sign with white-boxed aes. In Peter
Schwabe and Nicolas Thériault, editors, Progress in Cryptology – LATIN-
CRYPT 2019, pages 259–279, Cham, 2019. Springer International Publishing.

[FKKM16] Pierre-Alain Fouque, Pierre Karpman, Paul Kirchner, and Brice Minaud.
Efficient and provable white-box primitives. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
159–188. Springer, Heidelberg, December 2016.

[GPRW18] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. Cryptology ePrint
Archive, Report 2018/098, 2018. https://eprint.iacr.org/2018/098.

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences
of one-way permutations. In Shafi Goldwasser, editor, CRYPTO’88, volume
403 of LNCS, pages 8–26. Springer, Heidelberg, August 1990.

[Joy08] Marc Joye. On white-box cryptography. In Security of Information and
Networks, pages 7–12. Trafford Publishing, Bloomington, 2008.

https://www.cyber-crypt.com/whibox-contest/
https://whibox.cr.yp.to/
https://eprint.iacr.org/2018/098

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 349

[Mas17] Mastercard. Mastercard mobile payment sdk, 2017. https://developer.
mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/
mastercard-mobile-payment-sdk-security-guide-v2.0.pdf.

[Mic] Microsemi. Whiteboxcrypto cryptographic key hiding with tunable secu-
rity and performance. https://www.microsemi.com/document-portal/doc_
view/135631-whiteboxcrypto-product-overview-rev4.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size
does matter: Attacks and proofs for the TLS record protocol. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS,
pages 372–389. Springer, Heidelberg, December 2011.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate
and verify in public: Verifiable computation from attribute-based encryption.
In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 422–439.
Springer, Heidelberg, March 2012.

[Ris] Riscure. White box cryptography - wbc security services tailored to the needs of
manufacturers and integrators. https://www.riscure.com/service/white-
box-cryptography-evaluations/.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press, November
2002.

[SdHM15] Eloi Sanfelix, Job de Haas, and Cristofaro Mune. Unboxing the white-box:
Practical attacks against obfuscated ciphers. Presentation at BlackHat Europe
2015, 2015. https://www.blackhat.com/eu-15/briefings.html.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[SWP09] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. Towards security no-
tions for white-box cryptography. In Pierangela Samarati, Moti Yung, Fabio
Martinelli, and Claudio Agostino Ardagna, editors, ISC 2009, volume 5735 of
LNCS, pages 49–58. Springer, Heidelberg, September 2009.

A Cryptographic Assumptions
This appendix covers cryptographic assumptions that are relevant for the construction of
white-box cryptography by ABFJW and for the counterexample presented in Appendix B.

Definition 6 (Pseudorandom Generator). A length-doubling pseudorandom generator
(PRG) is a deterministic, polynomial-time computable function PRG : {0, 1}∗ → {0, 1}∗
satisfying the following:

Length-doubling For all x ∈ {0, 1}∗, |PRG(x)| = 2 |x|.

Pseudorandomness PRG(Un) is computationally indistinguishable from U2n,

where Un denotes the uniform distribution over strings of length n and U2n denotes the
uniform distribution over strings of length 2n.

We define pseudorandom functions, where input length, output length and key length
are all equal.

https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://www.microsemi.com/document-portal/doc_view/135631-whiteboxcrypto-product-overview-rev4
https://www.microsemi.com/document-portal/doc_view/135631-whiteboxcrypto-product-overview-rev4
https://www.riscure.com/service/white-box-cryptography-evaluations/
https://www.riscure.com/service/white-box-cryptography-evaluations/
https://www.blackhat.com/eu-15/briefings.html

350 On the Security Goals of White-Box Cryptography

Definition 7 (Pseudorandom Function). A deterministic, polynomial-time computable
function PRF, such that PRF : {0, 1}n × {0, 1}n → {0, 1}n for all n ∈ N, is a pseudorandom
function if for all PPT A, AdvA,PRF(n) :=∣∣∣Prk ←$ {0,1}n

[
APRF(k,·)(1n) = 1

]
− PrF ←$ {G:{0,1}n→{0,1}n}

[
AF (·)(1n) = 1

]∣∣∣
is negligible in n.

ExpIND-CPA
PKE,A (1n)

b←$ {0, 1}
(pk, sk)←$ Kgenpke(1n)

b′ ←$AENC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
c←$ Encpke(pk,mb)
return c

We now define public-key encryption.
Definition 8. A public-key encryption
scheme PKE is a tuple of three algo-
rithms (Kgenpke, Encpke, Decpke) such that
Kgenpke and Encpke are PPT algorithms
with syntax (pk, sk)←$ Kgenpke(1n) and
c←$ Encpke(pk,m), and Decpke is a deter-
ministic polynomial-time algorithm with
syntax m/⊥ ← Decpke(sk, c). The public-
key encryption scheme PKE satisfies correctness, i.e., for all messages m ∈ {0, 1}∗,

Pr[Decpke(sk, Encpke(pk,m)) = m] = 1

where the probability is over the randomness of (pk, sk)←$ Kgenpke(1n) and the randomness
of Encpke. A public-key encryption scheme pk is called IND-CPA-secure if for all PPT
adversaries A, the distinguishing advantage

AdvIND-CPA
PKE,A (n) :=

∣∣∣Pr
[
ExpIND-CPA

PKE,A (1n) = 1
]
− 1

2

∣∣∣
is negligible in n.

B Separating example for one-wayness and confidentiality
In Section 3.1, we discuss a folklore-inspired example for illustrating the difference between
one-wayness and confidentiality. For reference, we here explicate and formalize the example.
For concreteness, we choose the model of one-wayness, as discussed in [DLPR14]. Note,
however, that the statements made about our example encryption scheme equally apply to
the asymmetry notion discussed in [BBK14].

Kgen(1n)

(pk, sk)←$ Kgenpke(1n)
k←$ Kgenbase(1n)
return (k, pk, sk)

Enc((k, pk, sk),m)

m` := m[1 : bn
2 c]

mr := m[bn
2 c+ 1 : n]

c` ←$ Encpke(pk,m`)
nc←$ {0, 1}n

cr ← Encbase(k,mr, nc)
c := (c`, cr, nc)
return c

Dec((k, pk, sk), c)

Parse c as (c`, cr, nc)
if parsing fails return ⊥
m` ← Decpke(sk, c`)
mr ← Decbase(k, cr)
m := m`||mr

return m

Figure 3: The symmetric encryption scheme SE: The plaintext m is split in two halves.
The first half is encrypted using the public-key encryption algorithm PKE. The second half
is encrypted using the symmetric key encryption algorithm SEbase. Then both resulting
ciphertexts are as the ciphertext of SE. The decryption behaves analogously.

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 351

Compen(kSE)(k, pk, sk)

return Enck,pk

Enck,pk(m)

m` := m[1 : bn
2 c]

mr := m[bn
2 c+ 1 : n]

c` ←$ Encpke(pk,m`)
nc←$ {0, 1}n

cr ← Encbase(k,mr, nc)
c := (c`, cr, nc)
return c

Construction. Let SEbase = (Kgenbase, Encbase, Decbase) be an
AE-secure symmetric encryption scheme, and let PKE =
(Kgenpke, Encpke, Decpke) be an asymmetric IND-CPA secure en-
cryption scheme. We define SE = (Kgen, Enc, Dec) in Figure 3.
If PKE is IND-CPA-secure and SEbase is AE-secure, then SE is
IND-CPA-secure, i.e., it provides confidentiality in a black-box
way. We omit the proof of this black-box property and now focus
on white-box implementations of SE. Namely, on the left, we
provide a white-box compiler Compen for SE. Note that (k, pk) are
considered to be hardcoded into Enck,pk in plain, so that one can
retrieve them easily from the encoding.

Correctness. The white-box program Enck,pk inherits its cor-
rectness from the correctness of the public-key encryption scheme
PKE and of the symmetric encryption scheme SEbase.

Attack against Confidentiality. While SE provides confidentiality in a black-box way,
Enck,pk does not provide confidentiality in the white-box attack scenario: Namely, the
adversary can retrieve k from program Enck,pk and can use k to decrypt the second part
of the ciphertext (cr, nc).

ExpOW-CPA+RCA
SE,Compen,A (1n)

k←$ Kgenbase(1n)
(pk, sk)←$ Kgenpke(1n)
Enck,pk ← Compen(k, pk)
m←$ {0, 1}n

c←$ Enck,pk(m)
m∗ ←$AENC,RCA(Enck,pk, c)
if m∗ = m

then return 1
else return 0

RCA()

Enck,pk ← Compen(k, pk)
return Enck,pk

ENC(m′)

c′ ←$ Enck,pk(m′)
return c′

Proof of One-Wayness. In turn, Enck,pk still provides one-
wayness, because, given the ciphertext, the adversary is
unable to learn the left part of the message, since it was
encrypted using an IND-CPA secure public-key encryption al-
gorithm. To prove this via a formal reduction, we use a formal
security model from DLPR [DLPR14]. The authors provide
one-wayness in several flavors. We here use one-wayness with
an encryption oracle and a recompilation oracle. Note that
DLPR also define a flavor of one-wayness with an additional
decryption oracle, but Enck,pk breaks in the presence of a
decryption oracle (because halves from encryptions of two
different messages can be arbitrarily combined, allowing the
creation of fresh ciphertexts), and the current example is
nice and simple. We thus restrict ourselves to showing that
Compen for SE achieves one-wayness security w.r.t. the exper-
iment ExpOW-CPA+RCA

SE,Compen,A , defined on the right. Note that, for
convenience, we have already inlined SE into the definition.

Definition 9 (One-wayness from [DLPR14]). A com-
piler Compen for a symmetric encryption scheme SE =
(Kgen, Enc, Dec) is OW-CPA+RCA-secure if for all PPT ad-
versaries A, the following success probability is negligible:

AdvOW-CPA+RCA
SE,Compen,A (n) := Pr

[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]

We now prove that Compen for SE is OW-CPA+RCA-secure, i.e., one-way with respect
to full message recovery attacks in the white-box attack scenario.

Claim. If PKE is IND-CPA-secure, then Compen for SE is OW-CPA+RCA-secure.

352 On the Security Goals of White-Box Cryptography

BENC
A (pk)

k←$ Kgenbase(1n)
(pk, sk)←$ Kgenpke(1n)
Enck,pk ← Compen(k, pk)

m0
` ←$ {0, 1}

n
2

m1
` ←$ {0, 1}

n
2

c← ENC(m0
` ,m

1
`)

mr ←$ {0, 1}
n
2

nc←$ {0, 1}n

(cr, nc)← Encbase(k,mr, nc)
c← (c`, cr, nc)
m∗ ←$AENC,RCA(Enck,pk, c)
if m∗ = m0

` ||mr

then return 0
else return 1

RCA()

return Enck,pk

ENC(m′)

c′ ←$ Enck,pk(m′)
return c′

Assume towards contradiction that there is a PPT ad-
versary A such that the advantage AdvOW-CPA+RCA

SE,Compen,A (n) is
non-negligible. We need to show that there exists a PPT
adversary BA such that the advantage AdvIND-CPA

PKE,BA (n) is non-
negligible, too. We construct a PPT adversary BA such
that

AdvIND-CPA
PKE,BA (n) ≥ 1

2 AdvOW-CPA+RCA
SE,Compen,A (n)− 1

2 2−
n
2 ,

which is non-negligible if AdvOW-CPA+RCA
SE,Compen,A (n) is non-

negligible. We give the code of BA on the right. Note
that the oracle descriptions at the bottom describe how
BA emulates the oracles for A, whereas the oracle ENC
in BA’s own code refers to BA’s own oracle access to the
IND-CPA game. We first observe that if the secret bit b in
the ExpIND-CPA

PKE,BA (1n) is 0, then BA emulates the experiment
ExpOW-CPA+RCA

SE,Compen,A (1n) perfectly and thus BA returns 0 with
the same probability as the probability that A returns a
correct pre-image, i.e.,

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
= Pr

[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]
. (1)

Note here, that ExpIND-CPA
PKE,BA (1n) returns 1 whenever BA re-

turns b′ = b = 0. In turn, when b = 1, then information-
theoretically, A has no information about m0

` and thus, the
probability of A returning a message m∗ whose first half
is equal to m0

` is upper bounded by 2−n
2 and thus, in all

other cases, BA returns b∗ = 1 which is equal to b = 1, and
thus ExpIND-CPA

PKE,BA (1n) returns 1, i.e.,

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
≥ 1− 2−n

2 .

Putting the two together, we obtain that

Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
]

= Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
· Pr[b = 0]

+ Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
· Pr[b = 1]

= Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 0

]
· 1

2

+ Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
∣∣∣ b = 1

]
· 1

2

≥Pr
[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]
· 1

2

+ (1− 2−n
2) · 1

2

= 1
2 + 1

2 Pr
[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]
− 1

2 2−n
2 ,

where the first equality is by definition of conditional probabilities. The second equality is
by observing that the probability of a uniformly random bit being 0 is 1

2 . The third step

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 353

is by plugging in Equation 1 and Inequality B, and the last inequality follows by basic
arithmetics. We observe that, by definition,

AdvIND-CPA
PKE,BA (1n) =

∣∣∣Pr
[
ExpIND-CPA

PKE,BA (1n) = 1
]
− 1

2

∣∣∣
≥Pr

[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]
− 1

2 2−n
2 ,

which is non-negligible as Pr
[
ExpOW-CPA+RCA

SE,Compen,A (1n) = 1
]
is non-negligible by assumption,

and only the negligible amount 1
2 2−n

2 is subtracted. This contradicts the assumption that
PKE is IND-CPA-secure and thus, such a successful attacker A against the one-wayness of
(SE, Compen) cannot exist which concludes the proof of Claim B.

C Signature schemes from white-box ciphers.
Joye [Joy08] suggests the possibility to build a signature scheme from a white-box program.
Namely, the standard encryption program is considered as the secret signing key and the
white-box decryption program is used as the public verification key. Security of a signature
scheme requires that an adversary is not able to generate a valid signature when given only
the white-box decryption program. Thus, the white-boxed decryption program needs to
achieve asymmetry. Note that the confidentiality of the ciphertexts, i.e. of the signatures,
is not fundamental since the white-box decryption programs are public and anybody can
recover the plaintexts. However, full integrity is desired for a signature scheme and, as we
see shortly, is far from trivial when only assuming asymmetry.

Following the Joye’s conceptual suggestion, Fischlin and Haag (FH) [FH19] rely on a
white-box implementation of a symmetric cipher such as AES for constructing a signature
scheme. Namely, they derive a signature scheme from a MAC scheme based on white-box
cryptography. As they show, a signature scheme based on AES in CBC mode for input
messages of length 128× ` does not yield security against selective forgeries under chosen
message attack (see the attack in Proposition 1 in [FH19]). They point out however, that
if the signature is generated with only one execution of AES, i.e., if the input message is of
length 128, we do obtain security against selective forgeries for random messages. That is,
given a randomly chosen input message m and a white-box AES decryption program, an
adversary is unable to generate a valid ciphertext σ, such that AES(k,m) = σ. Assuming
the asymmetry property of the white-box implementation of AES, the adversary cannot
use the white-box decryption program for generating the corresponding σ value on input
m. Note that FH call this asymmetry property unpredictability. FH define a second
security property named correlation intractability, where the adversary is tasked with
finding the corresponding signature values for a set of strings with a non-trivial correlation.
Note that security with respect to existential forgeries is not possible, because for every
given signature value, the adversary can easily come up with a matching valid message by
running its white-box program on the signature value.

Using white-box cryptography as a symmetric-key to public-key transformation indeed
allows to make use of white-box cryptography without hardware-binding. White-box based
public-key algorithms might have some features that can be useful, e.g., in this case, signa-
ture generation is very efficient while only verification is expensive. However, these features
can also be achieved by different means, e.g., delegated computation [PRV12], although
using AES has the practical advantage that special-purpose computation infrastructure
can be re-used. In any case, such symmetric-to-asymmetric transformations in the absence
of hardware-binding are not the main application of white-box cryptography in current
applications. We refer to Section 3.2, for a discussion on the security properties of these
transformations.

354 On the Security Goals of White-Box Cryptography

D Hardware Module from [ABF+19]
Definition 10 (Hardware Module). A hardware module HW consists of four algorithms
(KgenHW, SubKgenHW, RespHW, CheckSW), where KgenHW is a PPT algorithm, and the algorithms
SubKgenHW, RespHW and CheckSW are deterministic polynomial-time algorithms with the
following syntax:

kHWms←$ KgenHW(1n), σ ← RespHW(kHWms,Label, x),
kHWsl ← SubKgenHW(kHWms,Label) {0, 1} ← CheckSW(kHWsl, x, σ)

Correctness requires that for all security parameters n ∈ N,

Pr[CheckSW(SubKgenHW(kHWms,Label), x, RespHW(kHWms,Label, x)) = 1] = 1,

where the probability is over the randomness for generating kHWms←$ KgenHW(1n).

E Proof of the Impossibility Result
For convenience, we re-state Claim 1.

Claim. If SE is AE-secure and if PRF is a secure pseudorandom function, then SE′ is
AE-secure.

Proof. To prove Claim 1, we proceed via game-hops. We start with GameA0 (see Figure 4
for the definition) where we show that, assuming that SE is AE-secure, any PPT adversary
A has negligible advantage AdvGame0

A (n), where we denote

AdvGamei

A (n) :=
∣∣∣∣Pr
[
GameAi (1n) = 1

]
− 1

2

∣∣∣∣ .
We then upper bound the differences between each subsequent pair of games by a negligible
function, assuming PRF security and AE-security of SE as well as making a statistical
argument. Game3 then corresponds to the AE-security game for SE′, and we conclude that
any PPT adversary A must have negligible advantage AdvGame3

A (n) as well.

Reduction from GameA
0 to AE-security game for SE. Given a PPT adversary A with

advantage AdvGame0
A (n), we construct a PPT adversary BA with the same advantage in

ExpAE
SE,BA(1n). The adversary BA executes A and emulates ENC and DEC for A as follows.

Whenever A makes a query (m0,m1) to its ENC oracle, then BA forwards this pair of
messages to its own ENC oracle which returns a ciphertext cb and a nonce nc. BA assigns
c′b ← 0||cb and returns (nc, c′b) to A. Whenever A makes a query (nc′, c′) to DEC, then
adversary BA checks the first bit of c′. If c′[1] = 1 then, BA returns an error message to A
otherwise, BA submits (nc′, c′[2 : n]) to DEC. Upon receiving a response from DEC, BA
forwards this response to A. When A outputs a bit guess b∗, BA outputs the same b∗. Note
that BA’s simulation of GameA0 is perfect and thus, AdvAE

SE,BA(n) is equal to AdvGame0
A (n),

which is negligible, by assumption on SE.
We now turn to the game hops between each subsequent pair of games.

GameA
0 to GameA

1 . The differences between GameA0 and GameA1 is that in GameA1 the
encryption oracle ENC checks whether the input string m parses into a circuit C(·, ·) which
is functionally equivalent to 0||Enc(kSE, ·, ·) for n randomly sampled inputs. If so, then d will
be set to 1 and thus, ENC will return 1||c′||kSE′ . We thus need to argue that the probability
that m parses into a circuit C(·, ·) which is functionally equivalent to 0||Enc(kSE, ·, ·) for

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 355

GameA0 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)
b′ ←$AENC,DEC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)
nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0

c′ ← Enc(kSE,m, nc)

c← 0||c′

C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← Dec(kSE, c̃, nc)

else

m← ⊥
return m

GameA1 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)
b′ ←$AENC,DEC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)
nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0
for i from 1 to n
mi ←$ {0, 1}n

nci ←$ {0, 1}n

if C(mi, nci) =
0||Enc(kSE,mi, nci):

d← d ∨ 1
else d← d ∨ 0

c′ ← Enc(kSE,m, nc)
if d = 0
c← 0||c′

else c← 1||c′||kSE′

C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← Dec(kSE, c̃, nc)

else
c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

GameA2 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)
b′ ←$AENC,DEC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)
nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0
for i from 1 to n
mi ←$ {0, 1}n

nci ← PRF(knc, bin(i)||nc)
if C(mi, nci) =
0||Enc(kSE,mi, nci) :

d← d ∨ 1
else d← d ∨ 0

c′ ← Enc(kSE,m, nc)
if d = 0
c← 0||c′

else c← 1||c′||kSE′

C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← Dec(kSE, c̃, nc)

else
c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

GameA3 (1n)

b←$ {0, 1}
kSE′ ←$ KgenSE′(1

n)
b′ ←$AENC,DEC(1n)
return (b′ = b)

ENC(m0,m1)

assert |m0| = |m1|
C← PARSE(m)
nc←$ {0, 1}n

kSE||km||knc ← kSE′

d← 0
for i from 1 to n
mi ← PRF(km, bin(i)||nc)
nci ← PRF(knc, bin(i)||nc)
if C(mi, nci)
= 0||Enc(kSE,mi, nci) :
d← d ∨ 1

else d← d ∨ 0
c′ ← Enc(kSE,m, nc)
if d = 0
c← 0||c′

else c← 1||c′||kSE′

C ← C ∪ {(c, nc)}
return c

DEC(c, nc)

assert (c, nc) /∈ C
if b = 1 : return ⊥
d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← Dec(kSE, c̃, nc)

else
c′||k′ ← c̃

if k′ = kSE′

m← Dec(kSE, c
′, nc)

else m← ⊥
return m

AE security of SE PRF security PRF security

Figure 4: Definition of the games

356 On the Security Goals of White-Box Cryptography

CENC,DEC
A (1n)

km ←$ {0, 1}n

knc ←$ {0, 1}n

AENC′,DEC′k←$ Kgenbase(1n)
(pk, sk)←$ Kgenpke(1n)
Enck,pk ← Compen(k, pk)

m0
`

$←− {0, 1}
n
2

m1
`

$←− {0, 1}
n
2

c← ENC(m0
` ,m

1
`)

mr
$←− {0, 1}

n
2

nc←$ {0, 1}n

(cr, nc)← Encbase(k,mr, nc)
c← (c`, cr, nc)
m∗ ←$AENC,RCA(Enck,pk, c)
if m∗ = m0

` ||mr

then return 0
else return 1

ENC′(m0,m1)

for b ∗∈ {0, 1} :
Cb∗ ← PARSE(mb∗)

if 1 = TestENC(Cb∗)
abort A

return d∗ ←WinENC(Cb∗)
(c′, nc)← ENC(m0,m1)
c← 0||c′

return c

TestENC(C)

d← 0
for i from 1 to n
mi ←$ {0, 1}n

(ci, nci)← ENC(mi,mi)
if Cb∗(mi, nci) = 0||ci

d← d ∨ 1
else d← d ∨ 0

return d

DEC′(c, n)

d||c̃← c

kSE||km||knc ← kSE′

if d = 0
m← DEC(c̃, nc)

else
c′||k′ ← c̃

if 1 = TestENC(Enc(k′, ., .))
abort A

return d∗ ←WinENC(Cb∗)
return m

WinENC(C)

m∗0 ←$ {0, 1}n,m∗1 ←$ {0, 1}n

(c∗, nc∗)← ENC(m∗0,m∗1)
if Cb∗(m∗0, nc∗) = 0||c∗

return 0
if Cb∗(m∗1, nc∗) = 0||c∗

return 1
else d∗ ←$ {0, 1}, return d∗

Figure 5: Description of adversary CA.

n randomly sampled inputs is negligible. We argue this based on the AE-security of SE.
I.e., we show that the distinguishing advantage of an adversary A between GameA0 and
GameA1 is upper bounded by the distinguishing advantage of an adversary CA against the
AE-security of SE, given in Figure 5. The oracles on the right (denoted by ENC′ and DEC′)
describe how CA emulates the oracles for A whereas the oracles in the code of CA (denoted
by ENC and DEC) refer to its own oracles. The helper procedure Test checks whether a
given circuit is equivalent to the encryption program Enc, keyed with the symmetric used
in the oracle ENC of CA. Test simply proceeds by sampling n messages at random, sending
them to the encryption oracle and checking, whether a given circuit behaves functionally
equivalent to the oracle on these messages. If no circuit (in the ENC′ oracle) or key (in
the DEC′ oracle) ever passes the Test, then GameA0 and GameA1 are equal. However, if
at some point, a circuit or key passes the Test, then CA uses this event to break the
AE-security of SE as described in the procedure Win. If the probability of Test returning 1
is non-negligible, then CA has non-negligible advantage in AE, namely, as we show now, if
Test returns 1, then CA returns the correct bit except with negligible probability: Firstly,
using a Chernoff bound, one can show that the else -branch is only used with negligible
probability. I.e., if a circuit is functionally equivalent to the oracle on n uniformly random
inputs, then the Chernoff bound states that the probability of the circuit behaving not
functionally equivalent on another random input is exponentially small. Moreover, the
probability that Win returns the wrong bit is also exponentially small, since the message
that was not encrypted is information-theoretically hidden from the encryption program.
We thus obtain that ∣∣Pr

[
GameA0 = 1

]
− Pr

[
GameA1 = 1

]∣∣
≤(1 + ν(n))AdvSE

SE,CA

where ν is an exponentially small function in n.

Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska and Wil Michiels 357

GameA
1 to GameA

2 . The difference between GameA1 and GameA2 is that in GameA2 the
nonces nci are generated via a keyed-pseudorandom function instead of a uniformly random
sample. We now show that an adversary A is not able to distinguish GameA1 from GameA2
with non-negligible advantage by reducing the difference between the two games to the PRF
security of the deployed pseudorandom function. The reduction DA essentially emulates
the entire game GameA2 , except that when the PRF for generating the random nonce is
invoked, then DA makes a call to its PRF oracle instead. This way, if the PRF oracle
contains a PRF, then DA emulates GameA2 , whereas if the oracle contains a uniformly
random function, then DA emulates GameA1 . It follows that∣∣∣Pr

[
GameA1 = 1

]
− Pr

[
GameA2

]∣∣∣ ≤ AdvPRF,DA(n).

GameA
2 to GameA

3 . Analogously to the previous game-hop, we can build a reduction
EA such that ∣∣∣Pr

[
GameA2 = 1

]
− Pr

[
GameA3

]∣∣∣ ≤ AdvPRF,EA(n).

Using a telescopic sum to add up the differences between each pair of subsequent games,
we obtain that SE is AE-secure, and PRF is a secure pseudorandom function, then SE′ is
AE-secure.

For convenience, we now re-state Claim 2.

Claim. There exists a PPT adversary A, such that for all white-box compiler Compen
for SE′, it holds that Pr[kSE←$A(EncWB)] = 1 − negl(n), where the probability is over
kSE′ ←$ KgenSE

′ and EncWB←$ Compen(kSE′).

Proof. We consider a white-box compiler Compen for SE′, which generates the white-box
encryption algorithm EncWB, i.e. EncWB←$ Compen(kSE′). We need to show a strategy that
can be adopted by the PPT adversary A that lets it extract the secret key from EncWB with
overwhelming probability. The strategy works as follows. The adversary gets as input the
white-box encryption algorithm EncWB with hard-coded encryption key kSE′ . The adversary
then chooses as input the algorithm EncWB and a random nonce nc to feed into EncWB
itself. The function PARSE evaluated in EncWB will output an executable circuit functionally
equivalent to EncWB. Later, line 7 of the algorithm checks whether for all mi and nci,
EncWB(mi, nci) = 0||Enc(kSE,mi, nci). By definition of EncWB, we have that EncWB(·, ·) is
functionally equivalent to Enc′(kSE′ , ·, ·). As we have shown in the proof of Claim 1, thanks
to the PRF-security of PRF, Enc′(kSE′ , ·, ·) and 0||Enc(kSE, ·, ·) are functionally equivalent
with overwhelming probability. Therefore, after the for-loop, the value of d will almost
certainly never be set to 0. So, EncWB(EncWB, nc) outputs c = 1||EncWB(EncWB, nc)||kSE′ , and
for the attacker, it is sufficient to consider c[|EncWB|+ 2 : |EncWB|+ 2 +n] to obtain kSE.

