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Abstract. In this article, we study Bayesian inverse problems with multi-layered

Gaussian priors. The aim of the multi-layered hierarchical prior is to provide enough

complexity structure to allow for both smoothing and edge-preserving properties at the

same time. We first describe the conditionally Gaussian layers in terms of a system of

stochastic partial differential equations. We then build the computational inference

method using a finite-dimensional Galerkin method. We show that the proposed

approximation has a convergence-in-probability property to the solution of the original

multi-layered model. We then carry out Bayesian inference using the preconditioned

Crank–Nicolson algorithm which is modified to work with multi-layered Gaussian fields.

We show via numerical experiments in signal deconvolution and computerized X-ray

tomography problems that the proposed method can offer both smoothing and edge

preservation at the same time.

1. Introduction

The Bayesian approach provides a consistent framework to obtain solutions of inverse

problems. By formulating the unknown as a random variable, the degree of information

that is available can be encoded as a statistical prior. The ill-posedness of the problem

is mitigated by reformulating the inverse problem as a well-posed extension in the

space of probability distributions [1]. Among statistical priors that are commonly

used in Bayesian inverse problem is the Gaussian prior which is relatively easy to

manipulate, has a simple structure, and also has a close relation with traditional

Tikhonov regularization. This approach has also got a growing interest from a machine

learning community, where the use of Gaussian prior for Bayesian inference is known as

Gaussian process regression [2].
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When the unknown is a multivariate function, it is natural to model it as a random

field. There is a vast amount of studies on Gaussian random fields and their applications

where the random field is assumed to be stationary [3]. Stationary Gaussian fields have

uniform spatial behavior. As a result, stationary Gaussian fields fail in the cases where

the smoothness of the target varies spatially in unexpected ways [4, 5]. To model

variable spatial behaviour, the covariance structure needs to be tuned appropriately.

There are a number of proposals to increase flexibility of the non-stationary Gaussian

fields. Some of the strategies offered in literature are to construct an anisotropic variant

of an isotropic covariance function [6, 4, 7], warping of the inputs to a Gaussian process

[8], to use transdimensional Gaussian processes, [9, 10], or to reformulate the fields as

stochastic partial differential equations and let the coefficients vary in space [11]. In [12],

a similar idea to [11] is used, where instead of a predetermined length-scale function, a

random field is used. The Gaussian fields are chosen to have Matèrn covariance functions

and their length-scales are varied according to another Gaussian field. This approach

is recently extended to allow flexibility in measurement noise model and hyperprior

parameters [13]. A different approach is used in [14] where the model is formed as a

cascaded composition of Gaussian fields (see also [15]).

There are some recent findings analyzing how adding more layers translate to the

ability of the overall hierarchical Gaussian field to describe a random field with a complex

structure. It has been demonstrated in [15] that as the number of layers increases, the

density of the last Gaussian field shrinks to a one-dimensional manifold. This might

prevent cascaded Gaussian fields to model phenomena where the underlying dimension

is greater than one. Ergodicity and effective depth of a hierarchical Gaussian fields has

also been analyzed in [16]. The consequence of their result is that there might only be

little benefit from increasing number of layers after reaching a certain number.

J

Figure 1. Illustration of a chain of Gaussian fields. Each node (field) has an

independent white noise input field and a length-scale parameter `. The length-scale

` is obtained as a function evaluated on the fields above it. These Gaussian fields are

approximated in finite-dimensional Hilbert space using L(uj−1)uj = wj , see (4).

In many spatio-temporal inverse problems, it is often useful to start by working in an

infinite-dimensional space. There are essentially two approaches to construct a Bayesian

inference algorithm. The first approach is to discretize the forward map (e.g., via grid

partitions or finite element meshes) and apply a Bayesian inference method to the finite-

dimensional setting [1]. The second approach [17, 18] is to directly apply Bayesian

inference to the infinite-dimensional problem, and afterward, apply a discretization

method. The latter approach is possible through realizing that the posterior and prior
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probability distribution can be related via the Radon–Nikodym derivative which can be

generalized to function spaces [17].

For both of the aforementioned approaches, the sampling technique has to be

carefully designed. The traditional Markov chain Monte Carlo (MCMC) algorithms

suffer from slow mixing times upon the grid partitioning refinement [19]. These methods

dictate to reduce the MCMC step size which becomes computationally expensive. There

are several MCMC algorithms designed specifically to deal with infinite-dimensional

problems so that mixing time will, up to some extent, be almost independent of the

dimensionality [19, 20, 21, 22]. Among these algorithms, the preconditioned Crank–

Nicolson (pCN) [19] is a very simple one to be implemented. The main idea of this

algorithm is to design a random walk such that the discretization of this random

walk is invariant for the target measure which can be designed to be the posterior

measure. Assuming that the target measure has a density with respect to a Gaussian

reference measure, the pCN algorithm takes advantage of a clever selection of the

Markov transition kernel. It has been shown in [23] via spectral gap analysis that

pCN has dimension-independent sampling efficiency. This benefit comes in contrast to

the standard random walk proposal where the probability of the proposal acceptance

will be almost zero in infinite-dimensional case. Recently, a non-centered version of

this algorithm was introduced in [24]. Their work was developed using a non-centered

reparametrization developed in [25]. This transformation is important in the hierarchical

prior Bayesian inversion cases since it breaks the dependency between parameters in

different levels which simplifies the calculation of posterior. There is also a generalization

of the pCN algorithm to take into account the information of the measure, and an

adaptive version of it [22, 26].

The main contribution of this article is to present a method for Bayesian inverse

problems with multi-layered Gaussian field prior models via a Galerkin method. The

motivation is to have enough complexity in the model to allow for both smoothing

and edge preserving properties while keeping relatively low number of layers at the

same time. By this approach, we essentially formulate a hierarchical prior so that the

regularization becomes less subjective, while keeping the number of total parameters

low [27]. In particular, we follow the approach recently described in [12], where the

Gaussian fields are represented as stochastic partial differential equations (SPDEs), in

which the length-scale parameters depend on the solution of SPDEs for the layer above.

However, instead of using a grid partition, we will apply Galerkin method, on which

we have already obtained preliminary results in [28]. Using this approach, we can

avoid evaluating SPDE forward problem via finite difference equations, and the number

of parameters is greatly reduced. This can be considered as a compromise between

the accuracy and the computational complexity. Our approach is also related to the

one described in [29], where Gaussian fields with stationary covariance functions are

approximated in finite-dimensional Hilbert spaces. Such approach relies on the fact

that the covariance function of a stationary Gaussian field is expandable via Mercer’s

theorem.
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In this work, we construct several Gaussian fields in a hierarchical structure. Using

this structure, we show how to transform this model into a chain of Gaussian fields

driven by white noise fields. This formulation enables us to use the Bayesian inference

framework described in [16]. We then implement the proposed approximation into

an MCMC algorithm. Our MCMC algorithm is based on the non-centered version

of the preconditioned Crank–Nicolson algorithm modified to work with multi-layered

Gaussian fields [16, 24]. An alternative approach to MCMC would be to use the

variational Bayesian approach which approximates the posterior with a member of

tractable distribution family [30]. The variational Bayesian approach could be a few

orders faster than MCMC [31, 30]. In addition, there are some results that show

the asymptotical limit of the variational Bayesian posterior [32]. However, it is not

clear whether the variational Bayesian approach will be well defined for the infinite-

dimensional case [33, 34, 35]. Nevertheless, the variational Bayesian approach has given

promising results in certain high-dimensional inverse problems [36].

Since translating the inverse problem into finite-dimensional formulation will

introduce a discretization problem that could exacerbate the reconstruction errors

[37, 38], we rigorously show that the proposed approximation enjoys a nice convergence-

in-probability property to the weak solution of the forward model. To show the

convergence result, we start by establishing an upper bound for the square root of the

precision operator of the Gaussian field. From there, we develop another upper bound

for the error between this operator and its finite-dimensional approximation. We then

show that the original weak SPDE solution satisfies a Hölder continuity property. Using

these results and additional tightness conditions, we finally show that the proposed

approximation converges in probability to the original weak solution of the forward

model. As a consequence, we can guarantee that the approximated prior and posterior

probability distribution converges weakly to the original prior and posterior, respectively.

In this article, we also present an application of the proposed method to a

computerized X-ray tomography problem. Computerized tomography problems are

very challenging since they are ill-posed [39]. One way is to compute maximum a

posteriori estimate for a general X-ray tomography problem using a Gaussian prior in

finite-dimensional setting [40]. In [41], a Bayesian method using Gaussian fields with

non-stationary covariance functions described in [4, 42] is developed for plasma fusion

and soft X-ray tomography. Recently in [43], a Hilbert space approximation technique

described in [29] is used in a sparse tomographic inverse problem. Bayesian tomographic

reconstruction with non-Gaussian prior has been studied in [44, 45]. There are also some

recent results in X-ray tomography using deep learning methods. However, contrary to

the Bayesian and regularization approaches, these methods are prone to instabilities

when exposed to a small perturbation and structural changes [46].

Previously, we have presented a subset of our contributions in [28]. In the present

work, we extend the methods presented in [28] to Bayesian inverse problems and we have

also added a throughout convergence analysis of the methods. The algorithm presented

in this work also generalizes the algorithm presented in [28] to the case of multiple
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hyperprior layers.

The outline of the article is the following. In Section 2, we present a formulation

of Bayesian inverse problems using multi-layered Gaussian priors via Galerkin method.

The convergence analysis is presented in Section 3. In Section 4, we propose a Markov

chain Monte Carlo algorithm to sample the Fourier coefficients from their posterior

distribution. In Section 5, we present an application of the proposed method to a one-

dimensional example model and to a tomographic inverse problem. Finally, Section 6

concludes the article.

1.1. Notation

Let {φl} be a basis formed from the orthogonal eigenfunctions of the Laplace operator

with respect to some domain Ω with suitable boundary conditions. Let N be the number

of basis functions {φl} used in the Galerkin method and let HN denote their span. For

multi-layer Gaussian field priors, we use uj to denote the random field at layer j, where

the total number of layer is J + 1, that is, J is the number of hyperprior layers. The

collection of J + 1 random fields (u0, u1, . . . , uJ) is denoted by u. The Fourier transform

of any random field z is denoted by ẑ, where the Fourier coefficient for index l is given

by ẑ(l), that is, ẑ(l) = 〈z, φl〉, where 〈·, ·〉 is the standard L2 inner product on the

domain Ω. We use bold characters to denote vectors or matrices with elements in C
or R. Fourier coefficient for random field uj for index −N to N is given by uj, that

is, uj = (ûj(−N) . . . ûj(N)). We denote J + 1 collections of the Fourier coefficients of

random fields u as u = (u0, . . . ,uJ). The identity operator is denoted with I.

2. Finite-dimensional approximations

Consider a Bayesian inverse problem on a Gaussian field where the unknown is a real-

valued random field υ(x) : Ω → R on a bounded domain Ω ⊂ Rd. We assume in the

inverse problem that υ belongs to a Hilbert space H, specifically, υ ∈ H := L2(Ω).

To carry out the Bayesian inference, a set of measurements is taken (either direct or

indirect in multiple locations). In this article, the measurement is assumed to be a linear

operation on υ corrupted with additive noises, that is, yk = 〈υ, hk〉+ ek, where hk is an

element in H represents a real linear functional on H, and ek is a zero-mean white noise

with a covariance matrix E.

In the Bayesian framework, the estimation problem is equivalent to exploring

the posterior distribution of υ given the measurements {yk}. The Bayesian inversion

approach for this problem starts with assuming that υ is a Gaussian field with a certain

mean (assumed zero for simplicity) and covariance function C(x,x′). In the case when

C(x,x′) is a Matérn covariance function, the Gaussian field υ can be generated from a

stochastic partial differential equation of the form [11, 12](
1− `2∆

)α/2
υ(x) =

√
β`dw(x), (1)
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where α = ν + d/2, d is the dimension of the space, ν is a smoothness parameter, w(x)

is a white noise on Rd, ` is the length-scale constant of the Matérn covariance function

C, and β = σ22dπd/2Γ(α)/Γ(ν) with σ2 being a scale parameter.

To obtain a non-stationary field, we modify SPDE (1) so that the length-scale `

is modeled via another Gaussian field u with Matèrn covariance function. Namely, we

select `(x) = g(u(x)), where g is a smooth positive function g : R→ R+. As in [12], we

also require that ` should satisfy supx∈Ω `(x) <∞ and infx∈Ω `(x) > 0 with probability

one. For notational and mathematical convenience we restrict α = 2. The results of

this article could also be extended to other cases. Introducing the spatially varying

length-scale `(x) = g(u(x)) into (1), and since the length-scale is always greater than

zero, with probability one, using κ = 1/` we obtain the following SPDE(
κ(u(x))2 −∆

)
υ(x) =

√
βκ(u(x))νw(x). (2)

In order to facilitate easy operation with the Laplace operator, we choose to expand

v using the eigenfunctions of the Laplacian. With a suitable boundary condition, the

Laplace operator can be expressed −∆υ =
∑∞

j=−∞ λj〈υ, φj〉φj, where φj is a complete

set of orthonormal eigenfunctions of ∆ and λj > 0, where lim
j→∞

λj = ∞ [47]. Observe

that, in the sense of (2), κ(u(x)) := 1/g(u(x)) ∈ L∞(Ω) is a multiplication operator

acting pointwise, that is, (κ(u)υ)(x) = κ(u(x))υ(x),∀x ∈ Ω [48].

In what follows, we will first describe the matrix representation of a chain of

Gaussian fields generated from SPDEs in the form of (2) for d-dimensional domain.

Then in Section 3, we will develop a convergence result of the Galerkin method developed

here to the weak solution of (2).

2.1. Matrix representation

Let us examine a periodic boundary condition on d-dimensional box Ω with side length

1. Within this boundary condition, it is useful to consider H as a complex Hilbert

space, so that we can set φl = exp(i cd x
>k(l)) as Fourier complex basis functions for d

dimensions, for some constant cd and a multi-index k(l) which is unique for every l. Let

the finite-dimensional Hilbert subspace HN of H be the span of φ−N , . . . , φ0, . . . , φN . In

what follows, we will explicitly construct the multi-index k(·).
Without losing generality, let us assume that every entry in k(l) is between −n

to n. For any −N ≤ l ≤ N , where N = (2n+1)d−1
2

, we would like to construct

k(l) = (k1(l), . . . , kd(l)) such that it is unique for each −N ≤ l ≤ N and k(l + m) =

k(l) + k(m), −N ≤ l,m ≤ N and max(|kr(l +m)|) < n, r ≤ d. The construction of

k : [−N,N ]→ [−n, n]d is as follows. Let the matrix K(n) be given as

K(n) =


zn ⊗ e⊗d−1

n

en ⊗ zn ⊗ e⊗d−2
n

...

e⊗d−1
n ⊗ zn

 ,
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where zn = (−n,−n + 1, . . . , n − 1, n), en = (1, 1, . . . , 1, 1), and e⊗dn is a Kronecker

product of en repeated for d times. The multi index k(l) is given by selecting l+(N+1)-

th column of K. The linear relation is defined only if −N ≤ l+m ≤ N and every element

of the summation k(l)+k(m) has values in [−n, n]. As an example let d = 2 and n = 1.

This gives us:

K(1) =

(
−1 −1 −1 0 0 0 1 1 1

−1 0 1 −1 0 1 −1 0 1

)
.

It can be verified that k(l) selected this way is both unique and linear, given that

the summation result is inside the range. For example, k(1) + k(2) = k(3). However,

k(1) + k(1) is not defined since the summation is outside the limit. In the following, if

the context is clear, we will also use the multiple index k(l) for Fourier component of u,

that is û(k(l)) := û(l).

Since we have no information outside of the frequencies of interest, under the

periodic boundary condition, for −N ≤ l,m ≤ N , 〈φmu , φl〉 = û(l − m), when

max(|k(l)− k(m)|) ≤ n, and zero elsewhere.

Let us denote with u, v, and w finite-dimensional representations of u, υ, and w,

respectively. Let MN(u) be the matrix representation of the multiplication operator u(x)

on HN . For a random field r with Fourier coefficients r = (r̂(−m) · · · r̂(m))> ∈ C2m+1,

let us write a Toeplitz matrix T ∈ C(m+1)×(m+1) with elements from r as follows:

T (r) =

 r̂(0) · · · r̂(−m)
...

. . .
...

r̂(m) · · · r̂(0)

 .

The previous discussion allows us to write for d = 1, MN(u) := T (ũ) ∈ C(2N+1)×(2N+1),

where ũ = (01×N ,u>,01×N)> ∈ C(4N+1)×1. It is also possible to construct MN(u) for

d > 1. However, instead of working directly on u, we need to work on the frequency

indices. Let J ∈ R(2n+1)×(2n+1) be a square matrix where all of its entry equal to one.

Let also Z(1) = T (z2n) ⊗ J⊗d−1,Z(2) = J ⊗ T (z2n) ⊗ J⊗d−2, . . . ,Z(d) = J⊗d−1 ⊗ T (z2n),

respectively. Using these matrices, the (l,m)-th entry of MN(u) is given by

MN(u)l,m = û(k̃(l,m)), (3)

where k̃(l,m) =
(
Z

(1)
l,m, · · · ,Z

(d)
l,m

)
. In this equation, we assign û(k̃(l,m)) = 0 when

max(|k̃(l,m)|) > n.

The sparsity of MN as n approaches infinity is (3
4
)d. The weak solution to (2) in

the span of HN is equivalent to the following equation,

L(u)v = w, (4)

where L(u) := 1√
β
(MN(κ(u)d/2) − MN(κ(u)−ν)D) is the square root of the precision

operator corresponds to υ in matrix form, D is a diagonal matrix, and v,w are complex
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vectors with appropriate dimensions. The diagonal entries of D are given by Di,i = −λi.
Upon computing MN(κ(u)γ), we approximate u by its projection onto HN if u /∈ HN .

An important numerical issue to note is that we cannot use an approximation of

MN(κ(uN)γ) obtained by spectral decomposition, that is, MN(κ(uN)γ) ≈ U>κ(Du)
γU,

for a diagonal matrix Du with the diagonal entries being the eigenvalues of MN(uN),

and where U is an orthonormal matrix. The reason is that the resulting matrix will not

be in the form of (3). Instead, we can obtain MN(κ(uN)γ) matrix by applying Fourier

transform directly to κ(uN)γ and making use of (3). Writing (4) as v = L(u)−1w, we

obtain a composition of a Gaussian field from a unit Gaussian field given in [16].

In what follows, for simplicity, with a slight abuse of notation for L(u), if r ∈ HN

we also use L(r) := L(
∑N

l=−N r̂(l)φl) = L(r). Using this notation, the J Gaussian field

hyperpriors with zero mean assumption can be written in the following form:

L(uj−1)uj = wj. (5)

The hyperprior layers consist of the random fields u0, . . . , uJ−1, where the random field

u0 will be stationary. Within this multi-layer hyperprior setting, the unknown field υ is

equivalent to uJ . With the assumption that each random field involved is real-valued,

the number of element in ui is only N + 1 since the remaining element can be obtained

by complex conjugation.

3. Convergence analysis

In this section, we will show that the solution of the original SPDE system can be

approximated with Galerkin methods on d-dimensional torus Td. In our convergence

analysis, we will restrict to d ≤ 3, since we will rely on continuity of the sample paths

(see Lemma 3.3). We start by carefully presenting the notation of Galerkin method for

analysis purposes. We denote the constant κ0 with exp(u−1) for notational ease. The

function κ is taken to be a smooth function, which is bounded from below and above

by exponential functions. That is, c1 exp(−a1|x|) ≤ κ(x), κ′(x) ≤ c2 exp(a2x) for some

c1, c2, a1, a2 > 0 for all x ∈ R.

Almost surely bounded functions u0, ..., uJ are a weak solution of SPDE system

−∆ui + κ2(ui−1)ui = β
1/2
i κν(ui−1)wi, where i = 0, . . . , J, (6)

if they satisfy

−〈ui,∆φ〉+ 〈κ2(ui−1)ui, φ〉 = β
1/2
i

∞∑
p=−∞

ŵi(p)〈κν(ui−1)φp, φ〉, where i = 0, . . . , J,

for all φ ∈ C2(Td). Assuming that the functions ui are almost surely bounded guarantees

that the inner product of ui and ∆φ is well-defined as compared to the inner product

of ∇ui and ∇φ, which may not be well-defined. Here we expressed independent white
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noises wi on Td with the help of an orthonormal basis {φp} in L2(Td) as random series

wi =
∑∞

p=−∞ ŵi(p)φp, where the random coefficients ŵi(p) ∼ N(0, 1) are independent.

In the first approximation step for the SPDE system (6), we will approximate

white noise wi with its projections wNi (x) onto the subspace HN . That is, wNi (x) =∑N
p=−N wiφp(x). Then the Galerkin approximations uNi of ui satisfy the system

〈∇uNi ,∇φ〉+ 〈κ2(uNi−1))uNi , φ〉 = β
1/2
i 〈κν(uNi−1)wNi , φ〉, i = 0, . . . , J (7)

for all φ ∈ HN , where uN−1(x) := ln(κ0). Here we are allowed to use to use inner products

of ∇uNi and ∇φ, since the approximated white noise wNi belongs to HN .

We will denote with L(ui−1)−1 the solution operator, which maps f from the

negatively indexed Sobolev space H−1(Td) to the weak solution of −∆u + κ2(ui−1)u =

β
1/2
i κν(ui−1)f . Similarly, we will denote with LN(uNi−1)−1 the solution operator,

which maps f ∈ H−1(Td) to the Galerkin approximation uN ∈ HN of the equation

−∆u+κ2(uNi−1)u = β
1/2
i κν(uNi−1)f . The matrix form of LN(uNi−1)−1 is given by L(ui−1)−1

from Equation (5). The solution operators L(ui−1)−1 and LN(uNi−1)−1 satisfy the

following elementary norm estimates. For simplicity, we will take βi = 1 from now

on.

Lemma 3.1. Let ui−1 and uNi−1 be bounded functions and let κ be a positive continuous

function. The mappings L(ui−1) : L2(Td) → H2(Td) and LN(uNi−1) : L2(Td) → H2(Td)
satisfy norm estimates

‖L(ui−1)−1‖L2,H2 ≤ C‖κ(ui−1)‖ν∞
max(1, ‖κ2(ui−1)‖∞)

min(1, infx κ2(ui−1(x)))2
and

‖LN(uNi−1)−1‖L2,H2 ≤ C‖κ(uNi−1)‖ν∞
max(1, ‖κ2(uNi−1)‖∞)

min(1, infx κ2(uNi−1(x)))2
,

respectively.

Proof. By the Lax–Milgram theorem [49], ‖(−∆ + κ2(ui−1)I)−1‖H−1,H1 ≤ C/min(1,

inf κ2(ui−1)) and the multiplication operator has norm ‖κν(ui−1)‖L2,L2 ≤ ‖κ(ui−1‖ν∞.

Hence, the solution operator has norm

‖L(ui−1)−1‖L2,H1 ≤ C
‖κ(ui−1(x))‖ν∞

min(1, infx κ2(ui−1(x)))
.

We rewrite the PDE in the form

(−∆ + a)ufi = (a− κ2(ui−1)ufi + κν(ui−1)f,

where the right-hand side belongs now to L2(Td). By inverting the operator −∆ + aI,

we obtain an equation for the solution ufi , which leads to the norm estimate

‖ufi ‖H2 ≤ 2

min(1, infx κ2(ui−1(x)))

(
C‖κ2(ui−1)‖∞‖κ(ui−1)‖ν∞
min(1, infx κ2(ui−1(x)))

+ ‖κ(ui−1)‖ν∞
)
‖f‖L2

≤C‖κ(ui−1)‖ν∞
max(1, ‖κ2(ui−1)‖∞)

min(1, infx κ2(ui−1(x)))2
‖f‖L2
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after choosing a = infx κ
2(ui−1(x)/2. Similar procedure leads to the desired estimate

for LN(ui−1).

We will later need the following technical lemma to establish convergence.

Lemma 3.2. Let ui−1 and uNi−1 be bounded functions and let κ be a continuously

differentiable positive function. The mappings LN(uNi−1)−1 and L(ui−1)−1 satisfy

‖LN(uNi−1)−1 − L(ui−1)−1‖L2,L2 ≤ 1

N
G1(ui−1) +G2(ui−1, u

N
i−1)‖uNi−1 − ui−1‖1/6

L1 ,

where

G1(ui−1) = C
max(1, ‖κ2(ui−1)‖∞)2 max(‖κν(ui−1)‖∞, ‖κ−ν(ui−1)‖∞)

min(1, inf κ2(ui−1(x)))3

G2(ui−1, u
N
i1

) = C
max(1, ‖κν(ui−1)‖∞) max

(
‖κ(uNi−1)‖∞, ‖κ(ui−1)‖∞

)5/3+5ν/6

min(1, infx κ2(uNi−1(x))) min(1, infx κ2(ui−1(x)))

×max
t∈B

(κ′(t))
1/6

and the set B is the interval [min(infx u
N(x), infx u(x)),max(‖uN‖∞, ‖u‖∞)].

Proof. We partition T := LN(uNi−1)−1 − L(ui−1)−1 into two parts

T = (LN(uNi−1)−1 − LN(ui−1)−1) + (LN(ui−1)−1 − L(ui−1)−1) = T1 + T2.

By Cea’s lemma [49], the term T2 has an upper bound

‖T2‖L2,L2 ≤ C
max(1, ‖κ2(ui−1)‖∞)

min(1, infx κ2(ui−1(x)))
‖(I − P̃N)L(ui−1)−1κ−ν(ui−1)‖L2,H1‖κν(ui−1)‖∞,

where P̃N is the orthogonal projection onto HN in H1 and I is the identity operator.

Let f ∈ L2 and denote g := L(ui−1)−1κ−ν(ui−1)P̃Nf . Then

‖(I − P̃N)g‖2
H1 =

∑
|k1|,|k2|>n

(1 + k2
1 + k2

2)|ĝk1,k2|2 =
∑

|k1|,|k2|>n
(1 + k2

1 + k2
2)−1|(−∆ + 1)g)∧|2k1,k2

≤ 1

n2
‖(−∆ + 1)g‖2

L2 ≤ C

N2
‖L(ui−1)−1‖2

L2,H2‖κ(ui−1(x))−ν‖2
∞‖f‖2

L2 ,

where −∆ + 1 : H2 → L2 is continuous, g∧ denotes the Fourier transform and

N = (2n+ 1)d. Hence,

‖T2‖L2,L2 ≤ C

N

max(1, ‖κ2(ui−1)‖∞)2

min(1, inf κ2(ui−1(x)))3
max(‖κν(ui−1)‖∞, ‖κ−ν(ui−1)‖∞).

In the term T1, we need to tackle the difference of κ-terms. We aim to use Lp-estimates

in order to later allow induction with respect to different layers. We partition T1 into

simpler terms

‖T1‖L2,L2 ≤ ‖LN(uNi−1)−1κ−ν(uNi−1)
(
κν(uNi−1)− κν(ui−1)

)
‖L2,L2

+ ‖
(
LN(uNi−1)−1κ−ν(uNi−1)− LN(ui−1)−1κ−ν(ui−1)

)
κν(ui−1)‖L2,L2

= ‖T11‖+ ‖T12‖.
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In the term T12, we apply the resolvent identity

LN(uNi−1)−1κ−ν(uNi−1) = LN(ui−1)−1κ−ν(ui−1)

+ LN(ui−1)−1κ−ν(ui−1)(κ2(ui−1)− κ2(uNi−1))LN(uNi−1)−1κ−ν(uNi−1),

which leads to

‖T12‖L2,L2 ≤ ‖LN(ui−1)−1κ−ν(ui−1)‖L3/2,L2‖κ2(ui−1)− κ2(uNi−1)‖L2,L3/2

× ‖LN(uNi−1)−1κ−ν(uNi−1)‖H−1,H1‖κν(ui−1)‖∞.

The space L3/2 embeds continuously into H−1, and ‖A‖L3/2,L2 ≤ ‖A‖H−1,H1 for any

operator A. Hence by the Lax–Milgram theorem,

‖LN(ui−1)−1κ−ν(ui−1)‖L3/2,L2 ≤ 1

min(1, infx κ2(ui−1(x)))
.

We are now treating κ2(ui−1) − κ2(uNi−1) as a multiplication operator from L2 to L3/2.

That is, a function g defines a multiplication operator, which takes a function f to

the product of functions g and f . By Hölder’s inequality, any multiplication operator

g : L2 → L3/2 has norm ‖g‖L6 . Similar treatment for the term T11 gives

‖T11‖L2,L2 ≤ ‖LN(uNi−1)−1κ−ν(uNi−1)‖L3/2,L2‖κν(uNi−1)− κν(ui−1)‖L2,L3/2 .

The difference of κ terms in the estimates for T11 and T12 reduces to the difference of

the functions ui−1 through series of elementary estimates

‖κa(uNi−1)− κa(ui−1)‖6
L6 =

∫
Td
|κa(uNi−1(x))− κa(ui−1(x))|6dx

≤ (2 max
(
‖κa(uNi−1)‖∞, ‖κa(ui−1)‖∞

)
)5

∫ ∣∣∣∣∣
∫ uNi−1(x)

ui−1(x)

κ′(t)dt

∣∣∣∣∣ dx
≤ C max

(
‖κa(uNi−1)‖5

∞, ‖κa(ui−1)‖5
∞
)

max
t∈B

(κ′(t)) ‖uNi−1 − ui−1‖L1 ,

where a = ν, 2 and the setB is the interval [min(infx u
N(x), infx u(x)),max(‖uN‖∞, ‖u‖∞)].

Remark 1. When κ is a continuously differentiable function with bounds

c1 exp(−a1|t|) ≤ κ(t), |κ′(t)| ≤ c2 exp(a2|t|), where c1, c2, a1, a2 > 0, the functions G1

and G2 can be taken to be

G1(ui−1) = C1 exp(C2(‖ui−1‖∞))

G2(ui−1, u
N
i−1) = C3 exp(C4(‖ui−1‖∞ + ‖uNi−1‖∞).

The next lemma shows that the SPDE system (6) forces the layers to be Hölder-

continuous.
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Lemma 3.3. Let κ be a positive continuous function. Let 0 < α < 1 for d = 1, 2 and

0 < α < 1/2 for d = 3. The bounded weak solution ui, i = 0, . . . , J , of the SPDE system

(6) is α-Hölder continuous with probability 1, and has the form

ui(x) =
∞∑

p=−∞
ŵi(p)L(ui−1)−1φp(x) =: L(ui−1)−1wi(x), i = 0, . . . , J. (8)

Proof. We will show that if ui−1 is continuous, then ui is Hölder-continuous. This will

prove continuity inductively, since the zeroth layer u0 has constant u−1. It is enough

to verify continuity after conditioning with ui−1, since P(ui ∈ C0,α(Td)) = E[P(ui ∈
C0,α(Td) | ui)] = 1 with probability 1 if and only if P(ui ∈ C0,α(Td) | ui−1) = 1 . After

conditioning, ui will be a Gaussian field for which we will apply Kolmogorov continuity

criterium. To this end, we calculate

E[|ui(x)− ui(x′)|2b | ui−1] = Cb sup
‖f‖L2≤1

|L(ui−1)−1f(x)− L(ui−1)−1f(x′)|2b,

which follows from the Itô isometry and the equivalent way to calculate ‖g‖L2 as

sup‖f‖L2≤1〈f, g〉. When ui−1 is continuous, the function L(ui−1)−1f(x) belongs to H2

by Lemma 3.1. By Sobolev’s embedding theorem [47], H2 embeds into C0,α for d ≤ 3.

Hence,

E[|ui(x)− ui(x′)|2b | ui−1] ≤ C|x− x′|2bα,

which implies Hölder continuity with index smaller than (2bα−d)/2b = α−d/2b, where

b can be arbitrarily large.

To complete the proof for existence of the solution, we insert the solution candidate

(8) into the SPDE system (6) and do direct calculations. Uniqueness of the solution

follows from Lax–Milgram theorem.

We will show that uNi converges in probability to ui. The proof uses uniform

tightness of the distributions of uNi − ui, which is a necessary condition for the

convergence. We recall sufficient conditions for the uniform tightness (see p. 61 in

[50]).

Lemma 3.4. The random fields UN are uniformly tight on C(Td) if and only if there

exists a function K : C(Td)→ [0,∞) with the following properties.

(1) The set {g ∈ C(Td) : K(g) ≤ C} is compact for any C > 0,

(2) K(UN) <∞ almost surely for every N , and

(3) supN E[K(UN)] <∞.

We will need several iterations of the logarithm so we define the iterated composition

by setting F (x) = ln(1 + x), F0(x) = x and Fn+1(x) = F ◦ Fn(x).



Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion 13

Remark 2. The function Fi is increasing and, moreover, subadditive on non-negative

numbers. That is, Fn(x+ y) ≤ Fn(x) + Fn(y) for all x, y ≥, which follows by induction

from subadditivity ln(1 + x+ y) ≤ ln((1 + x)(1 + y)) = ln(1 + x) + ln(1 + y) of each F .

Similar procedure shows that Fn(xy) ≤ Fn(x) + Fn(y).

Lemma 3.5. Let d = 1, 2 or 3. Let κ be a continuous function with bounds

c1 exp(−a1|t|) ≤ κ(t) ≤ c2 exp(a2|t|), where c1, c2, a1, a2 > 0. Let uNi , i = 0, . . . , J ,

solve the system (7) and let ui, i = 0, . . . , J solve the system (6). Then the random

fields uNi are uniformly tight on C(Td), the random fields uNi −ui are uniformly tight on

C(Td), and the vector-valued random fields (uNi , ui) are uniformly tight on C(Td;R2).

Proof. We equip the Hölder space C0,α(Td;Rp) with its usual norm

‖g‖α = sup
x 6=y

|g(x)− g(y)|
|x− y|α + sup

x
|g(x)|.

Here α is chosen as in Lemma 3.3. We will use Kolmogorov–Chentsov tightness criterium

(see [51]) to show the uniform tightness of the zeroth order layers, which are Gaussian.

The desired estimate

E[|uN0 (x)− uN0 (x′)|a] ≤ C|x− x′|d+b

follows from choosing large enough a in

E[|uN0 (x)− uN0 (x′)|a] ≤ C sup
‖f‖L2≤1

|LN(ln(κ0))−1f(x)− LN(ln(κ0))−1f(x′)|a
|x− x′|aα |x− x′|aα

≤ C‖LN(ln(κ0))−1‖aL2,C0,α |x− x′|aα,

where we applied Itô isometry and the definition of L2-norm as a supremum. By Lemma

3.1 and Sobolev’s embedding theorem, the operator norm of LN(ln(κ0))−1 is bounded

for any 0 < α < 1/2. Since κ0 is a constant, the bound is uniform. The case for uN0 −u0

and (uN0 , u0) follow similarly with the help of the triangle inequality.

For other layers, we use Lemma 3.4, where we choose K(g) = Fi(g). For simplicity,

we demonstrate Condition 1 only for i = 3, since the generalization is clear. The set

{g : K(g) ≤ C} = {g : ‖g‖α ≤ exp(exp(exp(C)− 1)− 1)− 1}

is clearly a closed set, which contains bounded equicontinuous functions. The set

A ⊂ C(Td) is then compact by the Arzelá–Ascoli theorem (see [52]). Moreover, the

fields uNi − ui are almost surely α-Hölder continuous, by Lemma 3.3 and since the

approximations belong to HN . Hence, Condition 2 holds. To show Condition 3, we

write uNi as LN(uNi−1)−1wNi and ui as L(ui−1)−1wi. By the triangle inequality and

the subadditivity of Fi (see Remark 2), we can check the boundedness for uNi and

ui separately. Since the procedure is the same for both of the terms, we only show here

the case for uNi . By Jensen’s inequality

E[ln(1 + ‖uNi ‖α) | uNi−1] ≤ ln
(
E[1 + ‖LN(uNi−1)−1wNi ‖α | uNi−1]

)
. (9)
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The conditioning with uNi−1 lets us compute expectations of Gaussian variables. Instead

of attacking directly the expectation in Equation (9), we will seek a Gaussian zero mean

random field U with larger variance than the conditioned uNi . Then also certain other

expectations of uNi will be bounded by expectations of U . Under conditioning, the

variances of the random variables
∫
φ(x)LN(uNi−1)−1wNi (x)dx are

E[〈wNi , (LN(uNi−1)−1)∗φ〉2 | uNi−1] = ‖PN(LN(uNi−1)−1)∗φ‖2
L2 ≤ ‖LN(uNi−1)−1‖2

L2,H2‖φ‖2
H−2 ,

where the last inequality follows from properties of the adjoint operator and Lemma 3.1.

Set U to be a zero mean Gaussian random field U on Td whose covariance is defined

by equations E[〈U, φ〉2] = ‖φ‖2
H−2 for all smooth φ. Then U has sample paths in Hölder

space C0,α(Td) by Sobolev’s embedding theorem and Kolmogorov’s continuity theorem

(see [53]). By Fernique’s theorem (e.g. [54]), the expectation E[‖U‖α] is finite. Since

norms are absolutely continuous functions, also the conditional expectation of ‖uNi ‖α is

bounded by ‖L(uNi−1)−1‖L2,H2E[‖U‖α] (see Corollary 3.3.7 in [54]).

Further application of Lemma 3.1 in Equation (9) gives our main estimate

E[ln(1 + ‖uNi ‖α) | uNi−1] ≤ ln

[
1 + c‖κ(uNi−1(x))‖ν∞

max(1, ‖κ2(uNi−1(x))‖∞)

min(1, inf κ2(uNi−1(x)))2
E[‖U‖α]

]
≤ cα,ν(1 + ‖uNi−1‖∞), (10)

where we applied the bounds of κ and the elementary inequalities max(a, b exp(c)) ≤
max(a, b) exp(|c|), min(1, inf exp(g(x))) ≥ exp(−‖g‖∞), (1 + ab) ≤ (1 + a)(1 + b) and

1 + a ≤ 2 max(1, a). Here we can choose constants larger than 1.

When i = 1, the expectations (10) are uniformly bounded, since expectations of

‖uN0 ‖∞ are bounded. Then Lemma 3.4 shows that uN1 are uniformly tight. For the

subsequent layers we need to operate multiple times with the logarithm and Jensen’s

inequality through inductive steps

E[Fi(‖uNi ‖α))] ≤ E[Fi(E[‖uNi ‖α | uNi−1])] ≤ E[Fi(c(1 + ‖uNi−1‖α))]

≤ C + E[Fi−1(‖uNi−1‖α))]

with the help of the additivity properties of Fi from Remark 2.

Theorem 3.6. Let d = 1, 2, or 3. Let κ be a continuously differentiable function

with bounds c1 exp(−a1|t|) ≤ κ(t), |κ′(t)| ≤ c2 exp(a2|t|), where c1, c2, a1, a2 > 0. Let

uNi , i = 0, . . . , J . The solution (uN0 , . . . , u
N
J ) of the Galerkin system (7) converge in

probability to the weak solution (u0, . . . , uJ) of the SPDE system (6) on L2(Td;RJ+1) as

N →∞.

Proof. It is enough to show componentwise convergence. Uniform tightness on C(Td)
implies uniform tightness on L2(Td), which in turn implies relative compactness in weak

topology of distributions. Hence, by Lemma 3.5 each subsequence of the distributions of
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uNi −ui has a weakly convergent subsequence, say uNki −ui. Recall, that the convergence

in probability is equivalent to the convergence of τN := E[min(1, ‖uNi − ui‖L2)],

where min(1, ‖ · ‖L2) is now a bounded continuous function. By weak convergence

of distributions, the subsequence τNk has some limit. It remains to verify that limits

of uNki − ui in distribution are zero. The characteristic functions of uNi − ui converge

to 1, if τN(φ) := E[min(1, |〈uNi − ui, φ〉|), converge to zero for every φ ∈ L2. This

formulation makes calculation of expectations manageable. The essential difference to

other approaches arises from the monotonicity of conditional expectations. Namely, the

property E[1−min(1, G)|Σ0] ≥ 0 for G ≥ 0 implies that

E[min(1, G) | Σ0] = min(1,E[min(1, G) | Σ0]) ≤ min(1,E[G | Σ0]). (11)

Especially,

τN(φ) ≤ E[min(1,E[|〈uNi − ui, φ〉| | w0, . . . , wi−1])], (12)

where we applied (11) after taking a conditional expectation inside the expectation. We

condition with white noises in order to handle both ui and its approximation uNi easily.

Moreover, the cutoff function min(1, ·) is nondecreasing and subadditive.

Under conditioning with w0, . . . , wi−1, the random fields uNi and ui in Equation

(12) become Gaussian, which enables us to compute

τN(φ) =E[min(1, c‖(PN(LN(uNi−1)−1)∗ − (L(ui−1)−1)∗)φ‖L2)]

≤E
[
min

(
1, cφ‖LN(uNi−1)−1 − L(ui−1)−1‖L2,L2

)
+ min

(
1, c‖(PN − I)(L(ui−1)−1)∗φ‖L2

)]
= : τ 1

N(φ) + τ 2
N(φ)

via the Itô isometry and the properties of adjoints. Since L(ui−1)∗φ ∈ L2, the term τ 2
N(φ)

converges to zero. We will apply Lemma 3.2 for the difference of operators LN(uNi−1)−1

and L−1(ui−1) in τ 1
N(φ), which leads to a well-behaving estimate

τ 1
N(φ) ≤E

[
min

(
1,
Cφ
N

exp(C1‖ui−1‖∞)

)]
+ E[min(1, Cφ exp(C2(‖ui−1‖∞ + ‖uNi−1‖∞))

×‖uNi−1 − ui−1‖1/6

L2 )] =: τ 11
N (φ) + τ 12

N (φ).

The first term τ 11
N (φ) converges to zero by Lebesgue’s dominated convergence theorem.

For the term τ 12
N (φ), we will use the uniform tightness of the the vector-valued random

fields (uNi−1, ui−1) shown in Lemma 3.5. Let Ki−1 = Ki−1(ε) ⊂ C(Td;R2) be a compact

set for which P ((uNi−1, ui−1) ∈ KC) < ε. Then

τ 12
N (φ) = E[min(1, Cφ exp(C2(‖ui−1‖∞ + ‖uNi−1‖∞))‖uNi−1 − ui−1‖1/6

L2 )(1K + 1KC )]

≤ E[min(1, Cε‖uNi−1 − ui−1‖L2)]1/6 + E[1KC ]

by Lemma 3.2, Remark 1 and Jensen’s inequality. Thus τ 12
N (φ) converges to zero if

uNi−1 − ui−1 converge to zero in probability on L2.

When i = 0, the above procedure shows then that uN0 converges to u0 in probability,

because the sublayers are then constants. By induction, uNi converges in probability to

ui.
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Prohorov’s theorem [51] hands us weak convergence on the space of continuous

functions.

Corollary. The distributions of uNi converge weakly to the distribution of ui on C(Td)
and the joint distribution of (uN0 , . . . , u

N
J ) converges weakly to the joint distribution of

(u0, . . . , uJ) on C(Td,RJ+1).

Proof. The random fields uNi are tight on C(Td) by Lemma 3.5. By Prohorov’s theorem,

the closure of their distributions forms a sequentially compact set, implying the existence

of weak limit. By Theorem 3.6, each weakly converging subsequence of the distributions

has the same limit, that is, the distribution of ui. Indeed, since convergence in

probability on L2(Td) implies weak convergence on L2(Td), the characteristic functions

E[exp(i〈uNi , φ〉)] converge to E[exp(i〈ui, φ〉)] for all φ ∈ L2(Td). The set of bounded

continuous functions u 7→ exp(i〈u, φ〉), where φ are smooth on Td, separate the functions

in C(Td). Hence, the limits of these characteristic functions are enough to identify the

weak limit on C(Td). The joint distribution is handled similarly.

We recall a posterior convergence result from [55] with notation used in [17].

Theorem 3.7. Let the posterior distribution µy of an unknown u given an observation

y have the Radon–Nikodym density

dµy

dµ0
(u) ∝ exp(−Φ(u,y))

with respect to the prior distribution µ0 of u, where Φ(·,y) ≥ −Cy. Let uN be an

approximation of u and let the posterior distribution of uN given an observation yN
have also the Radon–Nikodym density

dµyN
N

dµ0
N

(u) ∝ exp(−Φ(u,yN))

with respect to the prior distribution µ0
N of uN .

If the prior distributions µ0
N converge weakly to µ0, then the posterior distributions

µy
N converge weakly to µy.

Especially, the joint prior distribution of (uN0 , . . . , u
N
J ) converge weakly on

C(Td,RJ+1) to the joint distribution of (u0, . . . , uJ). Hence, the corresponding posteriors

also converge weakly.

4. Bayesian inference algorithm

We need to develop a Bayesian inference procedure to sample the Fourier coefficients

from a posterior distribution where the prior is given by a multi-layered Gaussian

field. Let us work directly with the Fourier coefficient uJ of uJ , and denote by
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µ0(duJ) = P(duJ) and µy(duJ) = P(duJ | y) the prior and the posterior distribution of

uJ , the unknown target field, respectively, when the measurement is given by

y = HuJ + e. (13)

In this equation, y is a vector which contains all of the measurements. The elements

of the matrix H correspond to the linear mappings {hk} for the respective Fourier

components. With the number of measurements being m, the measurement noise e

is an m-dimensional Gaussian random vector with zero mean and covariance E. The

posterior distribution µy will be absolutely continuous with respect to the prior µ0, and

the density of the posterior with respect to the prior is given by

dµy

dµ0
(uJ) =

1

Z
exp (−Φ(uJ ,y)) , (14)

where Φ(uJ ,y) := 1
2

∥∥E−1/2(y −HuJ)
∥∥2

is the potential function and the normalization

constant Z :=
∫

exp(−Φ(uJ ,y))µ0(duJ). The posterior distribution µy(duJ) can be

written in the following form

µy(duJ) ∝ exp (−Φ(uJ ,y))µ0(duJ). (15)

In the next section, we describe the MCMC algorithm to sample from the posterior

distribution.

4.1. Non-centered algorithm

Consider the case of hierarchical prior distribution µ(duJ) with J hyperprior layers

which we construct as

L0u0 = w0, (16a)

L(uj−1)uj = wj, j = 1, · · · , J, (16b)

where uj contains the Fourier coefficients of the field uj, for j = 0, . . . , J . We fix

g(x) = exp(−x). Since u−1 = ln(κ0) is a constant, we can write, L0 = L(u−1), where

k-th element of u−1 is equal to ln(κ0)δk,0, where δk,0 is the Kronecker delta. By (16),

we can define a linear transformation from wj to uj for j > 0 as follows:

uj = Ũ(wj,uj−1) := L(uj−1)−1wj. (17)

Using (17) we can define a transformation from w to u as follows

u = U(w) = (Ũ(w0,u−1), Ũ(w1, ·) ◦ Ũ(w0,u−1), . . . , Ũ(wJ , ·) ◦ . . . ◦ Ũ(w0,u−1)).

(18)

The dependence of uj on uj−1, j = 1, . . . , J , leads us to

µ0(duJ) = P (du0)
J∏
j=1

P (duj | uj−1) . (19)
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When evaluating the posterior function (15), it is necessary to compute the log

determinant of L(uj−1) in P(duj|uj−1) for each 1 < j ≤ J , respectively. These

calculations are expensive in general [56]. There is also a singularity issue if we sample

directly from P(du|y) if N approaches infinity [16]. We can avoid these issues by

using the reparametrization (17), where instead of sampling the Fourier coefficients

u, we sample the Fourier coefficient of the noises w, which is then called non-centered

algorithm [25, 57]. That is, we can write:

dµ̃y

dµ̃0
(w) =

1

Z̃
exp

(
−Φ̃(w,y)

)
:=

1

Z̃
exp (−Φ(U(w),y)) . (20)

In this equation, µ̃0 := P(dw) and µ̃y := P(dw|y) are the prior and posterior of

the w, respectively. The preconditioned Crank–Nicolson (pCN) algorithm [19] can

be used to sample from P(dw|y), and it is well defined even for the case of N goes

to infinity, using the fact that the prior for w is a standard Gaussian distribution.

One implementation of the pCN algorithm is given by Algorithm 1. Due to linearity

assumption of the forward model (13), we can leverage the standard Gaussian regression

in addition to the non-centered reparametrization. This procedure has been proposed

in [16] for general deep Gaussian fields. Here, we adapt this algorithm for our Galerkin

method. The resulting algorithm is a Metropolis within Gibbs type [58] where the

Fourier coefficients {uj}, j = 0, . . . , J − 1 are sampled using the pCN algorithm via

reparametrization (17), and the Fourier coefficients for the last layer uJ are sampled

directly. The detail is given as follows. By marginalization of uJ−1, we can write

P(duJ |y) =
∫
P (duJ | uJ−1,y)P (duJ−1 | y) . Furthermore, from the standard Gaussian

regression, we can sample directly from P(duJ |uJ−1,y) by using:

V (uJ−1,y) :=

(
E−1/2H

L(uJ−1)

)†((
E−1/2y

0

)
+ ṽ

)
, (21)

uJ−1 =Ũ(wJ−1, ·) ◦ · · · ◦ Ũ(w0,u−1),

ṽ ∼N(0, I).

Writing y = HL(uJ−1)−1wJ + e, the conditional probability density of y given

uJ−1 is given by p(y|uJ−1) = N(y|0,HL(uJ−1)−1L(uJ−1)−>H> + E). Let w̄ =

(w0, . . . ,wJ−1). To obtain samples from P(duJ−1|y) we can use reparametrization (17)

and Algorithm 1 to sample from P(dw̄|y). The probability distribution P(dw̄|y) is given

as follows:

P(dw̄|y) ∝ exp
(
−Ψ̃(w̄,y)

)
P(dw̄), (22a)

Ψ̃(w̄,y) := Ψ (U(w̄),y) =
1

2
‖y‖2

Q +
1

2
log det(Q), (22b)

Q =HL(uJ−1)−1L(uJ−1)−>H> + E. (22c)

To sample from P(dw̄|y) using Algorithm 1, we use J − 1, and Ψ̃ for J and Φ̃,

respectively.
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Algorithm 1: preconditioned Crank–Nicolson algorithm.

Input : J,w,y, Φ̃(w,y)

Output: accepted, w

accepted = 0

draw w′ ∼ N(0, I)

w̃ =
√

1− s2w + sw′

logRatio = Φ̃(w,y)− Φ̃(w̃,y)

draw ω ∼ Uniform[0, 1]

if logRatio > ln(ω) then

w = w̃

accepted = 1

It is worth noting that the proposed approach could also be extended to nonlinear

measurement models. However, a few changes need to be made. First, for a nonlinear

forward problem h : L2(Ω)→ Rm, we from a composition h◦F−1(uJ), where F−1 is the

inverse Fourier transform. Secondly, the potential function Φ(uJ ,y) in (14) needs to be

replaced with Φ(uJ ,y) := 1
2

∥∥E−1/2(y − h ◦ F−1(uJ))
∥∥2

. Using this new potential, we

could come up with equivalent expressions to ones given in (21) and (22).

4.2. Computational Cost

We need to estimate the computational cost in generating one sample by the proposed

MCMC algorithm. For this purpose, we fix the following numbers: J , n, d, and m.

Recall that we have the following relation N̄ = 2N + 1 = (2n + 1)d, where N is the

total number of the Fourier basis functions. Suppose that we would like to produce an

estimate of the unknown in N̄o = (2no + 1)d points, for some no > n. We will estimate

the computational complexity from a naive implementation of this algorithm without

considering possible optimizations (e.g., parallelization) as it is beyond the scope of this

article.

First, we need to generate w0, . . . ,wJ , which has a negligible cost compared to the

rest of linear algebraic evaluations. Then we need to evaluate Fourier coefficients uj for

each layer. The computational cost to obtain u0 in (16a) is cheap since L0 is a fixed

diagonal matrix. For the remaining layers, let us now examine the cost to calculate

L(uj−1) for j = 1, . . . , J . Based on (4) we need to evaluate the following steps:

(i) Inverse Fourier transform of uj−1, which costs O(N̄o log(N̄o)) by IFFT.

(ii) Two element-wise evaluations of nonlinear function κ(uj−1)γ.

(iii) Two Fourier transforms of κ(uj−1)γ, which cost O(N̄o log(N̄o)) by FFT.

(iv) Forming of MN in (3), which is only a matrix element assignment with two for

loops.
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(v) One matrix addition O(N̄2) as well as one dense matrix and diagonal matrix

multiplication, which totally cost O(N̄2), and one scalar and matrix multiplication

of cost O(N̄2).

Therefore, the computational cost to evaluate L(uj−1) for j = 1, . . . , J is O(JN̄2).

To obtain the Fourier coefficients uj, we use a linear algebraic solver to evaluate

L(uj−1)−1wj. This computation costs O(N̄3) [59]. Performing this computation for

j = 0 until J − 1 translates to O(JN̄3). For the last layer, we need to solve

the least squares problem (21), which has the complexity of O((m + N̄)N̄2) [59],

assuming that the E−1H and E−1y are precomputed, and the least squares problem

is solved via QR factorization and triangular solver. The last part is to compute

the equation (22). To compute Q in (22c), we need O(N̄2m) + O(N̄3) to evaluate

Z = L(uJ−1)−>H>, and then we need O(m2N̄) to evaluate Z>Z + E. Then we use QR

factorization to compute the log determinant and the weighted norm terms, which cost

O(m3). Hence, using the assumption that the ratio % = N̄o/N̄ is not too big so that

O(N̄o log(N̄o)) ≈ O(%N̄ log(N̄)) and m ≤ N̄ , the total computational cost for generating

one sample is O(JN̄3).

5. Numerical results

Now, we present examples of Bayesian inversion using a multi-layer Gaussian prior

presented in the previous section. Our main focus in this section is to show the

effectiveness of the proposed finite-dimensional approximation method for selected

examples. Therefore, we will not discuss the properties of the MCMC algorithm used to

generate the samples as they are based on the MCMC algorithms described in [60, 16].

We aim at acceptance ratio between 25–50%, which is obtained by tuning the pCN

step size s in Algorithm 1. Our experience in the numerical implementations below

indicates that the MCMC algorithm based on the pCN and non-centered algorithm is

quite robust. For one and two hyperprior layers implementation, the step size s does

not need to be extremely small. The step sizes s in the first and second examples are

varying around 10−1 to 10−3.

Depending upon the characteristic of the unknown, such as the presence of

discontinuities and whether the length scales of the unknown are varied locally, we

advise to choose the number of the hyperprior layers as low as possible and only opt

to a higher number if a lower number gives an unsatisfactory result. The reason is

that with the addition of the hyperprior layers, the number of the Fourier coefficients

increases linearly. This will greatly increase the mixing time for the MCMC algorithm.

5.1. Continuous-time random processes with finite-time discrete measurements

Let us consider the application of the proposed technique to address the non-parametric

denoising of two piecewise smooth signals. The first test signal is a rectangular shape

signal where the value is zero except on interval [0.2, 0.8]. The second test signal is a
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Rectangle Bell-Rectangle

J L2 error PSNR L2 error PSNR

1 1.044 24.325 1.527 21.603

2 0.922 25.605 1.475 21.801

Table 1. Quantitative performance comparison of a shallow Gaussian fields prior

inversion for one dimensional signal in Section 5.1.

combination between a smooth bell shaped signal and a rectangular signal [12]:

υrect(t) =

{
1, t ∈ [0.2, 0.8],

0, otherwise.
, υbell,rect(t) =


exp

(
4− 1

2t−4t2

)
, t ∈ (0, 0.5),

1, t ∈ [0.7, 0.8],

−1, t ∈ (0.8, 0.9],

0, otherwise.

(23)

Previously, in [28], for J = 1 and with the unknown signal υbell,rect(t), we have

demonstrated that upon increasing the number of the Fourier basis functions, the L2

error between the ground truth and the posterior sample mean decreased significantly.

In this section, we will compare the estimation results using one hyperprior and two

hyperprior layers respectively. To allow high variation near points of discontinuities, the

length-scale of υ is expected to be smaller around the discontinuities than the rest of

the domain. We take measurement of on one dimensional grid of 28 points and set

the standard deviation of the measurement noise to be 0.1. The proposed algorithm

is tested with N = 26 − 1. After estimation, we reconstruct the signal using inverse

Fourier transform with a finer grid with 28 points equally spaced between zero and one.

We take ten million samples for each MCMC run.

To have a fair comparison, we use the same measurement record for each run

with different J . Figures 2 and 3 show the reconstructed signals and their respective

length-scale estimations. It can be clearly seen that the addition of another hyper

prior layer improves the reconstruction result for the unknown signals. For J = 2,

although there are no sudden drops near the points of discontinuities, the length-scale

value is sufficiently high in the a smooth part of υ signal, and substantially low near

the points of discontinuities. This variation translates to a better smoothness detection,

as can be seen in Figures 2a, 3a, 2c, and 3c. In contrast, Figures 2b and 3b show that

when J = 1, the posterior sample means are considerably overfitting the data on the

smooth part of the signals. Although the length-scale drops suddenly near the points

of discontinuities of the ground truth υ, the variation of ` is limited (see Figure 2d and

3d). This contributes to a decreased smoothness in the smooth region of the sample

mean. The quantitative performance is given in Table 1.
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Figure 2. Simulation results of example in Section 5.1. Figures 2a, 2c, 2b, and 2d

describe the lowest random fields from u for J = 2 and J = 1, and their length-scales.

In Figure 2a and 2b, the blue and the black lines are the mean Fourier inverse of the

samples in the 95 % confidence shades of the lowest layer and the original unknown

signals respectively. The blue line and the shades in the remaining figures are sample

means and 95 % confidence interval of the estimated length-scales.

5.2. X-ray tomography

Now we apply the methods developed to the 2D X-ray tomography reconstruction

problem. For the tomography problem, the linear functional is given by a line integration

known as the Radon transform [61, 62, 39, 63].

Assume that the field of interest has support in the a circle with center at (1/2, 1/2)

and radius equal to half in the two dimensional Euclidean space. Also recall that at

a distance r with detection angle θ, we can write the Radon transform of the Fourier

basis φk = exp
(
i2πk>x

)
as below

〈φk, Hr,θ〉 =

∫
Ω

χ(x− 1

2
, y − 1

2
) exp

(
i2πk>x

)
δ(r − ((x− 1

2
) cos θ + (y − 1

2
) sin θ))dx,
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Figure 3. Similar to Figure 2, with the unknown is vbell,rect .

where χ(x, y) is an indicator function with support in (x2 + y2 < 1
4
). Introducing a

rotation matrix Rθ, and p = [p q]>, and x′ = x− 1
2
,y′ = y − 1

2
, p = Rθx we can write

〈φk, Hr,θ〉 = exp(iπ(kx + ky))

∫
Ω

χ(x′, y′) exp
(
i2π(Rθk)>p

)
δ(r − p)dp.

Using the assumption we have mentioned and k̃ = [k̃x k̃y]
> = Rθk, we end up

with 〈φk, Hr,θ〉 = exp(iπ(kx + ky)) exp(i2πk̃xr)
1
πk̃y

[sin(2πk̃y

√
1
4
− r2)]. Notice when

k̃y = 0 we replace the above equation with its limit, that is, limk̃y→0〈φk, Hr,θ〉 =

2
√

1
4
− r2 exp(iπ(kx + ky)) exp(i2πk̃xr).

We modify the MCMC implementation used for the previous one-dimensional

example to suit to a GPU architecture. For our test comparison in X-ray tomography,

the Shepp–Logan phantom with 511 × 511 resolution is used (see Figure 4a). We will

use this phantom to evaluate the proposed method.

We take 45 sparsely full projections out of 180 degrees using parallel beams. The

measurement is corrupted by a white Gaussian noise with standard deviation 0.2. Due
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Shallow-GP FBP Tikhonov

PSNR 22.246 23.399 21.673

L2 Error 44.795 47.156 42.145

Table 2. Quantitative performance comparison of a shallow Gaussian field Bayesian

inversion for the tomography application in Section 5.2.

to the restriction in GPU memory, J is set to one. To excel the speed Fourier transform

and inverse Fourier transform computations, we use FFT and IFFT routine from CUPY

[64]. For a performance comparison, we perform the filtered back projection (FBP) on

sinogram using iradon routine from Skimage [65]. A Tikhonov regularization is also

used to reconstruct the Fourier coefficients of the unknown field uJ [66]. The Tikhonov

regularization parameter λ is selected to be 5× 10−2. We set the Fourier basis number

n to 31. The total number of parameter for each layer is 1985, which makes the total

number of parameters for all layers 3970. The total number of parameters in this

example is greatly reduced compared to [67] where each pixel in the target image count

as a parameter, that is, for our example it translates to 261121 parameters.

Figure 4 shows that compared to the FBP and Tikhonov regularization

reconstructions, the posterior sample mean of our MCMC method resulted in an image

with less streak artifact and noise. The features of the phantom appear much more clear

compared to those on the FBP and Tikhonov reconstructions. As examples, examine

the mouth parts, dark circles between eyes and at the forehead, and the two eyes are

both relatively much more clear than the other two. Nonetheless, since we set n only

31, the edge of phantom face which has very high values is not fully recovered as much

as the FBP reconstruction. The posterior mean produces a lower L2 error (44.795)

compared to the FBP reconstruction (47.156), but higher than Tikhonov regularization

method, (42.145). However, it has a slightly higher PSNR, 22.246 compared to Tikhonov

regularization method, 21.673. Ideally we could double n in our proposed Bayesian

method to get a much better reconstruction. However, it is not possible to accomplish

this within our current setup due to restrictions in the GPU memory. We can fairly

conclude that the use of a shallow Gaussian field prior with n = 31 resulted in a highly

reduced amount of artifact at the expense of light blur at the edge. As in the one

dimensional example, adding another Gaussian field layer might help to increase the

sharpness of the edges in the X-ray tomography application.

6. Conclusion

We have presented a multi-layered Gaussian-field Bayesian inversion using a Galerkin

method. We rigorously showed that our approach enjoys a nice convergence-in-

probability property to the weak solution of the forward model. We achieved this

result by establishing an upper bound for the square root of the precision operator of

the Gaussian field L(ui−1). Then, we showed for the dimension of field d ≤ 3 that there
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Figure 4. Simulation result of a shallow SPDE with J = 1 and n = 31, where the

number of projections is 45. Figures 4b and 4d show posterior means of field υ and

the Tikhonov regularization result using λ = 5× 10−2, while Figure 4c shows the FBP

reconstruction.

is an upper bound for the error between L(ui−1) and L(uNi−1). The desired result was

then shown via a uniform tightness result and Hölder continuity of the original weak

solution. As a consequence, we can guarantee that the approximated prior and posterior

probability distribution converges weakly to the original prior and posterior, respectively.

This implies weak convergence of the joint posterior distribution of the Gaussian field,

and hence gives an assurance that our proposed method is well defined and robust upon

increasing the number of Fourier basis functions. Generalization of this result to the

case d > 3 requires further technical care. To achieve a reduced computational time

without sacrificing too much accuracy, in the future, it will also interesting to use the
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proposed Bayesian inversion method in combination with variational Bayesian methods.

We showed, numerically, for one-dimensional denoising problem that we can achieve

joint smoothing and edge-preserving inversion at the same time by using two hyperprior

layers and non-centered version of the preconditioned Crank–Nicolson algorithm. For

the X-ray tomography problem, with a single hyperprior layer and a very small number

of Fourier basis (n = 31), the posterior sample mean of our proposed approach gives

an image with less streak artifact and noise compared to the FBP and Tikhonov

regularization reconstructions. Although traces of streak artefact and edge blurring

still present, the L2 error and PSNR of our proposed method sit in the middle of those

from the FBP and Tikhonov regularization. Furthermore, adding another Gaussian

field layer might help to increase the sharpness of the edge in the X-ray tomography

application. One future outlook is to apply the method on a real data.

Acknowledgments

The authors would like to thank Academy of Finland for financial support (application

numbers: 326240, 326341, 334816, 321891, 321900, and 314474).

References

[1] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems. Springer, 2004.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press

Ltd, 2005.

[3] M. J. Heaton, A. Datta, A. O. Finley, R. Furrer, J. Guinness, R. Guhaniyogi, F. Gerber, R. B.

Gramacy, D. Hammerling, M. Katzfuss, F. Lindgren, D. W. Nychka, F. Sun, and A. Zammit-

Mangion, “A case study competition among methods for analyzing large spatial data,” J. Agr.

Biol. Envir. St., vol. 24, pp. 398–425, dec 2018.

[4] C. J. Paciorek and M. J. Schervish, “Nonstationary covariance functions for Gaussian process

regression,” in Adv. Neur. Inf. Proc. Sys., pp. 273–280, 2004.

[5] G.-A. Fuglstad, D. Simpson, F. Lindgren, and H. Rue, “Does non-stationary spatial data always

require non-stationary random fields?,” Spat. Stat., vol. 14, pp. 505–531, nov 2015.

[6] C. J. Paciorek, Non-Stationary Gaussian processes for regression and spatial modelling. PhD

thesis, 2003.

[7] E. Snelson, Z. Ghahramani, and C. E. Rasmussen, “Warped Gaussian processes,” in Adv. Neur.

Inf. Proc. Sys., pp. 337–344, 2004.

[8] P. D. Sampson and P. Guttorp, “Nonparametric estimation of nonstationary spatial covariance

structure,” Journal of the American Statistical Association, vol. 87, pp. 108–119, mar 1992.

[9] P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.

[10] A. Ray and D. Myer, “Bayesian geophysical inversion with trans-dimensional Gaussian process

machine learning,” Geophysical Journal International, vol. 217, pp. 1706–1726, feb 2019.

[11] F. Lindgren, H. Rue, and J. Lindström, “An explicit link between Gaussian fields and Gaussian

Markov random fields: the stochastic partial differential equation approach,” J. Royal Stat. Soc.

B, vol. 73, no. 4, pp. 423–498, 2011.

[12] L. Roininen, M. Girolami, S. Lasanen, and M. Markkanen, “Hyperpriors for Matérn fields with

applications in Bayesian inversion,” Inverse Probl. & Imaging, vol. 13, no. 1, pp. 1–29, 2019.



Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion 27

[13] K. Monterrubio-Gómez, L. Roininen, S. Wade, T. Damoulas, and M. Girolami, “Posterior inference

for sparse hierarchical non-stationary models,” Comp. Stat. & Data Anal., p. 106954, mar 2020.

[14] A. C. Damianou and N. D. Lawrence, “Deep Gaussian processes,” Artif. Intelli. & Stat., 2013.

[15] D. Duvenaud, O. Rippel, R. P. Adams, and Z. Ghahramani, “Avoiding pathologies in very deep

networks,” Artif. Intelli. & Stat., 2014.

[16] M. M. Dunlop, M. A. Girolami, A. M. Stuart, and A. L. Teckentrup, “How deep are deep Gaussian

processes?,” J. Mach. Learn. Res., vol. 19, no. 54, pp. 1–46, 2018.

[17] A. M. Stuart, “Inverse problems: A Bayesian perspective,” Acta Numerica, vol. 19, pp. 451–559,

2010.

[18] M. Dashti and A. M. Stuart, “The Bayesian approach to inverse problems,” in Handbook of

Uncertainty Quantification, pp. 311–428, Springer International Publishing, 2017.

[19] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, “MCMC methods for functions:

Modifying old algorithms to make them faster,” Statist. Sci., vol. 28, no. 3, pp. 424–446, 2013.

[20] K. J. H. Law, “Proposals which speed up function-space MCMC,” J. Comp. & Appl. Math.,

vol. 262, pp. 127–138, 2014.

[21] A. Beskos, M. Girolami, S. Lan, P. E. Farrell, and A. M. Stuart, “Geometric MCMC for infinite-

dimensional inverse problems,” J. Comp. Phys, vol. 335, pp. 327–351, 2017.

[22] D. Rudolf and B. Sprungk, “On generalization of the preconditioned Crank-Nicolson Metropolis

algorithm,” Found. Comp. Math, vol. 18, pp. 309–343, 2018.

[23] M. Hairer, A. M. Stuart, and S. J. Vollmer, “Spectral gaps for a Metropolis-Hastings algorithm in

infinite dimensions,” Ann. Appl. Probab., vol. 24, pp. 2455–2490, dec 2014.

[24] V. Chen, M. M. Dunlop, O. Papaspiliopoulos, and A. M. Stuart, “Dimension-robust MCMC in

Bayesian inverse problems,” arXiv, 2018.

[25] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld, “A general framework for the parametrization
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[35] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, “Solving inverse problems using data-driven

models,” Acta Numerica, vol. 28, pp. 1–174, may 2019.

[36] M. A. Nawaz, Efficient probabilistic inversion of geophysical data. PhD thesis, 2019.

[37] M. Lassas and S. Siltanen, “Can one use total variation prior for edge-preserving Bayesian

inversion?,” Inverse Problems, vol. 20, pp. 1537–1563, aug 2004.

[38] J. Kaipio and E. Somersalo, “Statistical inverse problems: Discretization, model reduction and



Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion 28

inverse crimes,” J. Comp. & Appl. Math., vol. 198, pp. 493–504, jan 2007.

[39] F. Natterer, The Mathematics of Computerized Tomography (Classics in Applied Mathematics).

SIAM: Society for Industrial and Applied Mathematics, 2001.

[40] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation. Society for

Industrial and Applied Mathematics, 2005.

[41] D. Li, J. Svensson, H. Thomsen, F. Medina, A. Werner, and R. Wolf, “Bayesian soft X-ray

tomography using non-stationary Gaussian processes,” Rev. Sci. Inst., vol. 84, p. 083506, aug

2013.

[42] C. Plagemann, K. Kersting, and W. Burgard, “Nonstationary Gaussian process regression

using point estimates of local smoothness,” in Machine Learning and Knowledge Discovery in

Databases European Conference, ECML PKDD 2008 Antwerp, Belgium, September 15-19, 2008

Proceedings, Part II, 2008.

[43] Z. Purisha, C. Jidling, N. Wahlström, T. B. Schön, and S. Särkkä, “Probabilistic approach to
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