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Abstract 

 

This paper presentes a process-monitoring scheme utilising adaptive self-organising maps (SOM) to detect 

process conditions that lead to the fouling of a caliper sensor in a board machine. The scheme is based on 

mapping on a SOM the process measurements and the calculated variables which provide insight into the 

chemical phenomena involved in fouling to classify faulty process conditions. The time-variant nature of 

the board making process was taken into account by regularly re-training the SOM. The monitoring scheme 

is demonstrated with industrial data, and the results are presented and discussed. 

© 2012 Elsevier Ltd. All rights reserved. 
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1 Introduction 
 

The increasing complexity of modern production processes, intensifying global competition, and 

environmental regulations are posing enormous challenges to the operation of production plants. They must 

run safely and efficiently, without any disturbances in operation or in the quality of their products. 

 

Quality is particularly important in the pulp and paper industry, where high quality provides a significant 

competitive edge in the global markets. Quality control systems are therefore of great importance in modern 

paper- and board-making processes. Such systems have to be available for over 99% of the time in order to 

maintain uniform paper or board quality and to minimise production losses. Online measurements of the 

main quality variables are an essential part of quality control systems. As a consequence, the operation of 

these measurements at all times is a key factor in successful online control. 

 

One of the most important quality variables in board making is the thickness of the board, its caliper. Caliper 

sensor types can be divided into two categories: magnetic and optical sensors. Magnetic sensors have two 

plates that contact the paper web on both sides and the distance between the plates is measured using 

magnetic reluctance (Tornberg, 1999). The main advantage of magnetic sensors is accuracy, but their 

contact with the web causes problems such as wear, web marking, and fouling. Optical caliper sensors, 

using either laser or light-based distance measurement, are a relatively new invention and several different 

constructions have been brought to the market in recent years (Williamson, 2011). Semi-contacting optical 

sensors, where the paper web is in contact with only one side of the web have been presented by ABB 

(Naimimohasses & Hellstrom, 2009) and Metso (Graeffe & Nuyan, 2005). ABB’s sensor is based on a 

confocal displacement technique while Metso’s sensor uses distance measurement based on laser 

triangulation. Completely non-contacting optical sensors which use confocal displacement and laser 

triangulation techniques have been developed by Voith (Voith Paper Automation, 2010) and Honeywell 

(Nakano, 2006), respectively. Optical caliper sensors have the obvious benefits of reduced web marking 

and fouling, but they are more expensive than magnetic sensors. Nevertheless, the magnetic sensor type 



remains the industrial standard in online caliper measurement (Williamson, 2011), and the related problems, 

such as fouling, are commonplace in the paper and board mills. 

 

The fouling problem can be tackled without investing in new equipment by looking for solutions that make 

use of fault diagnosis and process monitoring. According to Isermann (2006), process monitoring is 

considered the continuous on-line task of determining the conditions of the process. This is typically 

achieved by means of process history data -based methods (see e.g. Venkatasubramanian, Rengaswamy, 

Kavuri, & Yin, 2003), such as self-organising maps (SOM). SOMs were introduced by Kohonen (1982), 

and they have a wide variety of applications in different fields (Kangas & Kaski, 1998) such as visualisation 

or voice and image analyses. They have also been successfully applied to process monitoring tasks such as 

the analysis of a wave soldering process (Liukkonen, Havia, Leinonen, & Hiltunen, 2009), Internet-based 

remote supervision (Domínquez, Fuertes, Reguera, Díaz, & Cuadrado, 2007), fault diagnosis of an ethylene 

cracking process (Kämpjärvi et al., 2008), and monitoring of a flash smelting furnace (Jämsä-Jounela, 

Vermasvuori, Endén, & Haavisto, 2003), for instance. 

 

In this paper, a SOM is utilised to monitor caliper sensor fouling in a board machine. The objectives of this 

case study are thus to study under which process conditions fouling occurs and to utilize a self-organising 

map to monitor the process and to estimate when fouling will occur. 

 

This paper is organised as follows. Section 2 describes self-organising maps and their implementation. 

Section 3 describes the case process and the caliper sensor fault in question. The testing procedure and the 

results of the monitoring tests are presented in Sections 4 and 5, respectively followed by the conclusions 

in Section 6. 

 

2 Description of self-organising map 
 

A self-organising map is a type of artificial neural network that is trained using unsupervised learning to 

produce a low-dimensional representation of the input space of the training samples, called a map. A SOM 

produces a similarity graph of the input data by converting the nonlinear statistical relationships between 

high-dimensional data into simple geometric relationships on a low-dimensional display, usually a two-

dimensional grid of nodes. Therefore, SOM compresses the data, but preserves their topological properties 

(Kohonen, 1998). 

 

A SOM consists of a number of neurons or nodes that are described with a d-dimensional weight vector 

(sometimes referred as a codebook vector) 

 

𝐰 = [𝑤1, 𝑤2, … , 𝑤𝑑],          (1) 

 

where d denotes the dimension of the input data vectors (number of variables). The nodes are organised in 

the map according to a specific topology. The SOMs are typically presented as two-dimensional sheets in 

which the nodes are arranged in a rectangular or hexagonal lattice. 

 

The self-organising map is trained by adapting the weights of the nodes to match the input data. The training 

can be either sequential training or batch training. Training basically consists of first determining the closest 

map units of the data samples, called the best-matching units (BMUs), and then updating the weight vector 

each BMU and its neighbouring nodes. The fundamental difference between the different training 

procedures is that the weights are updated after each sample in sequential training whereas the weights are 

updated once per epoch in batch training. The distance to the BMU c for the data sample 𝐱 ∈ ℝ𝑑 is 

determined as follows: 

 



‖𝐱 − 𝐰𝐜‖ = min
𝑖

{‖𝐱 − 𝐰𝐢‖} ,     𝑖 = 1, … , 𝑚,       (2) 

 

where ‖∙‖ is a distance measure, typically Euclidean, and m is the number of map nodes. 

 

After determining a BMU, the weight vector of the BMU and the neighbouring nodes are updated according 

to an update rule which typically has the following form: 

 

𝐰𝑖(𝑡 + 1) = 𝐰𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝐱(𝑡) − 𝐰𝑖(𝑡)],       (3) 

 

where t denotes time, ℎ𝑐𝑖(𝑡) is the neighbourhood kernel around the BMU and 𝛼(𝑡) is the learning rate. 

The neighbourhood kernel defines the effect of the update on the neighbouring nodes. The shape of the 

neighbourhood kernel and its radius determine the change of the weights of the nodes to be updated in each 

training step. Typically, the following Gaussian neighbourhood function is used: 

 

ℎ𝑐𝑖(𝑡) = 𝑒−𝑑𝑐𝑖
2 /2𝜎𝑡

2
,          (4) 

 

where 𝑑𝑐𝑖 = ‖𝐫𝑐 − 𝐫𝑖‖ is the distance between map nodes in the grid and 𝜎𝑡 is the neighbourhood radius 

defining the width of the function. 

 

In the batch training procedure, the BMUs are first calculated for the whole data set, and then the weights 

of the nodes are all updated at once. The data set is partitioned according to the Voronoi regions of the map 

units. That is, each input data vector x belongs to the data set of the map unit which it is closest to. Then 

the sum of the vectors in each Voronoi set is calculated as follows: 

 

𝒔𝑖(𝑡) = ∑ 𝐱𝑗

𝑛𝑉𝑖

𝑗=1
,          (5) 

 

where 𝑛𝑉𝑖
 is the number of samples in the Voronoi set of the node i. The new values of the weight vectors 

are calculated as according to 

 

𝐰𝑖(𝑡 + 1) =
∑ ℎ𝑖𝑗(𝑡)𝒔𝑗(𝑡)𝑚

𝑗=1

∑ 𝑛𝑉𝑗
(𝑡)ℎ𝑖𝑗(𝑡)𝑚

𝑗=1

.         (6) 

 

The SOM algorithm implementation (SOM Toolbox, Vesanto, Himberg, Alhoniemi, & Parhankangas, 

2000) used in this case study uses the batch training algorithm presented above. However, in order to reduce 

memory consumption, the best-matching units for each input data sample are not calculated all at once but 

in several batches. Nevertheless, the BMUs corresponding to each input data sample are determined before 

any adjustments to the weights are made. 

 

The SOM is trained in two phases. In the rough training phase, which is performed first, a smaller number 

of training epochs and a larger neighbourhood radius are used than in the following fine-tuning phase. 

 

3 Description of the process and the caliper sensor fouling fault 
 

3.1 Board making process 

 

The board making process begins with the preparation of raw materials in the stock preparation section. 

The different types of pulp are refined and blended according to a specific recipe in order to achieve the 

desired composition and properties for the board grade to be produced. The consistency of the stock is 

controlled by the addition of dilution water. 



 

The blended stock is pumped from the stock preparation to the short circulation by a pump that controls the 

basis weight of the board. In the short circulation, the stock is first diluted in the wire pit to the correct 

consistency for web formation. The diluted stock is then cleaned and screened before passing into the head 

box, from where it is sprayed onto the wire in order to form the paperboard web. 

 

The excess water is first drained through the wire and further removed by pressing the board web between 

rolls in the press section. The remaining water is evaporated in the drying section using steam-heated drying 

cylinders. After the drying, the board is calendered in two phases in order to achieve the desired surface 

properties. 

 

The important quality variables, such as basis weight, moisture, and caliper are measured after the calender 

section with a measurement scanner that traverses the board web. 

 

3.2 Caliper sensor fouling fault 

 

At the case board machine, caliper sensor fouling is a difficult problem, as reported by Jämsä-Jounela et al. 

(submitted for publication). In order to maintain the functionality of the quality control system, the sensor 

must be cleaned on a regular basis. Otherwise, fouling impedes the online control of the caliper profile and 

the monitoring of board caliper in the machine direction.  

 

The caliper sensor is located in the measurement scanner. It consists of two plates that are in contact with 

each side of the web, see Fig. 1. The board travels between the plates and the distance between the plates 

can be measured by measuring the magnetic reluctance caused by the board caliper. Due to this 

construction, the sensor is subject to fouling. Dirt builds up on the sensor plates and disturbs the 

measurements. 

 

Caliper measurements will drift significantly when fouling occurs. Fig. 2 shows the measurement data for 

30 h in a faulty period. The figure clearly displays that the measured value increases with time, while the 

setpoint of the caliper was kept constant over the whole period. Between the cleanings of the sensor at hour 

1 and at hour 27, the slope of the drift was approximately 1.2 lm/h. 

 

 
Fig. 1. Cross-sectional diagram of the caliper sensor. Modified from Anon (2009) 

 



According to maintenance experts, additional problems are caused by the flaking of the dirt. This typically 

takes place when the thickness of dirt layer reaches approximately 20 lm. This then causes serious 

disturbances in the measurements. 

 

To facilitate the mathematical analysis of the caliper sensor fault, a qualitative representation of the fault 

was needed. To this end, a binary variable called the fault indicator was developed based on the maintenance 

data of the board machine. According to the recorded maintenance actions on the caliper sensor, the fault 

indicator was given the values 1 or 0 to indicate faulty and normal operation, respectively. The measurement 

data of the caliper sensor was also examined to identify the periods with positive slopes, as shown in Fig. 

2. 
 

 
Fig. 2. Effect of the caliper sensor fouling. Data for 30 h, showing the evolution of the caliper sensor readings between 
two cleanings (at hour 1 and at hour 27) 

 

4 Experiment description 
 

4.1 Testing procedure 

 

The experiment was conducted as follows: First, the monitored variables were selected, and the calculated 

variables providing insight into the fouling phenomenon were developed. Next, a SOM was trained using 

a data set that contained faulty and normal operation data. Finally, the monitoring tests were carried out by 

introducing the test data sets to the SOM and calculating the best-matching units for each sample. The 

process conditions leading to caliper sensor fouling were detected by observing when faulty samples of the 

test data appeared on the map in similar locations to those of the training data. 

 

4.2 Selection of variables and development of calculated variables 

 

Variable selection is the most critical task when developing process monitoring systems. In this study, the 

variables were selected based on a correlation analysis, a SOM analysis, and process knowledge. 

 

The correlation analysis aimed at exploring a large number of process variables to produce a set of 

candidates for further examination. The correlation analysis indicated that the web temperature (affected 

by the calender temperature, etc.) or the temperature surrounding the measurement scanner have an effect 

on fouling. In addition, certain chemicals used in the board production appeared to correlate with the fault. 

 

Next, to confirm the results of the correlation analysis, the set of variable candidates was analysed using 

the SOM to study the interactions between the variables and their effect on the fouling phenomenon. 



It was discovered that neutral size is the main chemical affecting fouling (see also Tikkala, Myller,  

Kulomaa, Hämäläinen, & Jämsä-Jounela, 2011). 

 

Finally, to better take into account the chemical phenomena in fouling, the variable list was complemented 

with calculated variables related to the size chemical. The calculated variables are used to incorporate 

process knowledge into the monitoring methods (Komulainen, Sourander, & Jämsä-Jounela, 2004). The 

first calculated variable R describes the chemical reaction between size molecules and wood fibres with an 

exponential function resembling the Arrhenius equation for the reaction rate constant. According to Neimo 

(1999), the reaction of size molecules with fibres is favoured by high pH. Therefore, the exponential term 

is multiplied by the pH of the stock as follows: 

 

𝑅 = 𝑒−1/𝑇𝑤 ∙ pH,          (7) 

 

where 𝑇𝑤 is the temperature of the web. 

 

The second calculated variable, C, provides insight into curing, i.e. orientation phase, of the size molecules. 

Curing is favoured by high temperature and impeded by the moisture of the web (Neimo, 1999), leading to 

the following expression for C: 

 

𝐶 =
𝑇𝑊

𝑀
,           (8) 

 

where M is the moisture of the web. 

 

The last calculated variable S describes the starch ratio of the stock. Since the amount of starch has a positive 

effect on the adsorption of the size particles (Neimo, 1999), S was defined as 

 

𝑆 =
𝐹𝑆

𝐹𝑡𝑜𝑝
,           (9) 

 

where 𝐹𝑆 is the starch flow and 𝐹𝑡𝑜𝑝 is the stock flow for the top layer. 

 

The final list of variables for the SOM monitoring is presented in 

Table 1. 

 
Table 1 
List of variables for the SOM analysis 
# Variable  Description 
1 F  Caliper control error (cv-sp) 
2 dF  Filtered derivative of F 
3 R  Reaction of the size molecules and fibres 
4 C  Curing of the size molecules 
5 S  Adsorption of size particles 
6 Tcal  1st calender thermos roll temperature 
7 P0  Zero-pressure level of the secondary hood 
8 TH  Hood ventilation air temperature 
9 FWS  Wet strength size flow 
10 FS  Starch flow 
11 FNS  Neutral size flow 
12 FRS  Retention starch flow 
13 FRA  Retention agent flow 
14 TW  Temperature of the web 



 

 

4.3 Data preparation 

 

For training and testing purposes, six data sets were collected from the board machine and prepared. Each 

data set contained one month of data for the specific board grades with a sampling time of five minutes. 

The data sets consisted of 1200–3900 samples corresponding to 100–325 h of operation, as listed in Table 

2. 

 
Table 2 
Data sets for the SOM monitoring tests 
Data set  # of samples  Hours  % of faulty data 
D1  1521   127  56.7 
D2  2254   188  51.9 
D3  1291   108  63.5 
D4  2687   224  31.6 
D5  2937   245  9.8 
D6  3907   326  34.8 

 

 

The data was prepared by removing the non-production data, i.e. shut-downs and web breaks, and the 

outliers and by normalisation. The non-production data was removed by excluding data segments in which 

the production rate had a zero value. Outliers were removed manually by observing the data and by 

replacing the diverging values with the average of its neighbours. Finally, the data was normalised to reduce 

the effect of the measurement signals having different magnitudes. The prepared training data comprising 

the data sets D 1 and D2 is presented in Fig. 3. 

 

 
Fig. 3. Training data for the SOM. Data sets D1 and D2 

 



The data samples were also labelled in order to separate the faulty operation from the normal operation. 

The labels for each sample were determined based on the fault indicator variable. Samples falling into faulty 

periods (fault indicator = 1) were labelled ‘f’ and the samples representing normal operation were labelled 

‘n’. The labels were used to study the distribution of faulty and normal samples on the SOM. 

 

4.4 SOM training parameters 

 

The SOM for the monitoring tests was trained using an algorithm implemented for this purpose. The 

parameters used in the training SOM are listed in Table 3. The map size m was determined according to 

suggestions given in Vesanto et al. (2000). In addition, the number of training epochs and neighbourhood 

function radii were based on the default values in the literature (Vesanto et al., 2000) and were calculated 

according to the data and the size of the map. The map size was calculated as follows 

 

𝑚 = ceil(5√𝑛),           (10) 

 

where n is the number of samples in the training data. The map dimensions were then calculated using the 

eigenvalue decomposition of the training data matrix. The ratio of height 𝑚ℎ to width 𝑚𝑤 of the map was 

determined as the ratio of the largest and the second largest eigenvalues. For the SOM used here, the map 

was found to consist of m = 77 nodes organised in an 11-by-7 rectangular grid. 

 
Table 3 
Parameters of the SOM training 
Parameter Description     Value 
m  Map size     77 
mh, mw  Map dimensions     [11, 7] 
  Initialization     Linear 
  Training algorithm    Batch 
  Number of training epochs, rough training  1 
  Number of training epochs, finetuning  1 
hci  Neighbourhood kernel function   Gaussian 
σtr  Neighbourhood radius, rough training  1.375 
σtf  Neighbourhood radius, finetuning   1 

 

 

The SOM was initialized by using a linear initialisation in which the initial map weight vectors lay in the 

subspace spanned by the two largest eigenvectors of the input data. 

 

The lengths of the training phases, i.e. rough training and finetuning, were determined based on the size of 

the map and the amount of training data. A suggestion given in Vesanto et al. (2000) first defines the ratio 

of the number of map units m to the number of observation in the training data n as follows: 

 

𝜉 = 𝑚/𝑛.           (11) 

 

As a result, the used training length was 20 ∙ 𝜉 of which 4 ∙ 𝜉 was for rough training and 16 ∙ 𝜉 for fine-

tuning. 

 

The neighbourhood function used by the algorithm is a Gaussian kernel function, see (4). Its radius was 

separately defined for each training phase. Typically, a larger neighbourhood radius is used in the rough 

training than in the finetuning phase. For the rough training phase, the neighbourhood radius was 

determined as follows: 

 



𝜎𝑡𝑟 = max (1, max ([𝑚ℎ 𝑚𝑤])/8).        (12) 

 

According to (12), the rough training neighbourhood radius was determined to be 𝜎𝑡𝑟 = 1.375, and 𝜎𝑡𝑓 =

1 was used as the fine-tuning phase radius. 

 

In order for the SOM to adapt to the varying conditions of the board machine process, the SOM was re-

trained after testing with each data set. The re-training phase consisted of one finetuning step, where the 

weights of the previous map were given as initial values for the new one and a short neighbourhood radius 

was used, 𝜎𝑡𝑓 = 1. 

 

5 Monitoring results 
 

The monitoring tests were carried out as follows. First, a SOM was trained using D1 and D2, and the set of 

faulty map units F, indicating the faulty regions of the map, was identified. Next, D3 was introduced, and 

the BMUs for each sample were computed. The samples, whose BMUs belonged to F were associated with 

the faulty process conditions. Finally, the map was re-trained using D2 and D3, and the tests were carried 

out using D3. The rest of the data was treated similarly. 

 

Fig. 4 illustrates the results of the SOM training using the data sets D1 and D2. The top left panel of the 

figure, the unified distance matrix (U-matrix), displays the clustering of the training data, where dark 

colours indicate short distances between the data samples. The single variable maps describe the distribution 

of high and low values of each variable on the map. Finally, the bottom right panel shows the distribution 

of faulty and normal data on the map. A major cluster of faulty samples is located in the middle of the left 

hand side of the map. In addition, a minor faulty cluster is located in the bottom left corner of the map. In 

conclusion, the effects of the temperature variables and the chemicals are clearly visible in Fig. 4. 

 

The results of the monitoring tests using the SOM are presented in Fig. 5, where the panels from top to 

bottom show the results for the data sets D3, D4, D5, and D6, respectively. To reduce noise and false alarms, 

the estimated state has been filtered using a moving average filter with a window length of 5 samples. By 

means of the comparison presented in Fig. 5, it can be confirmed that the SOM gives a rather good estimate 

of the actual process conditions. Caliper sensor fouling is detected in most of the cases. Especially when 

fouling has been occurring for a longer time period, as demonstrated with the data sets D3 and D6, the SOM 

is able to detect the conditions correctly. Difficulties with the detection however arise in shorter faulty 

periods. 

 

The performance of the SOM is summarised by computing the rates of correctly estimated states, falsely 

estimated states and uncertain states; see Table 4. Based on the monitoring tests, the SOM is on average 

able to estimate the state of the process correctly in over 70% of the time. The rate of falsely estimated 

states is rather low, on average below 20%. 

 

The perceived errors may result from the fault indicator, which has been created based on the dates of the 

maintenance reports and then confirmed by visual inspection of the data. As a result, the fault indicator 

might not be exactly aligned with actual fouling. 

 
Table 4 
Results of the monitoring tests using the SOM 
    D3(%)  D4(%)  D5(%)  D6(%) 
Correct process states  61.7  67.0  86.2  19.8 
False process states  19.0  29.0  10.8  19.8 
Uncertain process states  19.3  4.0  3.0  10.3 

 



 
Fig. 4. Overview of the SOM analysis for the training data: U-matrix, single variables maps and distribution of the 
faulty and normal operation samples 
 

 
Fig. 5. The monitoring results using the SOM. From top to bottom: D3, D4, and D6 



6 Conclusion 
 

In this study, a SOM-based monitoring scheme was developed for caliper sensor fouling on a board 

machine. Process measurements and calculated variables which describe the chemical phenomena involved 

in fouling were monitored and the state of the process was determined based on the classifications provided 

by the self-organising map. The scheme was tested with industrial data collected from the plant and its 

performance was evaluated.  

 

The obtained results are promising. They show that the SOM is able to detect the conditions leading to 

fouling of the caliper sensor. This means that an indicator can be developed which informs the operators of 

the process of conditions in which it is likely to develop problems in caliper measurements. The operators 

can then take counteractions by scheduling maintenance or by changing the operating point if possible. 

 

In a future work, the results can be improved by acquiring data that is more accurate on the fouling 

phenomenon itself. Information such as the rate of fouling in different operating conditions can be obtained 

by means of regular inspections of the caliper sensor to measure the dirt layer adhering to the sensor 

surfaces, for instance. Such knowledge would enable a more accurate classification of process conditions. 

In addition, the calculated variables can be improved through a more rigorous study of the chemical 

reactions involved in the interactions of neutral size and board fibres. 
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