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A Computationally Effective Method for Iron Loss
Estimation in a Synchronous Machine from a Static

Field Solution
Md Masum Billah, Floran Martin, and Anouar Belahcen, Senior Member, IEEE

Abstract—In this paper, a computationally effective iron loss
calculation method for synchronous machines is presented. The
method is based on a single static 2D finite element field solution
in the machine cross-section, which makes it much faster than
the one based on the time-stepping solution. The developed
method is applied to a salient pole synchronous machine, and the
computational accuracy is validated against the time-stepping
method. The proposed iron losses computation method showed a
fair accuracy and a considerable speed-up of the computations.
It can be an excellent alternative for the iron losses estimation
in the optimization procedure of synchronous machines, where
a considerable amount of finite element solutions needs to be
carried out. Besides the losses comparison, local reconstruction
of the time dependency of other quantities such as the magnetic
vector potential and the magnetic flux density is reported for a
better understanding of the method.

Index Terms—dynamic field solution, finite element method,
iron losses, synchronous machine, static field solution, time-
stepping method.

I. INTRODUCTION

OWING to the increasing energy demand, highly ef-
ficient synchronous machines play a crucial role in

energy saving by reducing energy consumption. Like other
electrical machines, power losses are a common issue in a
synchronous machine, which increases the temperature and
degrades the performance by affecting the maximum output
power. Besides, extreme temperature rise can lead to insula-
tion failure, consequently, decrease the life expectancy of a
synchronous machine. Power losses can be segregated into
Joule losses in the winding of the machine, the iron losses
in the core of the machines, the frictions, and mechanical
losses, and the permanent magnet losses, which are due to
eddy currents in these parts if any. Usually, the Joule and
friction losses can be estimated from static quantities, such
as the rotational speed and the supply currents, but the iron
and permanent magnet losses require the temporal and spatial
distribution of the magnetic flux density in the corresponding
parts of the machine.
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The magnetic flux density in the electrical machine is
three-dimensional, and solving a three-dimensional problem
is still laborious. The solution becomes much easier if the
problem domain is simplified to the two-dimensional model
where the machine geometry and material equations are
independent of the coordinate parallel to the machine shaft,
i.e., z-coordinate. A detailed description of the 2D finite ele-
ment method and its application on solving two-dimensional
electromagnetic fields problem is demonstrated in [1] among
others. Moreover, the effects of armature reaction and the
magnetizing field, the slotted nature of the machine, and the
highly distorted magnetic field appearing from the permanent
magnet cause the non-sinusoidal and time-varying distribu-
tion of the magnetic flux density at different locations of
the machine’s core. As a result, the solution of the magnetic
flux density distribution is usually achieved for each time
step through the time-stepping method [2]. In addition, the
magnetic flux density in the rotating machine is not a single
frequency component anymore and contains higher frequency
components.

A common practice of the iron losses computation is to
obtain the flux density distribution from the time-stepping
finite element simulation and calculate the losses in the post-
processing stage through the Fourier decomposition of the
flux density waveform over one period [3], [4]. The solution
accuracy of the time-stepping method depends on the size
of the time step, and a smaller step size usually ensures
better accuracy. Moreover, the steady-state characteristics
are often desirable for the iron losses computation, which
requires to run the machine at least for a few electrical
periods. A suitable time resolution selection for the dynamic
analysis and the effect of it on the solution accuracy is a
separate topic, and no exact recommendation was found.
For instance, the number of time steps per period and the
number of electrical periods were used by [5], [6] 300-1000
steps per period and 2-10 electrical periods, respectively.
However, all these factors lead to high computational cost
for achieving the dynamic solution; consequently, the iron
losses computation from this solution. The difference is more
visible when the iron losses computation from the dynamic
solution required 35.07 s, and from a single static simulation
needed only 0.512 s. Despite the high computational cost,
the time-stepping method is more conventional and still
a popular choice for the iron losses computation. This is
probably because the conventional loss computation method



provides better accuracy and also stays productive as long as
the number of computations remains in a reasonable range.
However, the situation is different when an excessive number
of computations are required, e.g., machine optimization,
which turns this method into unprofitable by increasing the
simulation time. In such a case, the computation of the
iron losses from a time-efficient static solution is more than
justified.

Early on, a series of thirty static field solutions were com-
puted in [7] by moving the rotor at one slot pitch interval over
one electrical period, and the resulting field solutions were
used to estimate the stator core losses. A similar approach
has been used in [8] with a smaller number of snapshots,
i.e., static field solutions than [7]. The method presented in
[7], [8] was extended by [9] in order to take the rotor core
losses into account. A simplified, i.e., surrogate finite element
method is introduced in [10] to reduce the requirements of
the number of successive snapshots, i.e., static field solu-
tions. However, the method presented in [10] is particularly
developed for the interior permanent magnet machine with
concentrated, i.e., non-overlapping coils. Another snapshot-
based computationally effective finite element model is devel-
oped in [11] and applied for the optimization process of the
interior permanent magnet machine. The proposed methods
in [10], [11] significantly reduced the requirements of the
number of static simulations, i.e., 2-5 solutions required,
respectively for the iron losses computation compared to the
methods presented in [7], [8], [9]. A major drawback of these
snapshot-based methods is that accuracy and precision are
highly influenced by the number of static simulations taken
into consideration. Adding more static field solutions may
make sure better accuracy; however, it also increases the
computational cost. Also, no specific benchmark is noticed
for the exact requirements of the number of static simulations.

An ultrafast static field computation method has been
presented in [5], by coupling the static field equations and
space vector model within the same finite element solution.
The method has given accurate results from a single static
simulation compared to the measurement and time-stepping
method. Modeling a fast and accurate static field computation
method is an independent topic of research by itself, which
is out of the scope of this paper. Instead, our main goal is
to develop the iron losses computation method by using the
readily available static field computation method presented
in [5], which can be an alternative method of the iron losses
computation from the dynamic field solution in many appli-
cations. In this paper, the accuracy and computational cost
of the developed method are validated with the conventional
time-stepping method extensively.

The presented iron losses computation method in this
paper outperforms the previously developed computationally
effective static iron losses calculation methods in [7], [8], [9],
[10], [11] several ways. Here, the iron losses are computed
from a single static simulation, and no rotor motion is taken
into account. Hence, the accuracy of this method is not
restricted to the requirements of the number of static sim-

ulations. Furthermore, this paper solely and comprehensibly
deals with developing an ultrafast iron loss computation tech-
nique, which can overcome the above-mentioned snapshot-
based methods in terms of computational cost and also can
compete with them in terms of accuracy. Moreover, the
proposed iron losses computation method is not limited to
a particular synchronous machine and applicable to any kind
of synchronous machine.

II. METHODOLOGY

A. Iron Loss Model

In this proposed method, the iron losses will be computed
from the Fourier decomposition of the flux density waveform
over one period. A suitable and accurate iron loss model
requires to compute the losses from the peak values of
the flux density at each harmonic component. Moreover,
the selected iron loss model can be easily integrated with
the static or dynamic finite element solution in the post-
processing stage. The empirical iron loss models are fast, easy
to implement, and applicable for the iron losses estimation
roughly [12]. However, many researchers have extended the
empirical iron loss models and estimated the iron losses
conventionally with relatively good accuracy [13], [14]. The
modified Jordan loss separation model presented in [15] is
adopted for the iron losses computation

Phys =

∫
Vc

(

N∑
n=1

Chys(nωs)B̂
2
n)dV (1)

Ped =

∫
Vc

(

N∑
n=1

Ced(nωs)
2B̂2

n)dV (2)

where Phys and Ped represents the hysteresis loss and
eddy current loss, respectively. Chys and Ced expresses the
hysteresis and eddy current loss coefficients, ωs stands for
the angular frequency of the supply, Vc is the volume of
the stator iron core, and B̂n is the peak flux density value
at nth harmonic components. However, the modified iron
loss model in Equations 1, and 2 also suffers from some
shortcomings. For instance, two-loss coefficients Chys and
Ced were computed from the Epstein frame test, and no
differentiation was made between the alternating and rota-
tional fields [16]. Moreover, the minor hysteresis loops were
not taken into consideration properly. In the statistical loss
segregation method, the classical eddy current loss and excess
loss are presented separately. However, the computation of
the excess loss coefficient through the Epstein frame test is
difficult as it does not allow us to identify the difference
between the eddy current due to the classical loss and
excess loss [17]. Alternatively, a two-term iron loss separation
method is developed as shown in Equations 1, and 2 where
the classical eddy current loss and excess loss are combined
and formed a global eddy current loss, Ped in Equation 2. It
can be noted that the same iron loss model is also used to
compute the losses through the time-stepping method. An in-
house 2D finite element solver software FCSMEK has been



developed by the electromechanics research group at Aalto
University and is used to compute the iron losses from the
proposed method and the conventional time-stepping method.

B. Time Dependence of the Flux Density from the Static
Analysis

In finite element method, the flux density B values are
computed natively in the x-y coordinates; thus, the actual
iron losses are calculated from the flux density components
Bx and By values. In practice, the flux density B is solved by
assuming the two-dimensional approximation where the flux
density lies only in (x, y) plane in Cartesian coordinates or
(r, φ) plane in cylindrical coordinates and does not depend
on the z-axis. The flux density components Bx and By

can be calculated from the partial derivation of magnetic
vector potential values with respect to the x-y coordinates.
The existence of space harmonic components in case of
sinusoidal voltage supply in the electrical machine affects
the flux density waveform and influence to depend on time.
However, the obtained flux density B values from a static
field solution is independent of time, i.e., static. The time
dependence of the static flux density waveform needs to be
introduced in order to compute the iron losses. In FCSMEK,
the stator finite element mesh is constructed by multiplying
the slot pitch mesh. Thus, the number of elements in one slot
pitch mesh is repeated to the next slot pitches, and elements
from one slot pitch to another has the same position and
size. Therefore, the space variation of the static flux density
waveform both for the stator yoke and teeth over one period
can be achieved by selecting the elements at one slot pitch
interval. The stator slot pitch is computed as follows

θs =
2π

Qs
(3)

where θs is the stator slot pitch, and Qs denotes the total num-
ber of stator slots. The time dependence of the flux density
waveform can be achieved by assuming that the flux density
waveform is moving with the fundamental angular frequency
ω and time t. The time step for the time dependence is
computed as follows

Δt =
Δθsp

ω
(4)

where p denotes the number of pole pairs, θs is the stator slot
pitch, and ω is the supply angular frequency. At any instant
of angular distance θ and time t, the displacement of the
moving flux density with initial position θo can be determined
as θ = θo + ωt. With respect to the initial position θo and
time to, the displacement of the flux density waveform can
be written as

B(θ, r, t) = RB(θ − ωt, r, 0) (5)

where θ is the angular position of the point at which the flux
density is estimated and r its radial position from the rotor
midpoint. R is the rotation matrix given in Equation 6.

R =

[
cos θ − sin θ

sin θ cos θ

]
(6)

Fig. 1. Element selections for the flux density waveform formation over
the solution region in the static analysis.

It should be noted that the radial dependency does not need
to be solved in Equation 5. It is intrinsic within the time
dependency reconstruction.

C. Flux Density Waveform Formation in Static Analysis

The process of element selections in the stator yoke at
each slot pitch interval is depicted in Figure 1. In such a
case, the number of stator slots and the number of points in
the flux density waveform should be equal. Similarly, the flux
density waveform in the stator teeth is formed by choosing
the elements at one slot pitch interval. In such a way, elements
to elements flux density waveform are constructed at each slot
pitch interval over two pole pitches to calculate the average
iron losses from a closed cycle of the flux density waveform
using the Equations 1, and 2. The same size element in each
stator slot pitch meshes from 2 to 15, i.e., represents full slot
pitch is found at a distance of one slot pitch interval. On the
other hand, the element in positions 1, and 16 represent half
of the slot pitch. The flux density waveform as depicted in
Figure 2 was formed by specifying an observation point at
one element, i.e., position 1, and varying by one slot pitch
from 1 to 16 as shown in Figure 1. As one observation
point was specified in each element; hence, no elements were
missed. As a result, the flux density points are evenly spaced
in Figure 2 even though the element in positions 1, and
16 are different compared to other selected elements. Such
variation over the solution region in Figure 1 provides the half
cycle of the flux density waveform. A complete cycle of flux
density waveform was formed in Figure 2 by mirroring the
obtained half cycle of the flux density waveform due to the
symmetry of the solution region. A problem was identified
during the computation as the element in positions 1, and
16 have different sizes compared to other slot pitch meshes,
i.e., 2 to 15. For this reason, the total number of elements in
this slot pitch is not equal compared to the other slot pitch
meshes. However, the same number of elements in each slot
pitch mesh is required when the elements to elements flux



TABLE I
COMPUTED PARAMETERS COMPARISON BETWEEN THE DYNAMIC AND

STATIC ANALYSIS.

Parameter Comp.dynamic Comp.static

Voltage 3150 V 3150 V
Current 2285 A 2274 A
Frequency 50 Hz 50 Hz
Active power 12.46 MW 12.407 MW
Shaft power 12.42 MW 12.69 MW
Air-gap torque 118.6 kNm 121.2 kNm
Power factor 0.97 0.99
Total elements 2026 2026
Total nodes 4113 4113
Comp. time 35.07 s 0.512 s
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Fig. 2. Space variation of the magnetic flux density over one period in
the case of static and dynamic analysis, at the same radial distance from the
rotor midpoint.

density waveform need to be formed in the actual iron losses
computation. Any asymmetrical slot pitch mesh can result in
erroneous results. Therefore, the actual iron losses calculation
was continued without taking this slot pitch mesh. Moreover,
the recommended integration points in the case of quadratic
triangular elements and the corresponding flux density values
were considered in the actual iron losses computation.

III. MODEL APPLICATION IN SYNCHRONOUS MACHINE

A. Studied Synchronous Machine and Simulation Parameters

The proposed method has been applied to a 12.5 MW
salient pole synchronous machine, which consists of 90 stator
slots and six rotor poles. The second-order triangular element
having six nodes has been chosen by trading off between
the computation time and accuracy. The finite element mesh
of the smallest symmetry section is shown in Figure 1,
which is used in the simulation. The information about the
total elements and nodes of the solution sector is listed in
Table I. The machine was supplied from a voltage source
and simulated at a specific operating point. The rotor angle
and the field winding voltage required for this operating

point was computed through an algorithm developed by the
electromechanics research group at Aalto University.

The static finite element solution is achieved through
solving the circuit equations of the stator winding based on
the two-axis model, and the field equations assuming the
steady-state condition. Therefore, the flux density induced
in rotor parts is mainly DC in nature, and the complete
iron loss is contributed by the stator core in the case of
a synchronous machine. Thus, the iron losses only in the
stator core are computed by the proposed method and the
conventional method for a fair comparison. The non-linearity
of the system is solved using the Newton-Raphson iteration
method. It is noticeable that such a coupling approach is
only possible if the flux linkage distribution is assumed to
be sinusoidal variation with time. The machine parameters
obtained from a single static simulation are illustrated in
Table I.

The dynamic analysis was continued with the same
parameters used in the static analysis. The simulation was
carried out for 300 steps per period, and four periods were
studied to obtain the steady-state operating characteristics. A
small step size was chosen for better accuracy, which may
increase the computation time slightly. Thus, the user needs to
be compromised between the accuracy and the computation
cost. The time was discretized into a short time interval using
the Crank-Nicholson time-stepping method. The field and
the circuit equations were solved for each successive time
interval. The non-linearity of the system equations was solved
by the Newton-Raphson iteration method. The operating
parameters acquired from the dynamic analysis are tabulated
in Table I.

It can be seen in Table I that the operating parameters
obtained from the static analysis and the dynamic analysis are
in relatively good agreement. Some of the parameters such as
the terminal current, air-gap torque, shaft power, and power
factor were computed from the static analysis slightly differ-
ent than the dynamic analysis. This is because the steady-
state parameters were obtained in the dynamic analysis. On
the other hand, the parameters were calculated in the static
analysis at the initial state of analysis based on the two-axis
model by assuming the steady-state condition. Therefore, the
static computation may overestimate or underestimate these
parameters slightly.

B. Magnetic Flux Density and Harmonics Analysis

Figure 3 shows the flux contour lines and the flux
density distribution of the smallest symmetry section in the
static analysis. The space distribution of the radial Br and
tangential Bφ components of the flux density values in the
stator yoke and teeth at given radial positions from the rotor
midpoint over one period for both methods are presented
in Figure 2. The formation of flux density waveform in the
static analysis is already described in Section II-C. The space
distribution of the flux density waveform in the dynamic
analysis was formed by defining the observation points at
one slot pitch interval, and simulation was carried out for



Fig. 3. Flux density distribution of the solution region in the static analysis.

each observation point with 300-time steps per period. The
flux density values were chosen at one specific time from
the number of simulations of each observation point at the
best fitting position. The space variation of the flux density
waveform at different moments in dynamic analysis has the
same magnitude with a phase shift respecting to the flux
density waveform in the static analysis. However, the phase
shift has no effect on the iron losses computation as the
selected iron loss model in Equations 1, and 2 does not
take the phase shift into account. The radial components
of the flux density Br are higher in the stator teeth, and
the tangential components Bφ are more elevated in the
stator yoke. The non-sinusoidal flux density distribution is
noticeable due to the spatial harmonic components present
in the waveform.

The Fourier transformation was performed to analyze the
harmonic components present in the flux density waveform in
Figure 2. The magnitude of flux density B at each harmonic
components was computed, and presented in Figure 4 from
the Fourier components of the radial Br and tangential Bφ

flux density waveform. A significant amount of higher har-
monic components are appeared in the stator teeth compared
to the stator yoke in both methods. The proposed method
suffers from some shortcomings as the consideration of the
number of harmonic components are limited to the number
of stator slots. According to the Nyquist theorem, up to
7th harmonic components can be taken into account for
the iron losses calculation from the sampled waveform in
the static analysis. However, one possibility to overcome
such shortcoming by forming a more dense mesh, hence,
more sampling points can be attained in the flux density
waveform. Moreover, the impact of rotor motion on the
harmonic components were not taken into consideration.

It is mentioned already in Section II-C that the obtained
samples are non-uniformly spaced in both spatial and tem-
poral variation due to miss one slot pitch mesh between
element in positions 1, and 16. The Nyquist-Shannon sam-
pling theorem works perfectly for the samples that are evenly
spaced in time. However, unevenly spaced samples can also
be reconstructed as accurately as possible if the average
sampling rate follows the Nyquist rule, but the signal may
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Fig. 5. Magnetic vector potential Az signal reconstruction from the Fourier
series at different harmonics orders in the case of static analysis: (above) up
to the 5th harmonic ; (below) up to the 7th harmonic.

loss one or two samples. Thus, the investigation of including
the maximum number of harmonic components in the static
loss computation method was carried out by reconstructing
the sampled waveform of a nodal value of the magnetic
vector potential, as shown in Figure 5. The magnetic vector
potential waveform was formed by selecting the nodal value
at a specific node number in the stator tooth and varying by
one slot with the node index number over one period. The
signal reformation up to 5th harmonic components provide
relatively good accuracy. However, a significant distortion
of the reformed signal is noticeable when the signal is
composed of 7th harmonic component due to non-uniform
step size. Thus, the lower harmonic components, i.e., up
to 5th harmonic components, were chosen in the iron losses
computation as shown in Figure 4.

In the case of dynamic analysis, the most significant
harmonic components, i.e., up to 9th are depicted in Figure 4,
and all the harmonic components were taken into account for
the iron losses calculation. No even harmonic components ap-



pear in both the static and dynamic analysis as they cancel out
each other because of the symmetrical flux density waveform.
It can be seen that the flux density per harmonic components
has an almost similar magnitude for both methods in Figure
4.

C. Hysteresis and Eddy Current Loss Components

Hysteresis and eddy current loss per harmonic compo-
nents in both methods are illustrated in Figure 6. Hysteresis
loss is dominating in the fundamental frequency component.
On the other hand, eddy current loss becomes more ruling
at higher-order frequency components as the eddy current
loss is proportional to the square of the harmonic frequency
components. We understand that the flux density decomposi-
tion is more justifiable for the higher frequency components.
However, the proposed method is limited to include the har-
monic components of more than 250 Hz, the reason is already
specified in Section III-B. The higher harmonic components
were checked for the dynamic analysis up to 3000 Hz, and no
significant hysteresis or eddy current loss components were
found more than 450 Hz for the studied machine. Thus, no
harmonic components were reported above 450 Hz.

The total stator iron loss as a contribution of hysteresis
and eddy current loss is shown in Figure 6. The contribution
of hysteresis loss is more in total stator core loss as eddy
current loss is reduced due to the lamination and small
thickness of the stator core sheets. The proposed method has
a relatively good agreement with the time-stepping method.
The loss difference between these two methods is found
at 8.94%. The proposed method is slightly overestimating
the iron losses, especially the losses in the fifth harmonic
component compared to the losses compute from the dynamic
analysis. The reason behind the overestimation is probably
due to the fact that the accuracy of the Fourier coefficients
calculation might drop because of the unevenly spaced sam-
ples. Moreover, less number of points were taken into account
over one period might degrade the overall Fourier analysis
performance as it provides a more accurate result when the
number of samples is increased.

D. Computational Cost

The iron losses computation from a single static field
solution is much faster than the time-stepping simulation.
The iron losses computation from a single static simulation
costs 0.512 s; on the other hand, the time-stepping simulation
requires 35.07 s for the same number of elements and nodes
using an Intel-Xeon 3.4-GHz 16-GB-RAM workstation. The
computation time for both methods is listed in Table I.

E. Effect of Damper Windings, Supply Voltage Phase Shift
and Rotor Angle Variation on Iron Losses

The effect of damper windings on the flux density har-
monic reduction; consequently, the iron losses computation
was studied for the dynamic analysis. The conductivity of the
damper windings was set close to zero, in the case of dynamic

50 150 250 350 450
Frequency [Hz]

0

10

20

30

T
ot

al
 ir

on
 lo

ss
 [

kW
]

hysteresis loss - static
eddy current loss - static
hysteresis loss - dynamic
eddy current loss - dynamic

Static Dynamic
0

10

20

30

40

T
ot

al
 ir

on
 lo

ss
 [

kW
]

Hysteresis loss
Eddy current loss

Fig. 6. Total iron loss comparison between the static and dynamic analysis:
(above) hysteresis and eddy current loss per harmonic components; (below)
contribution of hysteresis and eddy current losses in the total iron loss.

0 1 2 3 4 5
Increment angle [Deg.]

0

10

20

30

40

T
ot

al
 ir

on
 lo

ss
 [

kW
]

static

Fig. 7. Effects of the supply voltage phase shift and the relative angle of
the rotor with respect to the stator slotting on the iron losses computation
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analysis, so that no current can induce in the bars. It was
found that the inactivity of the damper windings significantly
increases the rotor iron losses, particularly rotor eddy current
loss, but there is no such effect noticed in the iron losses of
the stator core for the dynamic analysis.

The effect of the supply voltage phase shift φ, and the
rotor angle θ variation over one tooth pitch on the iron losses
computation from a static field solution was also investigated.
At first, the stator iron losses computed at a specific condition
where the initial phase angle of the supply voltage and the
rotor angle was φ = 0 and θ = 31.9o, respectively. Later,
the phase angle φ was varied from 0o to 5o, and the rotor



angle θ was varied from 31.9o to 36.9o at the one-degree
interval. It was found that the relative rotor position with
respect to the stator slotting does not affect the terminal
voltage, current, and power factor; however, the air gap torque
and the output power is changed slightly. The stator iron
losses are decreased slightly at each interval with increasing
the supply voltage phase shift φ and the rotor angle θ as
illustrated in Figure 7, which is maximum 2.5% compared
to the computed iron losses at the initial position, i.e., φ = 0
and θ = 31.9o; hence, no significant effect was found. We
are aware of the importance of computing the iron losses
at multiple load points. The insignificant dependency of the
proposed method with the variation of the rotor angle with
respect to the stator slotting position increases our belief that
the accuracy of the proposed method will remain stable for
other loading conditions as well.

IV. CONCLUSION

A method of the iron losses computation in a synchronous
machine from a static field solution has been proposed in this
paper. The proposed method has relatively good accuracy
compared to the dynamic analysis based method (8.94%
maximum difference) and showed a high potentiality of the
iron losses computation with a less computation cost over the
conventional time-stepping method. The developed method
can be highly productive and profitable for the iron losses
calculation when an excessive number of computations are re-
quired, such as for machine optimization. Moreover, increas-
ing the computational accuracy of the proposed method can
substitute the time consuming conventional loss computation
method in many applications. The accuracy of the developed
loss computation technique can be improved by reconstruct-
ing the stator mesh, so that, every slot pitch meshes can be
taken into account and forming a more densely mesh in order
to attain more sampling points, which eventually increase the
resolution of the flux density waveform. The utmost goal is
to improve the accuracy of the Fourier decomposition of the
flux density waveform, hence, the iron losses computation,
which is our next step.
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