
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Zhang, Guangyi; Alizadeh Ashrafi, Reza; Juuti, Anne; Pietiläinen, Kirsi; Marttinen, Pekka
Errors-in-variables modeling of personalized treatment-response trajectories

Published in:
IEEE Journal of Biomedical and Health Informatics

DOI:
10.1109/JBHI.2020.2987323

Published: 01/01/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Zhang, G., Alizadeh Ashrafi, R., Juuti, A., Pietiläinen, K., & Marttinen, P. (2021). Errors-in-variables modeling of
personalized treatment-response trajectories. IEEE Journal of Biomedical and Health Informatics, 25(1), 201-
208. Article 9072524. https://doi.org/10.1109/JBHI.2020.2987323

https://doi.org/10.1109/JBHI.2020.2987323
https://doi.org/10.1109/JBHI.2020.2987323


IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 1, JANUARY 2021 201

Errors-in-Variables Modeling of Personalized
Treatment-Response Trajectories

Guangyi Zhang , Reza A. Ashrafi , Anne Juuti , Kirsi Pietiläinen, and Pekka Marttinen

Abstract—Estimating the impact of a treatment on a
given response is needed in many biomedical applications.
However, methodology is lacking for the case when the
response is a continuous temporal curve, treatment covari-
ates suffer extensively from measurement error, and even
the exact timing of the treatments is unknown. We introduce
a novel method for this challenging scenario. We model per-
sonalized treatment-response curves as a combination of
parametric response functions, hierarchically sharing infor-
mation across individuals, and a sparse Gaussian process
for the baseline trend. Importantly, our model accounts for
errors not only in treatment covariates, but also in treatment
timings, a problem arising in practice for example when
data on treatments are based on user self-reporting. We
validate our model with simulated and real patient data,
and show that in a challenging application of estimating the
impact of diet on continuous blood glucose measurements,
accounting for measurement error significantly improves
estimation and prediction accuracy.

Index Terms—Treatment-response trajectories, Bayesian
methods, errors-in-variables, hierarchical models,
Gaussian processes, wearable self-monitoring devices,
time-series data.

I. INTRODUCTION

INCREASING popularity of electronic health records
(EHRs) and smart healthcare services has led to
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accumulation of large quantities of heterogeneous data, with
potential to considerably improve the efficiency of clinical prac-
tice and health services [1]. This highlights the importance of
novel machine learning techniques for EHR data, which can be
integrated with mobile apps to provide personalized guidance
for purposes ranging from early diagnosis to support for lifestyle
change [2]. The latter is specifically relevant to reduce the cost of
chronic diseases in the face of an aging population; for instance,
the annual economic cost of diabetes in the U.S. is approximately
$250 billion [3].

An important question is how to estimate a patient’s response
to a given treatment, comparing the patient’s data from before
and after the treatment. This is particularly challenging when
the response is a continuous curve, for example a time-series
of a biological marker. Such a response may be modeled using
Gaussian processes [4] or neural networks [5]. The treatment
may be a continuous dose function [6] or a discrete event [7],
[8]. Treatment data are usually sparse, and hence it is essential
to share relevant information in a probabilistic model. A latent
trajectory model of [9] uses additive components to explain vari-
ation on population and individual levels. Conditional random
fields can be incorporated to further capture correlations between
different treatment types [10], and multivariate response curves
can be modeled by learning latent structure [6] shared across the
outcomes.

Despite much recent attention, there are still crucial issues
in treatment-response estimation that have not been addressed.
Most importantly, when the response is continuous, the treat-
ments are consistently assumed known while in reality they may
be perturbed by numerous factors. This problem dramatically
escalates for user-reported data which potentially results in
complete discredit of the findings [11]. The error is two-fold:
first, there is measurement error in the treatment covariates;
second, even the timings of the treatments might be known only
approximately. Another issue arises from the complementary
roles of the trend, i.e., the evolution of the outcome assuming
no treatment, and the treatment response. When modeled and
trained jointly, too flexible a trend may override the treatment
response, and therefore in practice these two components are
often trained separately.

To address the mentioned shortcomings, we introduce errors-
in-variables (EIV) framework for modeling of continuous
treatment-response trajectories. The EIV models account for
measurement errors not only in the response, as common regres-
sion, but also in the inputs [12], [13]. They are closely related to
latent-variable models in machine learning [14], modeling the
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unobserved true values underlying the noisy observations. Our
contributions can be summarized as follows:

� We formulate an EIV model for personalized treatment-
response trajectories, where a treatment comprises a vector
of noisy covariates and treatment times are uncertain.

� We introduce an interpretable hierarchical prior on the
treatment effects that efficiently shares information be-
tween individuals and allows joint training of the full
model, appropriately balancing the trend and the re-
sponses.

� In a challenging application, representative of the current
technological mega-trend of self-monitoring data from
wearable devices, we show our method can meaningfully
estimate the personalized impact of diet on continuous
blood glucose measurements.

This paper is organized as follows. Next section reviews
related work. In Section III, we discuss the components of
the proposed model. Section IV presents results on both sim-
ulated and real-world data, and finally Section V concludes
the paper. The code and the dataset used in the analyses are
available at https://github.com/Guangyi-Zhang/eiv-treatment-
response, which allow the full reproducibility of our results.

II. RELATED WORK

Treatment response: Recurrent neural networks have been
used for estimating treatment effects from time series data,
e.g., [15], [16]. Besides machine learning, the problem of treat-
ment response estimation has been studied in various fields,
including informatics for medicine and social sciences, where
the data-driven approach can bring advantages compared to
experimental trials [17]. Individual-level treatment response pre-
diction has been studied for schizophrenia [18], for Parkinson’s
disease from wearable sensor data [19], and depression [20].
An empirical comparison of classifiers for treatment-response
prediction for chemoradiotherapy appears in [21]. Treatment
response models have also been studies in social sciences,
e.g., [22] and [23].

Mechanistic models: In contrast to the data-driven ap-
proaches used in machine learning, mechanistic models use
substantial knowledge of a specific problem to characterize the
system with differential equations, and inference is done for ex-
ample using filtering algorithms. Similar to our application, [24]
and [25] study blood glucose dynamics, affected by nutrition
and other factors. Other examples are computational models for
the physiological mechanisms of type-2 diabetes [26], and drug
responses of cancer cell lines [27].

EIV models for treatment response: Estimating different
types of regression functions under measument error has been
studied recently [28], [29]. However, little work has focused
on treatment-response estimation with EIV. Examples include
inferring causal directions using EIV without conditioning on
specific treatments [30] and predicting standardized test scores
using student covariates [31]. Article [32] demonstrates the
devastating impact of ingoring EIV for a binary response. An
EIV model has also been used to quantify uncertainty when
detecting treatment changes for liver metastases [33].

None of these works address the problem of estimating the
impact of a multivariate vector of covariates on a continuous
response with measurement error in covariates and uncertainty
in treatment timing, the topic of this paper.

III. METHODS

In this section, we first review EIV models on a general level.
Then we describe the components of our model for person-
alized treatment-response trajectories: a hierarchical prior on
parametric response functions, a Gaussian process for the trend,
and measurement error models. We conclude the section by
discussing the causal interpretation of the model. Throughout,
we present the model in generic terms, but also outline the
specific model used in Section IV-B to estimate the impact of
diet on continuous blood glucose measurements.

Our model is fully Bayesian, yielding uncertainty estimates
for all parameters, essential in scientific applications. Inference
is done using Markov chain Monte Carlo (MCMC) with the
state-of-the-art No-U-Turn (NUTS) sampler [34] implemented
in software PyMC3 [35]. Implementation details are discussed
below and in the Supplement, and can be inspected in full in the
published code.

A. Errors-in-Variables Models

EIV models, a.k.a. measurement error models, are regres-
sion or classification models that, in contrast to most existing
models, account for errors not only in the output variable but
also in inputs [36], [37]. Though commonly neglected, input
mismeasurement may be extremely harmful. For example in
simple linear regression it leads to biased estimates that can
not be corrected for even with an infinite sample, while, on the
other hand, unbiased homoscedastic error in the output variable
only induces additional variability [36]. A graphical model for
a general EIV model is presented in Fig. 1(a), where X∗ and
Y ∗ represent the true values of the inputs and the output, and
X and Y are the corresponding noisy observations. The most
important type of mismeasurement is classical error, where it
is assumed that the error term is independent of the true value.

Except for the simplest case of linear regression, EIV mod-
eling almost always requires auxiliary information or data, e.g.,
instrumental variables or repeated measurements, to correct
for the mismeasurement bias in estimation. However, without
additional data, Bayesian EIV modeling is currently the most
powerful and flexible approach, as it allows incorporating addi-
tional information in the form of distributional assumptions [37].
In this work, we adopt the Bayesian approach.

Mathematically, the measurement error mechanism is defined
as the distribution of the noisy observed input, X , given the
true unobserved input, X∗. The joint distribution of the model
factorizes accordingly as:

P (X∗, Y ∗, X, Y,Θ) = P (X|X∗, θM )P (Y |Y ∗, θN )

× P (Y ∗|X∗, θR)P (X∗|θE)P (Θ), (1)

where P (X|X∗, θM ) and P (Y |Y ∗, θN ) are called error or
measurement models, P (Y ∗|X∗, θR) is a response or outcome
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Fig. 1. (a) General formulation of the EIV model. For clarity, parame-
ters associated with the distributions are not shown. (b) Proposed model
for personalized treatment-response trajectories. Details of the model
are discussed in Section III.

model, P (X∗|θE) is an exposure model, and Θ = (θM ,
θN , θR, θE) are the corresponding parameters. Bayes theorem
can be used to infer the unknown parameters and unobserved
true values of the variables.

P (X∗, Y ∗,Θ|X,Y ) ∝ P (Θ)

N∏
i

P (Xi|X∗
i , θM )P (Yi|Y ∗

i , θN )P (Y ∗
i |X∗

i , θR)P (X∗
i , θE).

(2)

If the exposure model is noninformative and the measurement
model is symmetric, i.e., P (Xi|X∗

i , θM ) = P (X∗
i |Xi, θM ),

then the Bayesian modeling of classical error is equivalent to
another class of mismeasurement techniques known as Berkson
error modeling [36].

P (X∗, Y ∗,Θ|X,Y )∝P (Θ)

N∏
i

P (X∗
i |Xi, θM )

× P (Yi|Y ∗
i , θN )P (Y ∗

i |X∗
i , θR).

A well-known difficulty with EIV models is that they are
often nonidentifiable [37], i.e. there are more than one set of
values for the unknowns leading to the same model. This can be
understood intuitively by noticing that the model stays the same
if we multiply the linear regression coefficients by a constant
factor and at the same time divide the estimated true values of

inputs by the same factor. Therefore, to achieve identifiability,
some crucial information about measurement model has to be
assumed or estimated, e.g., the variance of a classical additive
error in simple linear regression [36]. The Bayesian paradigm
offers a unique solution to the nonidentifiability of the EIV
models, as long as mismeasurement is modest and the prior is
sufficiently good [38].

B. Model for Personalized Treatment-Response
Trajectories

Notation: A graph of our model for treatment-response tra-
jectories is presented in Fig. 1b. We assume there areN patients,
and a trajectory consisting of a time series of length Gn of the
outcome (e.g. blood glucose) is observed for each individual:

yn = (yn1, . . . , ynGn
)T , n = 1, . . . , N.

These measurements have been taken at times

τn = (τn1, . . . , τnGn
)T , n = 1, . . . , N.

Furthermore, each patient has Mn observed treatments (e.g.
meals eaten), indexed by m ∈ 1, . . . ,Mn, where each treatment
is characterized by P covariates:

xnm = (xnm1, . . . , xnmP )
T , for all m,n,

and the corresponding recorded treatment times are

tn = (tn1, . . . , tnMn
)T , for all n.

Here, xnm and tnm are assumed to be noisy observations of
the treatment covariates and timings, and their true unobserved
values are denoted by x∗

nm and t∗nm, respectively.
Outcome model: We model the observed outcome trajectory

of individual n, yn, as

yn = Tn +
∑
m

Rnm + e,

where Tn ∈ RGn is a counterfactual trend (i.e. it describes the
evolution of the outcome had the treatment not been taken),
Rnm ∈ RGn is the additive response to the mth treatment, and
e = (e1, . . . , eGn

)T is the vector of errors with ei ∼ N(0, σ2
y).

We note that the sum of the trend and the responses can be viewed
as a trajectory for a ‘clean’ outcome (omitted from Fig. 1b), of
which a version yn corrupted by Gaussian noise is observed.

Response function: Response functions specify how
treatments affect the outcome over time, and they should be
specified to suit the application at hand, balancing flexibility,
interpretability, etc. For example, if interpretability is not needed
and the amount of data is large, non-parametric functions that
learn the shape of the response are attractive. On the other
hand, parametric functions are suitable when data are scarce,
and they are often interpretable, which is valuable in itself but
also helps specifying prior knowledge to improve accuracy.
In the application of learning the impact of meals on blood
glucose (Section IV-B), we model the treatment response using
a bell-shaped parametric function

Rnm := f(Δnm, hnm, lnm)

:= hnm exp

(
−0.5(Δnm − 3lnm)2

l2nm

)
, (3)
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Fig. 2. Alternative response functions. The blue one is used in this
work, while the orange one was used in [8]. The advantage of the blue
response function is that it has only two parameters, both of which have
intuitive interpretations.

where a lag vector Δnm = τn − t∗nm represents the time since
a specific treatment. The shape of this response is shown in
Fig. 2 and it is determined by two parameters hnm and lnm
with straightforward interpretations: hnm is the height of the
response, and lnm is the length-scale which is proportional to
the ‘width’ or ‘duration’ of the response. The main challenge
in our application is sparsity and noisiness of data, with only 13
individuals and on average 10 meals per patient. We also tried
a more flexible three-parameter response used in [8], which
allows a skewed response (see Fig. 2), but this model suffered
from convergence problems, for which reason we selected the
simpler alternative.

In applications it is often of interest to measure how the
response depends on treatment covariates, and therefore we
allow these parameters to depend on the covariates:

hnm = (βh
n)

Tx∗
nm, and

lnm = (βl
n)

Tx∗
nm, for all n,m. (4)

In Equation (4), the coefficient vectors βh
n, β

l
n ∈ RP represent

the personalized impact of each of the P covariates on the
height or width of the response for the nth individual. To
share information across individuals, we introduce a Bayesian
hierarchical prior, see [39], and assume that the personalized
height and length-scale coefficients, βh

n and βl
n, are drawn from

common distributions:

βh
n ∼ NP (β̃h,Σh) and βl

n ∼ NP (β̃l,Σl).

A hyperprior is further placed on the mean parameters of these
distributions:

β̃h ∼ NP (0, Σ̃h) and β̃l ∼ NP (0, Σ̃l)

The hierarchical prior introduces shrinkage and facilitates esti-
mation of the personalized coefficients with limited data. Further
details are given in the Supplementary material.

Counterfactual trend: A counterfactual trend represents the
outcome assuming no treatment has been taken. It has to be
sufficiently flexible to handle any variation in the outcome that
is not accounted for by the treatments. In this paper, we model the
trend Tn(t) for individual n using a Gaussian Process (GP) [4]:

Tn(t) ∼ GP (0, k(t, t′|θTn)) ,
where θTn are parameters associated with the kernel func-
tion k(x, x′|θTn). GPs are non-parametric regression models

with well-known closed-form formulas for posterior estimation,
which they inherit from the Normal distribution by assuming all
training and test data follow a joint Normal distribution. For
example, if

Sn = yn −
∑
m

Rnm

is the residual of the outcome after subtracting the impact of the
treatment responses, then

Tn(t)|Sn ∼ N(μ∗,Σ∗), where

μ∗ = k(τn, t)
TK(τn, τn)

−1Sn, and

Σ∗ = k(t, t)− k(τn, t)
TK(τn, τn)

−1k(τn, t).

We refer the reader to [4] for more details about GPs. As
the kernel, we use the sum of Squared Exponential (SE) and
constant kernels, where the former equips the GP with desired
smoothness, and the latter enables meaningful extrapolation to
regions where no input points have been observed. To speed up
computation, we use a sparse GP [4] instead of a full GP, which
samples a small set of inducing points uniformly from τn to
achieve a low-rank approximation of K(τn, τn) and its inverse.

When jointly training the treatment response functions and
the trend, the trend must be properly regularized, not to explain
away the treatments. We address this by using priors that
discourage very short GP length-scales. This corresponds to the
assumption that treatment effects dominate short-term variation
in the response immediately after the treatment. If there are
other strong causes of short-term variation, not represented by
the treatments, then a more flexible GP trend could improve
the short-term predictions, but prevent the estimation of the
treatment effects. A detailed prior specification is provided in
the Supplementary material.

Measurement models: Measurement models describe error
in observations. With self-reported data both covariates and the
timing of a treatment may be uncertain. To account for the
uncertainty in treatment timing, we assume:

tnm ∼ N
(
t∗nm + dn, (σ

t
n)

2
)
, for all n,m.

In words, the observed time tnm is obtained from the true time
t∗nm by shifting it with a bias term dn, and adding Gaussian
noise. The bias term dn represents reporting habits of different
individuals. For example, in the blood glucose application in
Section IV-B, some individuals may systematically report their
meal after eating, while others may do this before eating.

Different models are possible for treatment covariates, de-
pending on the assumptions and data available [37]. Here we
assume a simple perturbation on the amount of treatment:

xnm = x∗
nmδnm, where

δnm ∼ LogNormal(0, σ2
x), for all n,m. (5)

The coefficient δnm represents the error in the mth treatment of
the nth individual. Intuition in the blood glucose application is
that users are able to report correctly what they have eaten, but
not how much. While the model (5) captures our understanding
of the type of mismeasurement expected in our data, more
complicated models could also be justified, but they would
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Fig. 3. a) Graphical model for a cross-sectional case, showing action
(A), response (Y ), and observed and hidden confounders (Z1 and Z2);
b) over-time response with a single treatment, where confounders Z can
be either observed or hidden.

require stronger additional assumptions to resolve the noniden-
tifiability of the EIV models. The model in (5) is identifiable
and can be trained with relatively little data, as we demonstrate
in Section IV. Further details, e.g., prior distributions for x∗

nm,
t∗nm, and dn, are provided in the Supplementary material.

C. Causal Assumptions and Interpretation

We briefly review results related to estimation of causal effects
from observational data on treatment-response trajectories [8],
[40], [41], to enable a user of our method to judge to what extent
the effects found may or may not be interpreted causally. The
causal effect of an action A (e.g. a treatment) on Y is defined
as P (Y = y|do(A = a)), where the do(·) operator represents a
manipulation of A to value a. The key assumption is that there
are no unmeasured confounders (NUC), such as Z2 in Fig. 3a.
Without Z2, the causal effect of A on Y can be estimated from
observational data using the adjustment formula:

P (Y = y|do(A = a)) =
∑
z1

P (Y = y|A = a, Z1 = z1)P (Z1 = z1).

Time-varying treatments (Fig. 3b) further face an issue of
treatment-confounder feedback [41], which means that hidden
confounders do not have to affect A directly to create a spurious
correlation between an action and future observations. A gener-
alized adjustment formula, g-formula [41], can still be used to
calculate P (Ȳ≥t|do(At−1, At)).

A useful result, applicable with our model, is to use the model
to estimate P (Ȳ≥t|Ā≤t, Ȳ<t) from observational data. Then,
assuming NUC, the following holds [41]:

P (Ȳ≥t|do(At), Ā<t, Ȳ<t) = P (Ȳ≥t|Ā≤t, Ȳ<t). (6)

In words, conditionally on the history of treatments and the
outcome (and relevant observed confounders not shown in the
formula), the causal impact of the most recent treatment on
future outcomes can be estimated from observational data. This
short-term effect [41] can be used, e.g., to select between alter-
native treatments available at a certain point in time, when the
relevant history of the individual is known.

In Section IV-B we study the impact of diet on blood glucose.
Based on domain knowledge, we know that diet is a prominent

cause for changes in blood glucose. Furthermore, in our data
we often see a rapid increase and decrease in glucose after
a meal. Therefore, it is plausible to assume that meals affect
blood glucose causally. In general, causal assumptions can not
be verified from observational data, and it is possible that some
confounder affects both glucose and diet. The effect of any
such confounder is expected to be small compared to diet.
Hence, causal interpretation of our results seems reasonable,
but assertions of this can not be made. With modern wearable
self-monitoring devices it will be possible to measure all relevant
factors that could affect blood glucose much more comprehen-
sively, and the NUC assumption is reasonable. Our model is
straightforward to extend to such data.

IV. RESULTS

In this section, we first validate our model using simulated
data, and then apply it to a real-world dataset comprising diet
and continuous blood glucose measurements. Throughout, we
compare four models, in an increasing order of complexity (later
models include the previous as special cases):

� Mind : Separate models for individuals.
� Mhier : Model with the hierarchical prior for the re-

sponses to share information across individuals.
� Mhier+time : Time uncertainty included.
� Mhier+time+cov : Uncertainty in covariates included.

A. Validation and Identifiability of the Models With
Simulated Data

As the first simple experiment we study the identifiability of
the EIV model when there is measurement error in covariates.
We simulate artificial data using a toy model specified as the
sum of a linear trend and the parametric treatment response from
Equation (3). The dimension of treatment covariates is here set
to 2, and each input is perturbed with an additive term drawn
from N(1, 0.22). We analyze the data using the EIV model that
assumes measurement error, and a model that disregards the
noise in the covariates. Results and details for this simple setup
are presented in the Supplementary material, and they show that
the EIV model recovers all true inputs and effect sizes with high
accuracy, while the model that neglects the noise leads to biased
coefficient estimates and wide confidence intervals.

To study the accuracy and identifiability of our method in
a more realistic simulated setup, we first fit our model to the
real-world data from Subsection IV-B, and use the fitted model
to simulate additional data for two individuals. We perturb half of
the inputs according to Equation (5) and let the model use the per-
turbed inputs and try to recover the true inputs and parameters.
The performance of all models depends on the relative contri-
butions of the trend and responses, and we scale up the response
with a factor of 5, which facilitates a meaningful comparison.

Results for one individual are shown in Fig. 4. Results for
the other individual, and replicated results for both, initialized
with a different seed to assess variability in training, are shown
in the Supplement. We see that the direction of each non-zero
perturbation is estimated correctly (left panel), also for the other
individual (Supplement). However, if there is no perturbation,
non-zero perturbations may still be learned, introducing noise.
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Fig. 4. Simulation results. Left: true and estimated perturbations for one individual (the other one shown in Supplement); Center: true and
estimated coefficients (mean +/− SD) for the height of the response for the 5 covariates; and Right: Cosine similarity of concatenated height
coefficient vectors from all individuals against the true value with different levels of perturbation (larger value is better). Two different prior SDs, 0.1
and 0.2, were considered for model Mhier+time+cov .

Fig. 5. Visualization of the 3-day time series for one patient. Red and brown dots represent glucose markers in the training and test sets,
respectively. Meals are indicated by vertical bars, colored according to amounts of different nutrients in the meal. The green curve is the final fitted
trajectory, and it is a combination of the dashed blue line, a counterfactual trend, and the mean of red lines, which are posterior samples of treatment
responses. Horizontal arrows associated with the meals show the estimated difference between true and observed meal times.

This trade-off between flexibility and overfitting highlights the
importance of carefully validating the model to suit the amount
and complexity of data. The regression coefficients are estimated
accurately by the EIV model (center), and the benefit from using
EIV increases when the size of the perturbation increases (right).
However, a too loose EIV prior (large SD) may actually harm the
performance by introducing noise, when the true perturbation is
small.

B. Application to Continuous Blood Glucose Trajectories

The data set contains blood glucose measurements and dietary
records for 13 non-diabetic individuals across three days. The
anonymized data were provided by the Obesity Research Unit
at the University of Helsinki. The study was approved by the
Ethics Committee of Helsinki and Uusimaa Hospital District
(HUS/1706/2016) and by Helsinki University Hospital research
review board (HUS269/2017). The real-valued blood glucose
measurements were collected by a portable continuous glucose
monitoring system at approximately every fifteen minutes. The
dietary records consist of contents and times of all meals eaten
during the 3-day study period. Each meal has been processed into
amounts of five nutrients: starch, sugar, fiber, fat, and protein.
Our goal is to learn how these nutrients influence blood glucose.
Both meal times and the amounts of food eaten are uncertain, as
they are reported by the users, which motivates the use of EIV
models. The data (and results) for one individual are visualized
in Fig. 5, and for all other individuals in the Supplement. Some
markers may be missing due to device errors or when a user has
removed the device.

Metrics: The models are trained using data from the first two
days, and the third day is used for testing. The performance of
treatment-response estimation is quantified using five metrics
Mi, i ∈ {1, . . . , 5}. The first two metrics quantify the relative
contributions of the trend and treatment responses in the model
fitted to the training data. In detail, M1 is the proportion of
variance explained by the trend:

M1 =
1

N

∑
n

V ar(Tn)
V ar(yn)

.

M2 indicates how much more is explained when also the treat-
ment responses are included:

M2 =
1

N

∑
n

V ar (Tn +
∑

m Rnm)

V ar(yn)
− M1.

A large M1 means that the outcome is mostly explained by the
trend, and a small M2 represents an inactive response.

Metrics M3 and M4 are the mean squared errors in the training
and test data. They are calculated for all patients for whom M2

indicates that the response has been properly learned. Thus one
patient, with M2 ≈ 0.05 for the baseline model Mhier is ex-
cluded from MSE calculations (other patients have M2 > 0.3).

Because M4 measures pointwise error, it may be misleadingly
high even when the shape of the response is estimated perfectly,
if its location is inaccurate. Metric M5 is insensitive to this
inaccuracy of location, and it measures the absolute error in
variance between predicted response and outcome:

M5 =
1

N

∑
n

∣∣∣∣∣V ar

(∑
m

Rnm

)
− V ar(yn)

∣∣∣∣∣
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TABLE I
COMPARISON OF MODELS USING THE REAL-WORLD GLUCOSE DATA. METRICS M1 TO M5 ARE DEFINED IN THE TEXT. P-VALUE TESTS IF OTHER MODELS

ARE BETTER THAN Mhier IN TERMS OF M4. PVE: PROPORTION OF VARIANCE EXPLAINED, LOO: LEAVE-ONE-OUT CROSS-VALIDATION, PLOO: THE
ESTIMATED EFFECTIVE NUMBER OF PARAMETERS, SE-LOO: THE STANDARD ERROR IN THE LOO COMPUTATIONS

Fig. 6. Demonstration of time uncertainty modeling for one individual
for one day. Top: Results using Mhier+time, where arrows indicate
the estimated difference between the true and observed meal times;
Bottom: Results using Mhier .

Because our interest is in estimation of the treatment response,
and not the trend, we calculate all metrics in windows spanning
from one hour before to three hours after each meal.

We use the Mann–Whitney U-test [42] to test if other models
are better than Mhier in terms of test error M4. The reason
for using Mhier as the baseline is our argument that EIV
modeling is beneficial when estimating treatment-response tra-
jectories, and Mhier is otherwise the same as Mhier+time and
Mhier+time+cov except that it the does not include the EIV
components. We also compare the models using the state-of-the-
art information criterion for predictive accuracy, leave-one-out
cross-validation (LOO) [43].

Results: Result are shown in Table I. We see that all models
outperform the non-hierarchical baseline Mind by a large mar-
gin. Furthermore, taking treatment time inaccuracy into account
in Mhier+time improves significantly over the non-EIV model
Mhier. In fact, estimation of the response fails completely for
some individuals without time EIV; the results with and without
time uncertainty modeling for one such case are shown in Fig. 6.
On the other hand, taking uncertainty in covariates into account
does not notably improve accuracy, which is likely caused by a
combination of increased flexibility and limited amount of data.
Overall, models with EIV component outperform the model
without EIV in all metrics.

Interpretability of personalized treatment response is also of
great interest; for instance, understanding how an individual’s

Fig. 7. a) Impact of different nutrients on the area under the response
curve, ΔAnp, averaged across the patients; b) Posterior uncertainty
(mean +/- SD) of the personalized coefficients representing the impact
of starch on the height of the response.

glucose level changes if she eats one more unit of sugar. The
overall goal of glucose monitoring is to keep the glucose level
in a given range, and both the amount of excess and the
duration of the hyperglycemic state are clinically important.
Hence, a sensible parameter to consider is the impact of dif-
ferent nutrients on the area of the response curve. Though
this is not a parameter of our model, it is straightforward
to derive the personalized increase in response area due to
one unit increase of a specific nutrient ΔAnp, n = 1, . . . , N ,
p = 1, . . . , P , using the estimated coefficients for height and
width, which are modeled explicitly (see Supplement for a
derivation). Overall, starch and sugar have the strongest positive
impact on glucose (Fig. 7a), consistent with the understanding
that carbohydrates increase blood glucose [44]. Protein, on the
other hand, has a negative impact, which has been observed
before and might represent a complex short-term interaction
between nutrients [45]. An advantage of our model is that we
get personalized coefficients for each individual together with
their associated uncertainties, as shown for starch in Fig. 7b,
and for the other nutrients in the Supplement. Importantly,
models with EIV have much narrower confidence intervals for
the estimated effects, meaning that they are estimated more ac-
curately, thanks to the increased flexibility that allows fitting the
complex data.
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V. CONCLUSION

We presented a hierarchical EIV model to estimate person-
alized treatment-response trajectories when the covariates and
timings of the treatments were imprecise. Our model had su-
perior performance in simulated and real-world data on various
metrics, and yielded interpretable and meaningful estimates of
the personalized effects of treatment covariates, valuable in ap-
plications. Future directions include studying the identifiability
of EIV models in the context of continuous treatment-response
trajectories further and extending the model to include inter-
actions between covariates and other unmeasured confounders,
such as physical activity, for causal completeness.
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