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Abstract: Decoherence with recurrences appear in the dynamics of the one-body density matrix of
an F = 1 spinor Bose–Einstein condensate, initially prepared in coherent states, in the presence of
an external uniform magnetic field and within the single mode approximation. The phenomenon
emerges as a many-body effect of the interplay of the quadratic Zeeman effect, which breaks the
rotational symmetry, and the spin-spin interactions. By performing full quantum diagonalizations, a
very accurate time evolution of large condensates is analyzed, leading to heuristic analytic expressions
for the time dependence of the one-body density matrix, in the weak and strong interacting regimes,
for initial coherent states. We are able to find accurate analytical expressions for both the decoherence
and the recurrence times, in terms of the number of atoms and strength parameters, which show
remarkable differences depending on the strength of the spin-spin interactions. The features of the
stationary states in both regimes are also investigated. We discuss the nature of these limits in light
of the thermodynamic limit.

Keywords: Bose–Einstein condensates; quantum decoherence; full quantum dynamics

1. Introduction

The observation of stationarity in quantum systems relies on the existence of pairwise
collisions in large conglomerates of atoms, either in an isolated environment or in contact
with a larger environment [1–10]. While in the former case, the process through which
the system reaches the stationary state may be termed intrinsic decoherence [11,12], in the
latter case, it is simply known as decoherence. In reality, since one can consider the system
(S) under study and the environment (R) as a composite closed system (S + R), their time
evolution is always unitary, and the observation of decoherence always refers to reduced
quantities, namely observables of much fewer degrees of freedom of the total ones of the
isolated system, say NS � NR, with N the number of degrees of freedom. Therefore, when
studying a system in contact with a reservoir, one deals with the reduced density matrix of
the former, ρS, integrating out the environment. This leads typically to master equations for
the reduced density matrix of the system that has already ingrained the decoherence effects
induced by the interaction with the environment [2,5,6,8–10]. In general, decoherence
and recurrence phenomena have been widely studied both experimentally and theoreti-
cally. On the experimental side, some examples are the dephasing in interference fringes
measured in condensates, the decay of laser-induced polarization in spectroscopic experi-
ments [13,14], the amplitude damping in qudit photonic states [15], and the decoherence
induced in single molecule junctions [16], among others. Measurements of purity have
also been used to search for quantum coherence loss [17].
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On the other hand, if the system under study is a large one, N � 1, but isolated
from any environment, even though the evolution is always unitary, the system relaxes
or decoheres to a stationary state [18] within a quantifiable decoherence time, in the sense
that expectation values of one-body observables, such as temperature, magnetization,
and, say, few-body correlations, behave as if the full system had relaxed to a stationary
state for times longer than the decoherence time. If the system is finite, there appear
recurrences or revivals of states near the initial one, but in typical systems, the recurrence
time may grow with no bound in the thermodynamic limit N → ∞. The behavior of
those few-body properties can be directly studied solely with their corresponding reduced
few-body density matrices, whose time evolution is no longer unitary within their reduced
Hilbert space. It is of interest for our purposes that the experiments in ultracold gases
showing Bose–Einstein condensation [19–22] are the closest to dealing with true isolated
systems. Yet, these gases, due to atomic collisions, relax to equilibrium and, when in the
presence of external magnetic fields, show decoherence phenomena [23,24]. The study
of the magnetization of the latter case is the subject of the present article. Hence, to be
specific, we call intrinsic decoherence that of the few-body properties, in an otherwise very
large isolated system. Recurrences are not observed in the ultracold gases since unwanted
processes, such as three-body collisions, make the thermal state unstable in a relatively
short time [25]. An interesting question concerns the nature of the stationary state and the
inquiry of whether it is a thermal state or not. In this regard, the essence of the Eigenstate
Thermal Hypothesis (ETH) [26–30] is to establish that the thermodynamic properties of
few-body observables are contained in the eigenstate closest to the equilibrium average
energy. Hence, a simple test is to compare the few-body density matrices of the stationary
state of the actual unitarily evolving state with those of the energy eigenstate with an
energy similar to the mean of the state evolving in time. Deviations from this typical
behavior, such as the many-body localization phenomenon [31], are also of current interest.
In light of these observations, we advance here that depending on the two-body interaction
strength in an F = 1 Spinor Bose–Einstein Condensate (SBEC) in the presence of external
homogeneous magnetic fields, we observe intrinsic decoherence of the magnetization, but
with different features leading to both typical and non-typical stationary states.

To be precise, within a full quantum scheme, we study here the phenomenon of
intrinsic decoherence, as well as the appearance of recurrences, in the time dynamics of an
F = 1 Spinor Bose–Einstein Condensate (SBEC) composed of a mixture of three different
hyperfine spin components, in the presence of a uniform magnetic field, starting in a
well-defined coherent state. Depending on the sign of the spin-mixing interaction strength,
the atomic cloud can be polar if positive, such as a gas of 23Na atoms, or ferromagnetic
if negative, as in a gas of 87Rb atoms [32,33]. We shall study here the ferromagnetic case
only since the condensate acquires a macroscopic spin texture that makes it behave as a
“giant” spin. It is worth mentioning that the system we address is very similar to the recent
experimental investigation on the spin dynamics of an F = 1 87Rb spinor macroscopic
condensate, where use of the SBEC as a sensible magnetometer is explored [24]. The present
model has also been used to study quantum phase transitions in space [34]. The dynamics
of the spin mixture is followed in the presence of the external magnetic field, which gives
rise to linear and quadratic Zeeman contributions, with strengths p and q, which together
with the interaction term, of strength η, give rise to the phenomena herein analyzed.

Since we are able to very accurately diagonalize the Hamiltonian of the system up to
N ∼ 104 atoms, we can study the dynamics of any initial state and then calculate reduced
density matrices of few-bodies. Here, we analyze the one-body density matrix for a full
family of coherent states, as one expects them to be the most resilient to the spin interaction,
clearly showing Larmor-like oscillations in the expectation value of the measurable spin
(or magnetization) one-body observable. We point out that coherent states are usually
expected to yield the closest to the quasi-classical dynamics of the magnetization, in a
mean-field fashion, with little or no decoherence [35]. Indeed, if there is no quadratic
Zeeman coupling, the coherent states show no signs of decoherence, but as soon as the
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full rotational symmetry is broken by the presence of such a coupling, this, in conjunction
with the natural two-body collisions, yields the decoherence or collapse of the very definite
Larmor oscillations generated by the presence of the external field. Due to the finite number
of atoms and the relatively small Hilbert space size, the oscillations recur or revive after
longer periods of time, to decohere again. After a long set of calculations, we are able
to find out three clear regimes depending on the value of the dimensionless parameter
N|η|/q, a weak interacting one N|η|/q � 1, a strong one N|η|/q � 1, and a crossover
N|η|/q ∼ 1, in which, although all show decoherences and recurrences, their dependence
on the parameters q and η and especially on N, as well as the nature of their corresponding
stationary states are very different. Furthermore and very importantly, after the mentioned
numerical study and with the insight of the analytic solution to the non-linear single
mode model [36,37], we are able to heuristically deduce analytic expressions for the full
one-body density matrix in the weak and strong interacting regimes. These expressions are
certainly the leading order contributions of the full unknown analytical solution and show
a remarkable agreement with the predictions of the full quantum numerical solution. We
are thus able to provide analytical expressions for the recurrence and decoherence times in
terms of the parameters q, η, and N and their dependence on the particular initial states.
We also highlight the fact that the strong interaction regime shows a “typical” behavior
of a macroscopic system since the decoherence and recurrence times show an expected
dependence on N, in the sense that as N → ∞, the recurrence time grows with no bound,
thus making the quasistationary state closer to a true one. In addition, the nature of the
stationary state behaves similarly to the ETH as it has the same reduced one-body density
matrix as the eigenstate whose energy equals the gas average energy.

This manuscript is organized into five sections. In Section 2, we introduce the model
Hamiltonian that describes the spinor BEC within the Single Mode Approximation (SMA)
and discuss how we are able to accurately obtain its full quantum diagonalization. In
Section 3, we introduce the one-body density matrix and its time evolution for a family of
coherent states in the ferromagnetic case, preparing the stage for Section 4, which shows
our main contributions regarding the discussion of decoherence recurrences in the weak
and strong interacting regimes. Finally, a discussion and a summary of this work are
presented in Section 5.

2. An F = 1 SBEC within the SMA Approximation—Full Quantum Diagonalization

The many-body F = 1 SBEC Hamiltonian with linear and quadratic Zeeman couplings
to an external homogeneous magnetic field ~B, within the contact approximation, is:

H =
∫

dr

(
h̄2

2m
∇ψ̂†

α(r) · ∇ψ̂α(r) + U(r)ψ̂†
α(r)ψ̂α(r) +

c0

2
ψ̂†

α(r)ψ̂
†
β(r)ψ̂β(r)ψ̂α(r)

+
c2

2
ψ̂†

α(r)ψ̂
†
α′(r)Fαβ · Fα′β′ ψ̂β(r)ψ̂β′(r) + p̃ψ̂†

α(r)
[
~B · F

]
αβ

ψ̂β(r)

+q̃ψ̂†
α(r)

[
~B · F

]
αα′

[
~B · F

]
α′β

ψ̂β(r)
)

(1)

where ψ̂α(r) are the annihilation operators of particles at r with spin α = −1, 0,+1 and
Fαβ are the F = 1 angular momentum matrices. c0 and c2 are interaction coefficients
proportional to the corresponding s-wave scattering lengths. If c0 > c2, the system is
polar and for c0 > c2, ferromagnetic [32]. U(r) is an external confining potential, typically
harmonic. In general, the field operator is given by:

ψ̂α(r) = ∑
m

φmα(~r)b̂mα (2)

where φmα(~r) are elements of the basis of the one-particle Hilbert space and b̂mα the
corresponding creation operators. For ultracold gases, a usual approximation is to consider
a self-consistent, to be determined, ground state wavefunction only Ψ0α(r, t), such that
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ψ̂α(r, t) ≈ Ψ0α(r, t)b̂0, that is all spin states are in the same ground state. This leads to a set
of three coupled Gross–Pitaevskii (GP) equations [32,33]. These can be solved numerically,
and as shown in Figure 1, the solution for a homogenous magnetic field shows that the
spatial part is unaffected by the presence of such a field, showing Larmor-like oscillations
of the magnetization; see below. That is, the dynamics occurs only in the spin degrees of
freedom, and it is not transferred to spatial excitations such as phonons and vortices. This
would not be so if the external field were inhomogeneous [38]. The previous observations
indicate that a single mode approximation can be made at the level of the GP description
(SMA-GP), that is an assumption that the ground state wavefunction is the same for all
spin components α. Therefore, if we set Ψ0α(r, t) = ψ0(~r)ζα(t) with ζα(t) a simple three-
component spinor, we can integrate out the spatial part and find very simple dynamical
equations, called SMA-GP (not shown here), for the time evolution of ζ(t). The result of
those is shown also in Figure 1 where we plot the time evolution of the magnetization
~f (t) =

∫
drΨ∗0α(r, t)FαβΨ∗0α(r, t) with full 3D GP (see [39] for the details of our methods),

and ~f (t) = ζ∗α(t)Fαβζ∗α(t) with the SMA-GP equations. The agreement is essentially perfect.
The unphysical feature of the SMA-GP equations, as well as of the full 3D GP is that they
are incapable of showing decoherence effects. This is not surprising since GP equations
assume that there is a single macroscopic wavefunction for the ground state even in the
presence of dynamical effects.

��� ��� ��� ���

-���

���

�

���

���

�/�

<
� �
>

×��-�

Figure 1. Magnetization ~f as a function of time t. Comparison of a full 3D Gross–Pitaevskii (dotted
line) versus Single Mode Approximation (SMA)-Gross–Pitaevskii (GP) calculations (continuous line),
for a 87Rb F = 1 ferromagnetic Spinor Bose–Einstein Condensate (SBEC). Blue and red lines are the x-
and y-components, with black the z-component. We use 87Rb constants and experimentally accessible
fields, p̃ = −0.7h MHz G−1, q̃ = 72h Hz G−2, c0 = 50.2 Å, c2 = 50.9 Å with a field Bz = 84 mG and
for N = 6.8× 104 atoms.

The above results motivate, and partially justify, a radical SMA that assumes that
the field operator can be written as ψ̂α(r) ≈ Ψ0(r)âα, such that the spatial part can be
integrated out and we can deal with the spin part in full. That is, the many-body aspects
of the spin part can be fully taken into account. This will lead, as is the purpose of this
paper, to showing quantifiable aspects of intrinsic decoherence, as explained above and the
recurrence or revivals of the predictable oscillations for initial coherent states. The SMA
approximation leads to a seemingly simple Hamiltonian for an F = 1 SBEC [40–43]:

Ĥ = p f̂z + qQ̂ + η f̂ 2. (3)
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Within SMA, this Hamiltonian differs from that of Equation (1) by a term proportional
to the number operator N̂, which commutes with Ĥ. The first and second terms represent
the linear and quadratic Zeeman contributions, p ∼ p̃B, q ∼ q̃B2, while the third one is the
spin-mixing interaction, η ∼ (c2− c0), such that η > 0 is polar and η < 0 ferromagnetic [32].
As described in the Introduction, our interest here is the ferromagnetic case. From now on,
our goal is the study of Hamiltonian Ĥ and its ensuing dynamics; therefore, we shall vary
all three parameters independently in order to elucidate their role in the dynamics. These
parameters can certainly be tuned experimentally. The above operators in Ĥ are given in
terms of the creation and annihilation operators of bosonic atoms in the z-direction spin
states +1, 0, and −1, in obvious notation,

f̂z = â†
+1 â+1 − â†

−1 â−1

Q̂ = â†
+1 â+1 + â†

−1 â−1

f̂ 2 = T̂† + T̂ + (2â†
0 â0 − 1)Q̂ + f̂ 2

z (4)

where:
T̂ = 2â†

−1 â†
+1 â0 â0. (5)

Certainly, ~̂f = ( f̂x, f̂y, f̂z) is the one-body spin or magnetization vector operator, with:

f̂x =
1√
2

(
â†

0(â+1 + â−1) + (â†
+1 + â†

−1)â0

)
f̂y =

i√
2

(
â†

0(â+1 − â−1)− (â†
+1 − â†

−1)â0

)
(6)

and f̂ 2 = f̂ 2
x + f̂ 2

y + f̂ 2
z , whose expectation value is the magnetization or spin texture.

Introducing the spin state number operators n̂σ = â†
σ âσ, one can also write f̂z = n̂+1 − n̂−1

and Q̂ = n̂+1 + n̂−1, forms that can be useful in interpreting our results below.
For a given number of atoms N, the size of the Hilbert space is Ω = (N + 1)(N + 2)/2,

and therefore, the size of Hamiltonian given by Equation (3) scales as ∼ N2 × N2. In order
to find the time evolution of the system, we have to diagonalize the Hamiltonian, a difficult
task that can be eased by exploiting its symmetries. Obviously, the total number opera-
tor N̂ = n̂+1 + n̂0 + n̂−1 commutes with the Hamiltonian Ĥ. In addition, due to its Lie
structure, it is easy to show that

[
f̂z, Ĥ

]
= 0. Hence, instead of using the “natural” basis of

number occupation |n+1, n0, n−1〉, in obvious notation, one finds a better alternative to use
|M, n0〉, with M = n+1− n−1 the eigenvalues of f̂z, with values −N,−N + 1, . . . , N − 1, N.
Atom number conservation N = n+1 + n0 + n−1 yields the third quantum number, ob-
viated in the state labels. In this basis, the Hamiltonian is block diagonal in M, and the
matrix elements show simple expressions,

〈M′, n′0| f̂z|M, n0〉 = MδM′Mδn′0n0
, (7)

〈M′, n′0|Q̂|M, n0〉 = (N − n0)δM′Mδn′0n0
, (8)

〈M′, n′0| f̂ 2|M, n0〉 = 2
√
(n−1 + 1)(n−1 + 1)n0(n0 − 1)δM′Mδn′0(n0−2)

+ 2
√

n+1n−1(n0 + 1)(n0 + 2)δM′Mδn′0(n0+2)

+ (2n0 − 1)(N − n0)δM′Mδn′0(n0+2) + M2δM′Mδn′0n0
, (9)

where n+1 = (N + M − n0)/2 and n−1 = (N − M − n0)/2. We note that the matrix
elements in Equations (7)–(9) do not link blocks with different values of M; however,
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they connect different matrix elements with jumps of two for n0. Then, the Hamiltonian H
can be diagonalized and written as,

Ĥ|M, mM〉 = EM,mM |M, mM〉 (10)

where, for each block M, mM = 1, 2, . . . , mmax
M , and mmax

M = (N − |M|+ 1)/2 or mmax
M =

(N− |M|+ 2)/2 if M is odd or even, respectively. This analysis can also be applied to SBEC
with F > 1 [44,45]. The block-diagonal structure of the Hamiltonian given by Equation (3)
allows not only very accurate calculation of the energy eigenvectors and eigenvalues for
values up to N ∼ 104, as given by Equation (10), but also implementing full quantum
evolution of any initial quantum state for arbitrary values of time. For this, we perform
numerically exact diagonalization block-by-block using pyCUDA linear algebra routines,
in a server with an eight CPU core, 128 GB RAM, and with the graphic card Nvidia
Tesla C2075. Since this diagonalization can be obtained for a wide variety of parameters,
the ensuing time evolutions we obtain do not suffer from the accumulation of errors, thus
maintaining the same numerical precision at any time step. Depending on the value of
N and the needed time steps, the full evolution of a given initial state elapsed between a
few GPU seconds up to several hours. As an example that is easy to visualize, in Figure
2, we display the Hamiltonian structure for N = 6 particles with a Hilbert space size
of 28, each blue square representing a block of magnetization M, whose size is given
below. The intensity of the color blue and the size of the blocks depend on the value
of M. Although we do not address it here, we show in Figure 3 the spectra and their
degeneracy for different values of p, q, and η for N = 103, to illustrate its richness. All
the figures below are in dimensionless units. Since the three parameters of Hamiltonian
Ĥ all have units of energy, for the ease of varying all parameters without worrying about
unit adjustments in different cases, we assume a unit of energy ε0, such that the three
parameters are adimensionalized with it and time is adimensionalized as τ = ε0t/h̄.

1 4 8 12 16 20 24 28

1

4

8

12

16

20

24

28

fz

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

Figure 2. Hamiltonian structure for N = 6 particles where the Hilbert space size is 28, each blue
square representing a block of magnetization M. The intensity of the color blue and the size of the
blocks depend on the value of M.

Despite the fact that f̂z and Q̂ commute, the interesting and rich behavior of this
model arises because of the non-commutativity of the quadratic Zeeman term ∼Q̂ and
the spin interaction ∼ f̂ 2. Further, in the absence of the quadratic Zeeman interaction,
q = 0, the Hamiltonian can be analytically diagonalized both for F = 1 [46] and F = 2 [44].
The presence of the quadratic term, q 6= 0, breaks the axisymmetry [40], and this system
becomes an excellent one to study quantum phase transition [47], quench-dynamical
behaviors [48], the quantum Kibble–Zurek mechanism [49], and spin fragmentation [43],
among other mechanisms. On the contrary, if there is no atomic interactions, η = 0,
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the problem is also trivial and right away diagonal, as given by Equations (7)–(9). Hence,
reiterating, the presence of the atomic interactions is mediated by the presence of the
Zeeman quadratic term.

Figure 3. Energy spectrum En and its degeneracy ln W (right inset), for N = 103 particles and
(a) p = 1, q = 0, and η = 0; (b) p = 0, q = 0, and η = −1; and (c) p = 1, q = 100, and η = −1. In the
left inset, we show the detail of the energy spectrum.

3. Time Evolution of the One-Body Density Matrix in Coherent States

With the full quantum diagonalization described above, we can calculate the time
evolution of arbitrary initial states |Ψ0〉. Here, we will concentrate on a family of initial
coherent states, introduced below. For this purpose, we briefly mention that, as expected,
the time evolution can also be performed by blocks in the following manner. First, since the
unitary propagator operator can be written as,

U(t, t0) =
N

∑
M=−N

mMmax

∑
m=1

e−
i
h̄ EM,mM (t−t0)|M, mM〉〈M, mM| , (11)

one just needs the overlaps 〈M, mM|Ψ0〉 to find the time evolution of any |Ψ0〉. However,
since many of the usual physical quantities are typically one- or two-body operators,
we shall devote our attention to the one-body density matrix, which allows for calculating
all the statistical properties of all one-body operators, such as the matrices f̂x, f̂y, and f̂z.
For this, we note that since any one-body operator can be written as,

Ô(1) = ∑
kj
Oij â†

k âj (12)

with k and j taking the values +1, 0, and −1 and Oij complex numbers, the expectation
value of any operator Ô(1) requires the knowledge of the expectation values of the operators
a†

k aj for all values of kj. These expectation values are those of the one-body density matrix.
Explicitly, for a given initial state |Ψ0〉, the one-body density matrix for all times is given by,

ρjk(t) =
1
N
〈Ψ0|U†(t, 0)â†

k âjU(t, 0)|Ψ0〉, (13)

where the 1/N factor is introduced such that the trace of the reduced density is always
unity. This yields in turn that the expectation values of spin operators are also bounded by
one. Although we do not exploit it here, it is worth mentioning that if we limit ourselves
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to one-body properties, one could also use the properties of the Gell–Mann spin one
matrices [50]. A very interesting and useful property of the one-body density matrix given
above, in the representation of the âα, α = −1, 0,+1 corresponding to the z-direction spin
basis, is that the one-body reduced density matrix is diagonal in such a basis,

ρ
(s)
jk =

1
N
〈M, mM|â†

k âk|M, m〉δjk . (14)

While we did not prove this result, we extensively verified it, and we believe it
follows from the commutation of f̂z with the Hamiltonian. The fact that the true stationary
density matrix ρ

(s)
jk is diagonal in this basis will greatly facilitate the elucidation of the

(quasi)stationary states reached in the time evolution of an initial coherent state.
As we can accurately calculate the matrix ρkj(t) for any time using Equation (13),

we now turn our attention to the initial set of coherent states [35]:

|θ, ϕ〉 = 1√
N!

(
ζ1 â†

1 + ζ2 â†
2 + ζ3 â†

3

)N
|0〉 , (15)

where ζ1 = e−iϕ cos
(

θ
2

)2
, ζ2 = sin θ√

2
and ζ3 = eiϕ sin

(
θ
2

)2
, with θ and ϕ the usual angles

of the unit sphere and |0〉 denoting the vacuum state with no particles. Alternatively,
a coherent state can also be written as,

|θ, ϕ〉 = e−iϕ f̂z e−iθ f̂y |N, 0, 0〉 . (16)

A very important property to take into account is that these coherent states are
eigenstates of f̂ 2, that is f̂ 2|θ, ϕ〉 = N(N − 1)|θ, ϕ〉. We point out that the distribution of
energy eigenstates in an arbitrary coherent state involve, in general, several if not many
blocks of different values of the quantum number M. The main features of the time
evolution of these states, as we amply discuss and show below, is that the elements of the
one-body density matrix in these states show an initial oscillation that suffers intrinsic
decoherence followed by a stationary state and revivals at later times, with this behavior
being repeated ad infinitum. It is evident that both the decoherence and recurrence times
depend on the p, q, and η parameters, as well as on the initial state (θ, φ), but an important
issue is its dependence on N. As mentioned in the Introduction, we identified that the
dependence on N is very different in two opposite limits N|η|/q � 1 and q/N|η| � 1,
evidently called weak and strong interacting regimes.

Since one can show that the set of operators f̂z, Q̂, and f̂ 2 is not part of a Lie algebra,
the finding of an analytic expression for the reduced density matrix appears as a very
difficult task. Nonetheless, the main contribution of this article is to show that the time
evolution of the SBEC one-body properties can be summarized quite precisely with explicit
(semi-)analytic expressions for the time evolution of the density matrix elements ρkj(t),
given in Equation (13), for an arbitrary initial coherent state such as Equation (15), in the
weak and strong limits. These expressions, as well as their validity limits are found in a
heuristic manner based on a very large number of precise numerical evaluations of time
evolutions for a wide variety of values of the Hamiltonian parameters and for a collection
of different initial coherent states.

In order to introduce our expressions for the one-body density matrix in the following
section, we first discuss preliminary exact results. Note that the one-body density matrix
ρjk(t), given by (13), can be first expressed as,

ρjk(t) = 〈θ|U†
QI(t, 0)a†

k ajUQI(t, 0)|θ〉ei(j−k)(pt/h̄+ϕ) (17)

where:
UQI(t, 0) = e−i(qQ̂+η f̂ 2)t/h̄ (18)
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and |θ〉 ≡ |θ, 0〉 is the coherent state for any value of θ and ϕ = 0. We see that for any
initial state, the role of the p f̂z term and the angle ϕ simply amount to a phase factor, while
the whole dynamics is ruled by the quadratic Zeeman qQ̂ and the interaction η f̂ 2 terms.
Whether one term or the other dominates depends on the relative values of the strength
parameters q and η. We further note that if q = 0, the interactions play no role since the
coherent states are eigenstates of f̂ 2. Therefore, in order to observe the effect of both terms,
both η and q must be nonzero.

As an illustration of the typical time evolution of coherent states, in Figure 4, we show
sequences of decoherences and recurrences in the weak N|η|/q� 1, strong q/N|η| � 1,
and crossover N|η|/q ∼ 1 regimes. We found that in the extreme cases, the recurrences
appear at periodic intervals, thus making feasible their prediction, while in the crossover,
as the two effects contribute similarly, the sequences can be very irregular, and we make no
attempt to analyze them here.

We would like to point out, as can be seen from Equation (17), that the time evolution
of the one-body density matrix, being an expectation value, certainly depends on the initial
state and on the Hamiltonian parameters, but also and very importantly, on the operator
itself. Thus, the phenomenon shown in Figure 4, and their characteristic times analyzed
in the sections below, cannot be explained based solely on the energy distribution in the
initial state and on the properties of the energy spectra.

0 10 20 30 40 50 60
-0.8

-0.4

0

0.4

0.8

τ

<
f x>

×103

(a)

0 2 4 6 8 10 12 14

-0.5

0

0.5

τ

<
f x>

×102

(b)

0 2 4 6 8 10
-1.0

0.5

0
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1.0

τ

<
f x>

×102

(c)

Figure 4. Time evolution of the expectation value 〈 f̂x〉 illustrating the sequence of decoherences and
recurrences; (a) weak interaction N|η|/q� 1 (q = 1, η = −10−4, θ = 3π/10); (b) strong interaction
q/N|η| � 1 (q = 1, η = −104, θ = 3π/10); and (c) crossover q/N|η| ∼ 1 (q = 1, η = −10−2,
θ = π/2). In all cases, N = 100.

4. Decoherence and Recurrences in the Strong and Weak Interacting Regimes

To proceed with the finding of the weak and strong interacting extremes, we note that
the density matrix, Equation (17), can be written in two alternative forms,

ρjk(t) = 〈θ|e
− i

h̄ η
∫ τ

0 V̂I(τ)dτ

T a†
k aj e

i
h̄ η
∫ τ

0 V̂I(τ)dτ

T |θ〉ei((k−j)pt/h̄+ϕ)eiδk,j±1(δj,2−δk,2)qt/h̄ (19)

or:
ρjk(t) = 〈θ|e

− i
h̄ q
∫ τ

0 V̂Q(τ)dτ

T a†
k aj e

i
h̄ q
∫ τ

0 V̂Q(τ)dτ

T |θ〉ei((k−j)pt/h̄+ϕ) . (20)
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where:

V̂I(τ) = eiqQ̂τ/h̄ f̂ 2e−iqQ̂τ/h̄

V̂Q(τ) = eiη f̂ 2τ/h̄Q̂e−iη f̂ 2τ/h̄ , (21)

and eT stands for the time-ordered exponential. The first form, Equation (19), is appropriate
for the study of the weak interaction N|η|/q � 1, while the second one, Equation (20),
for the strong one q/N|η| � 1. Note that the exact limits η = 0 and q = 0 are explicitly
recovered in Equations (19) and (20).

In addition to the analysis of a large number of numerical calculations of the time
evolution of coherent states, varying all the relevant parameters, we also used as insight
the analytical solution of the non-linear single mode Hamiltonian ĥ = −µâ† â + uâ† â† ââ
(see [36,37]) that for usual harmonic oscillator coherent states [51] shows collapses whose
envelope is of a Gaussian shape followed by revivals, with characteristic times that depend
exclusively on the state and the Hamiltonian parameters. Furthermore, the recurrences
are observed to appear at periodic times. Based on this and on the numerical evidence,
we proceed now to present the heuristic (semi-)analytic forms of the density matrix in the
two extremes.

4.1. Strong Interaction Regime q/N|η| � 1

In this regime, the leading terms depend mostly on the quadratic Zeeman coupling
q, and the one-body reduced density matrix can be very precisely fitted by the following
form,

ρjk(t) ≈ ρjk(0)e
N
2 sin2 θ

[
cos
(

q(k−j)
h̄N t

)
−1
]
ei cos θ(k−j)qt/h̄ei(k−j)pt/h̄ j 6= k . (22)

with ρjk(0) given by,

ρjk(0) =


cos4 θ

2
1√
2

eiϕ sin θ cos2 θ
2

1
4 e2iϕ sin2 θ

1√
2

e−iϕ sin θ cos2 θ
2

1
2 sin2 θ 1√

2
e−iϕ sin θ sin2 θ

2
1
4 e2iϕ sin2 θ 1√

2
eiϕ sin θ sin2 θ

2 sin4 θ
2

 . (23)

which was obtained using the Lie algebra method [52].
From Equation (22), it can immediately be seen that the structure of periodic recur-

rences with decoherences in relatively shorter times than the former is given by the real
exponential term exp(N

2 sin2 θ
[
cos
(

q(j−k)
h̄N t

)
− 1
]
), indicating that at the times τn = nτ

(q)
rec ,

n = 0, 1, 2, . . . , periodic recurrences occur,

τ
(q)
rec =

2Nπ

(j− k)q
. (24)

We label this as the strong interaction recurrence time. The strong interaction deco-
herence time can be readily found by expanding the previous exponential at short times,
yielding a Gaussian function of the form e−t2/2τ2

dec , from which we identify,

τ
(q)
dec =

√
N
2

h̄
q(j− k) sin θ

. (25)

Note that both times τ
(q)
rec and τ

(q)
dec grow as does the number N of atoms that, as we

discuss in the next section, appear as an “expected” feature of the thermodynamic behavior
in the limit of a large number of atoms.

The diagonal terms ρjj(t), for j = −1, 0,+1, are essentially constant equal to their
initial values at t = 0. The precision of our calculations allows setting,

ρjj(t) ≈ ρjj(0) + ajj(θ)e
N
2 sin2 θ

[
cos
(

4q
h̄N t

)
−1
]

. (26)
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with ajj(θ) a term that it is at most of the order of 10−9, compared with the initial value

ρkj(0), for N . 103. The decoherence time scales as τ
(q)
dec ∼

√
N and the recurrence one

τ
(q)
rec ∼ N, in agreement with this regime; see Equation (25).

In Figure 5, we show an example of the evolution of the density matrix in the strong
interacting regime q/N|η| � 1 (q = 1, p = 1, and η = −30000 for N = 700). This illustrates
both the typical behavior of decoherences and recurrences and the agreement with the
heuristic fitting given by Equation (22). In Panels (a), (b), and (c), we show the evolution
of the real part of the off-diagonal elements of the density matrix that show the sequence
of decoherences followed by stationary states and recurrences. In Panel (d), we show the
agreement with the predicted oscillations in terms of the q and p parameters.
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Figure 5. Real part of elements (a) ρ+1,0, (b) ρ+1,−1, and (c) ρ−1,0 of the density matrix as a function of time, for N = 700,
q = 1, p = 1, and η = −30,000, for a time period longer than (0, 2πh̄N/q). In continuous (red) lines, we show the overlap of
the recurrences predicted by Equation (22). In Panel (d), we show an example of the agreement of the oscillations predicted
by Equation (26), red dots, with the full quantum calculation, continuous blue line, for the real part of ρ+1,0; N = 1000,
q = 1, p = 1, and η = 30,000.

As shown in Figure 6 and confirmed by Equation (22), the behavior of one-body
observables, such as 〈 f̂x〉, shows a very detailed and predicted structure of decoherences
and recurrences, with a stationary state for a very large parameter space. As seen in this and
in all the above figures and expressions, the one-body density matrix of the stationary state
is diagonal in the spin basis (−1, 0,+1) along the z-direction. This physically means that

while the expectation value of the z-component of the spin vector ~̂f , as well as the non-linear
Zeeman term Q̂ remain essentially constant, the x and y spin components decohere to zero.
Note from the figure that if q� 1, but η finite, the recurrences can be separated by very long
times that increase as N grows, thus yielding a true stationary state in the thermodynamic
limit. To inquire into the nature of the stationary state, as illustrated in Figures 5 and 6 and
in accord with Equations (22) and (26), we observe that the (quasi-)stationary one-body
density matrix becomes diagonal with their diagonal terms numerically very close to the
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initial ones. As suggested by ETH, we compute the average energy E = 〈θ, ϕ|Ĥ|θ, ϕ〉 and
find the closest eigenenergy EM,mM of the system to such an average. We found in all
studied cases for this regime that the corresponding stationary density matrix ρjk equals

the density matrix ρ
(s)
jk of the corresponding energy eigenstate |M, mM〉; see Equation (14).

Although we do not claim that the stationary state is thermal, this result agrees with
the consequences of the eigenstate thermalization hypothesis. That is, all the one-body
properties in the (quasi)stationary states are the same as if the system were in a true,
exact, stationary energy eigenstate with the same eigenvalue as the average energy of the
time-evolving system. As depicted in Figure 5, the recurrences become more separated as
N increases, thus indicating that for a very large system, the quasistationary state cannot
be distinguished from a true eigenstate, as far as measurable few-body properties are
concerned. This is also along the explanation of thermalization in isolated many-body
systems in statistical physics [18].

Figure 6. Evolution in time of the expectation value 〈 f̂x〉 as a function of time τ and the non-
linear Zeeman strength q, for p = 1 and η = −30,000. Note that if q � 1, the recurrences appear
more separated.

4.2. Weak Interaction Regime N|η|/q� 1

Figure 7 shows the typical behavior of the elements of the one-body density matrix
in the weak interaction regime, for a particular case; see the figure caption. We find that
all essential features of the time evolution of the one-body reduced density matrix can be
fitted quite well by the following explicit expressions.

ρjk(t) ≈ ρjk(0)Fjk(N, η, θ, t)e−2i(j−k)ηN cos θte−i(j−k)pteiδj,k±1(δk,0−δj,0)qt j 6= k (27)

ρjj(t) ≈ ρjj(0) + Ajj(θ)
(
1− Fjj(N, η, θ, t)

)
cos

qt
2

(28)
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where:
Fjk(N, η, θ, t) = egjk(θ)N(cos(2 f jkηt)−1) for all j, k . (29)

Above, j, k = −1, 0,+1; fij are symmetrical with f1,0 = 1, f−1,1 = 2, f−1,0 = 3 and all
diagonal equal, f jj = 4. We were not able to find analytic expressions for the coefficients
gjk(θ) and Ajj(θ), but they can be numerically fitted, as we show them in Figures 8 and 9.
The diagonal terms gjj(θ) are all equal, shown in Figure 9. The initial condition is given
again by the matrix in Equation (23).
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Figure 7. Real part of different elements of the density matrix as a function of time. (a) Comparison of the full quantum
calculation (blue solid line) with heuristic fit (red dots), Equation (27), of ρ+1,−1. Recurrences of the real parts of (b) ρ+1,0,
(c) ρ+1,−1 and (d) ρ0,0, within the time period (0, 2πh̄/η); the full quantum calculation (blue solid line) and overlap of
heuristic fit (red line), Equation (27). The (dimensionless) parameters are N = 300, η = −10−5; q = 7, θ = 7π/30, p = 0,
and ϕ = 0.
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Figure 8. Coefficient gjk(θ) as a function of θ, in Equation (29). (a) g12(θ). (b) g23(θ). (c) g13(θ).
The dots are values numerically calculated, and the continuous line is a spline interpolation. The pa-
rameters are N = 300, η = 10−5; q = 7, p = 0, and ϕ = 0.
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Figure 9. Amplitude coefficient (a) A11(θ) and (b) A22(θ) as a function of θ, in Equation (28). Note that
both are very small. (c) Coefficient g11(θ) = g22(θ) = g33(θ)as a function of θ in Equation (29).
The dots are values numerically calculated, and the continuous line is a spline interpolation. The pa-
rameters are N = 300, η = 10−5; q = 7, p = 0, and ϕ = 0.

Figures 7 and 10 show the density matrix ρjk(t) and the expectation value of the
operator f̂x for a single example in the limit N|η|/q � 1 (η = −10−5 and q = 7, for
N = 300). These figures illustrate the excellent agreement of the heuristic expression given
by Equation (27) with the accurate numerical calculations. Figure 7a shows both cases for
the initial decoherence, while Figure 7b–d the agreement in predicting the occurrence of
the recurrences, for ρ−1,0, ρ−1,1, and ρ0,0. Figure 10 shows the behavior of the elements (a)
ρ1,0 and (b) ρ−1,0. As can be seen in Equation (27), these two elements oscillate with a very
large frequency q = 7 and with a very small correction ±2Nη cos θ, each taking one of the
signs. This tiny difference between the oscillations of ρ1,0 and (b) ρ−1,0 shows itself in the
beating pattern of the expectation value of f̂x (see Equation (6)) shown in Figure 10c,d: the
former is the exact numerical calculation and the latter the heuristic expression given by
Equation (27). We found a quite remarkable agreement for any value of θ.

The behavior of intrinsic decoherences, followed by quasistationary states to fur-
ther revivals or recurrences in a periodic fashion, is essentially contained in the function

Fjk(N, η, θ, t) ≈ egjk(θ)N(cos(2 f jkηt)−1) within the density matrix; see Equation (27). The func-
tion Fjk indicates right away that there are recurrences at periodic intervals, τn = nτrec with
n = 1, 2, 3, . . . , and:

τ
(η)
rec =

2π

hj,k|η|
, (30)

that we label as the weakly interacting recurrence time; it depends on the particular matrix
element, but the main point is its inverse proportionality to η and its independence on
N. Then, at each recurrence, starting with the initial time t = 0, the evolution appears to
decohere in a shorter time scale. This can be found by approximating the exponential for
short times,

egjk(θ)N(cos(2 f jkηt)−1) ≈ e−gjk(θ)N(2 f jkηt)
2
/2 , (31)

thus identifying the weakly interacting decoherence time, e−t2/2τ2
dec ,

τ
(η)
dec =

√
1

gjk(θ)N
h̄

2hjk|η|
. (32)
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Figure 10. (a) Real part of element ρ+1,0 of the density matrix as a function of time. (b) Real part of element ρ−1,0 of
the density matrix as a function of time. (c) Expectation value of f̂x as a function of time, full quantum calculation;
(d) expectation value of f̂x as a function of time, heuristic fit, Equation (27). The beating pattern in 〈 f̂x(t)〉 is due to the
very small difference of the high frequency oscillations of between ρ+1,0 and ρ−1,0; see Equation (27). The parameters are
N = 300, η = −10−5; q = 7, θ = 7π/30, p = 0, and ϕ = 0.

In this case, in addition to the dependence on η, there appears a dependence on the
number N of atoms that is very different from the strong interaction case; see Equations
(24) and (25). This is further discussed in the last section.

With regard to the (quasi)stationary states reached between consecutive recurrences or re-
vivals, as shown in Figures 7 and 10 and verified in the expressions given by Equations (27)–(29),
the off-diagonal terms of the reduced density matrix again vanish for time intervals dur-
ing the (quasi)stationary state, with the diagonal terms becoming equal to the initial state.
As in the strong interaction regime, since the energy eigenstate one-body density matrices
(see Equation (14)) are also diagonal in the same spin basis, this suggests the same test of
comparing the density matrices in the stationary regime of the coherent states with that of a
true stationary eigenstate with the same average energy. Interestingly, contrary to the strong
interacting regime, in this case, those do not agree. That is, the stationary state between
recurrences does not seem to be a “true” stationary state, in the sense of ETH. This suggests,
along the mentioned N dependence of the decoherence and recurrence times, that the weak
regime is not typical of thermodynamic states. Although the full analysis of these stationary
states is outside the scope of the present article, this indicates that the distribution of energy
eigenstates in coherent states may show a more complex structure in the weak than in the
strong limit.

5. Discussion and Final Remarks

The agreement between the proposed heuristic expressions for the time evolution of
the one-body density matrix of an F = 1 SBEC, compared with (numerically) exact full
quantum calculation is certainly quite good, allowing us to validate our conclusion that
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those expressions are the leading non-trivial order, becoming better as N grows. Once more,
in both cases, the general behavior shows periodic (intrinsic) decoherences of an oscillatory
behavior, into stationary states, with periodic recurrences. However, the precise nature
of this phenomenon is very different in the two limits considered. The most notorious
difference between the extreme regimes resides on the fact that the role of the number of
particles N is very different in each case. Note that in the weak side τ

(η)
dec ∼ 1/

√
N and

τ
(η)
rec ∼ O(1), while in the strong one τ

(q)
dec ∼

√
N and τ

(q)
rec ∼ N. It is of interest to mention

that the non-linear single mode approximation, as described in [36,37], corresponds to the
weak interaction regime. We find it relevant to recall that the validity of thermodynamics is
achieved for macroscopic bodies N � 1. In this limit, the averages of extensive quantities
scale as N while their fluctuations as

√
N such that the ratio of deviations from equilibrium

values scale as 1/
√

N, hence tending to zero as N increases [18]. Moreover, the larger the
system, the longer it takes to equilibrate in a stationary state, and the recurrences to initial
states also are apart for a longer time. In this sense, it appears that the strong interacting
regime fulfills this limit. That is, τ

(q)
dec ∼

√
N and τ

(q)
rec ∼ N appear as reasonable results.

More appealing is the fact that the ratio τdec/τrec ∼ 1/
√

N, the mentioned typical condition
for thermodynamic stability of a macroscopic system [18]. Thus, although both times
diverge in the thermodynamic limit, at the appropriate scale, the decoherence time tends
to zero as ∼ 1/

√
N compared to the recurrence one. Therefore, we find it very interesting

to observe that while the decoherence and recurrence times in the weak interaction case,
N|η|/q� 1, do not follow the “expected” thermodynamic trend, still we observe that the
ratio τ

(η)
dec /τ

(η)
rec ∼ 1/

√
N scales appropriately. In any case, however, although the role of

the number of atoms N is very different in each limit, still what is ultimately responsible for
the decoherence and recurrence phenomena is the interaction among the constituents of the
body. As we have also seen, this strong difference appears to be present in the structure of
the stationary states attained between consecutive recurrences, having started in coherent
states. As we verified, those stationary states are indistinguishable from true stationary
energy eigenstates. The result that this property does not hold for a weakly interacting SBEC
appears to be in agreement with the N dependence of the decoherence and recurrence
times mentioned above. The full elucidation of these differences certainly deserves a
separate and detailed study. In the crossover regime N|η| ∼ q, both the interaction η
and non-linear Zeeman q contributions compete, and their effect is intertwined, and even
though the system indeed shows decoherences and recurrences, the latter no longer occurs
at prescribed times depending on either

√
N or N; see Figure 4c.

To summarize, we first highlight that one can exactly (numerically) diagonalize the
Hamiltonian of an interacting F = 1 SBEC in the SMA approximation for a large number of
atoms and that the method can be extended to larger spins F > 1. This allows us to probe
the full quantum dynamics of any initial state. For the purposes of the present study, we
chose here the relevant family of the coherent states. We studied the corresponding reduced
one-body density matrix and found heuristic analytical expressions that fit remarkably
well with its dynamics in the weak N|η|/q� 1 and strong N|η|/q� 1 regimes, indicating
the interplay among the non-linear Zeeman effect ∼q and the pairwise spin interaction
∼η, mediated by many-body effects ∼N. Our expressions predict the decoherence time
and the recurrence periods in terms of these quantities and become more precise as N
grows. Since the corresponding unitary propagator cannot be analytically found, due to
its lack of closed Lie algebra, our results may indicate a path to find it in a series whose
leading order term agrees with the heuristic expressions found here. A natural extension
of the present study is the analysis of two-body correlations. For this, we need to calculate
the reduced two-body density matrix, which with our method does not appear as a very
difficult task. It would be very interesting to find how these correlations behave along the
different regimes, to find out if the predicted decoherence and recurrence time hold, and it
would also serve to further inquire into the structure and properties of the stationary state
between recurrences.
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