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In all of science, the authors of publications depend on the knowledge presented by the previous publications.
Thus they “stand on the shoulders of giants” and there is a flow of knowledge from previous publications to
more recent ones. The dominating paradigm for tracking this flow of knowledge is to count the number of
direct citations, but this neglects the fact that beneath the first layer of citations there is a full body of literature.
In this study, we go underneath the “shoulders” by investigating the cumulative knowledge creation process
in a citation network of around 35 million publications. In particular, we study stylized models of persistent
influence and diffusion that take into account all the possible chains of citations. When we study the persistent
influence values of publications and their citation counts, we find that the publications related to Nobel prizes,
i.e., Nobel papers have higher ranks in terms of persistent influence than that due to citations, and that the most
outperforming publications are typically early works leading to hot research topics of their time. The diffusion
model reveals a significant variation in the rates at which different fields of research share knowledge. We find
that these rates have been increasing systematically for several decades, which can be explained by the increase
in the publication volumes. Overall, our results suggest that analyzing cumulative knowledge creation on a global
scale can be useful in estimating the type and scale of scientific influence of individual publications and entire
research areas as well as yielding insights that could not be discovered by using only the direct citation counts.
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I. INTRODUCTION

Since the seminal work of de Solla Price [1] quantitative
analysis of knowledge spreading through a network of scien-
tific publications has become a matter of great interest. The
analysis of bibliometric data not only sheds light on the struc-
ture of science and its knowledge accumulation, but also gives
us insight into the citation distributions [2–4], collaboration
networks [5,6], geographical patterns of collaborations and
citations [7–9], and the structural changes that take place at the
level of scientific fields [10–12]. Along this line of research,
the citations between scientific publications are in the focus
of interest and they can encode various meanings between
publications [13], but perhaps most often they indicate that
some knowledge from the cited publication is being used in
the citing publication [14]. Despite all this progress for more
than half a century, a core question remains elusive: at the
global scale, where is the knowledge going and where is it
coming from?

The main research paradigm in the Science of Science has
been to focus locally on the direct citations between a pair
of publications. This thinking is exemplified by the literature
on quality measures that are based on direct citations, such
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as the H index [15], the journal impact factor [16], and a
number of others. Even though much attention has been given
to the structural limitations of these methods [17–19], the
standard approach to overcome such limitations has been
to introduce minor adjustments while still relying on the
numbers of direct citations each publication/author/journal
receives [20–23]. This local paradigm is in contrast to the
structure of science itself because science is a cumulative
process where researchers “stand on the shoulders of giants,”
i.e., the results of each researcher are intrinsically based on
a massive amount of previous work, not just the publications
that are directly cited [14,24]. Therefore, when one attempts
to study the structure and behavior of scientific knowledge
accumulation, it is necessary to look at the whole process and
not focusing only on a local area of the system.

In this work, we aim at answering the following question:
starting from a publication or a group of publications, where
and how does its knowledge flow in a citation network if one
looks beyond the direct citations? To answer this question,
we study all the possible chains of citations, indicated by
a citation network, the publications form. In particular, we
introduce two stylized models for studying the flow of knowl-
edge, i.e., the models of persistent influence and diffusion.
These stylized models are complementary to each other and
are computationally tractable even if they are applied to the
citation network of all the scientific publications. Here, we
use these models to study a comprehensive data set of around
35 million publications from most fields of science covering
more than hundred years of making research (see Appendix A
for details).
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When we use millions of individual publications and dif-
ferent groups of them as the sources of information chains, we
obtain a good general understanding of the knowledge flows
in the citation network. When we compare the relationship
between the direct citation counts and the total persistent influ-
ence of individual publications, we find that papers associated
with Nobel prizes tend to outperform their peers with sim-
ilar citation counts and publication years. Given that papers
related to Nobel prizes are expected to have a profound long-
term impact on science, this result validates in part our global
approach to model the spreading of scientific knowledge.

There are some previous works looking at the impact
of citations beyond the local perspective, but often it was
done from a very different starting point as compared to the
present work. The spread of information has been studied
through the adoption rates [25], contagion models [26], and
diffusion [27,28], but these studies have either relied on small
samples of the full citation network or of the aggregated
networks. This is in contrast to our approach to model the
processes on a comprehensive network of millions of pub-
lications, which allows us to track individual publications
and where the processes are independent of any sampling
or categorisation of journals and publications. Further, the
PAGERANK-type algorithms have been used to rank publica-
tions [29] and individual scientists [30] in a set of physics
journals. These PAGERANK-type methods are closely related
to diffusion but they rely on random walkers that do not
keep track of their origins and destinations, whereas we are
interested in how the information from one publication (or
collection thereof) is used in other publications.

In addition, it is possible to quantify the spreading of
scientific ideas, or memes, between citing and cited publica-
tions [31]. Perhaps the closest work to ours is the study of in-
components of individual publications in a citation network of
physics papers [32], which has enabled to pinpoint influential,
but low-cited, publications of Nobel prize winners.

This paper is organized as follows. First we introduce the
persistent influence model and use it to track the amount of
influence the millions of individual publications have on all
other publications downstream to them in the citation data
we use. After summarising these results, we explore how
the papers associated with a Nobel prize perform in terms
of persistent influence, and explore the publications whose
rankings in terms of direct citations and persistent influence
differ the most. Finally, we introduce the diffusion process and
focus on the rate of diffusion out of scientific fields, subfields
and journals, and how their speeds have changed over the
years.

II. PERSISTENT INFLUENCE PROCESS

Our aim in this study is to model how the scientific
knowledge percolates through the network of publications
citing each other. Since the flow of knowledge within
scientific publications is difficult to measure or quantify
using available data, some simplifying assumptions are
required. First, we assume that each publication is only using
information that is present in the publications it cites, and
the amount of intrinsic information it contains is negligible

to it.1 Second, we assume that each publication contains the
same amount of information. Third, we assume that each
of the cited publications is equally important for the citing
publication. Fourth, we assume that the information content
of a publication can be presented as the weighted sum of
information contents of the different sources, as opposed to
some more complicated function.

The above ideas are formalized in a simple persistent
influence spreading process. Starting from a seed publication
s, we attribute to it an initial value of influence Is→s = 1, while
all the other publications have an initial value of 0. We then
compute the influence of the seed publication on publications
published after the seed by going through the publications in
chronological order. Now, each publication can be directly
influenced by the seed or inherit the influence of the seed
through longer chains of citations. Assuming that each of the
cited publications is equally important and that the influence
can be summed, the rule for calculating the persistent influ-
ence of the seed publication s to publication j is

Is→ j =
∑

i∈�in
j

Is→i

kin
j

, (1)

where �in
j is the set of publications cited by j, and kin

j = |�in
j |

is the number of references, or the in-degree, of publication
j. The normalisation guarantees that the sum of influence that
the cited publications can have on publication j is at most 1 in
the case that all the cited publications also have persistent in-
fluence values of 1. For an illustration of this model, see Fig. 1.

In the presented model, each citation in the reference list
of a publication is considered equally important. This feature
of the model has some consequences that are important
to understand. A hypothetical publication with only one
reference will draw all its influence from the cited paper as
its scientific results are entirely based on that previous work.
Similarly, a publication that is cited by a review publication
that also cites hundreds of other publications has to share the
attention with all of the other references, and only a small
fraction of the information present in the cited publication is
influencing the review.

When the process continues beneath the first few layers
of publications in the chains of citations, typically a large
number of papers become influenced by the seed node while
the persistence influence values for individual papers become
diluted. Now, instead of studying the persistent influence of
the seed node to an individual paper, it is more meaningful
to study the persistent influence of the seed publication to a
group of publications. For instance, given a seed publication,
one could compute an aggregated persistent influence value
IPhysics(t = 2019) by summing over the persistent influence
values of all the publications published in physics journals
during the year 2019.

1This assumption could be relaxed by introducing a parameter
describing the fraction of new information in each new paper, which
would act like a damping factor. For simplicity, here we only study
the case where this fraction is zero.
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(a) s→j (b) Is→j (c) Ds→j (d) Ds→j
^

Low
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FIG. 1. Persistent influence and diffusion in a citation network.
In all panels, we show the same citation network where the nodes are
publications and each edge corresponds to a citation with direction
corresponding to the flow of knowledge from a cited publication to
a citing publication. The square node marks the seed publication s.
(a) The nodes and edges reachable from the seed node are in black
and the others are in grey. (b) The nodes are colored according to
persistent influence Is→ j (darker colors indicate higher values). Note
that nodes with only a single in-edge inherit the influence value of the
publication they cite, and the nodes with many citations outside of the
reachable set of nodes (grey arrows) have in general low influence
values. (c) The probabilities Ds→ j for a random walker (RW) that
has started from the seed node to pass each node. Note that the
publications published in the future have an effect on these diffusion
probabilities: for example, the three nodes citing the seed publication
each get value one third even though the last publication is published
much later than the two others. (d) The diffusion probabilities D̂s→ j

for finding the random walker in each node conditional to the random
walker residing within the same time window as the node; the
probabilities within each time window sum up to one. The citation
network is divided into three time windows after the seed node that
are separated by the dotted horizontal lines. Now, the publications
published after the end of each time-window have no effect on the
diffusion probabilities of nodes inside the time window. In the case
that there are edges within a time window they are not considered
when calculating the diffusion values for that window to avoid
systematically giving higher values for nodes that are close to the
end of the window (see Appendix for details).

A. Persistent influence in a random citation network

One can gain intuition on how the spreading process of
persistent influence works by considering how the papers’
influence scores develop in a simple model of a citation net-
work. Let us consider a citation network where publications
are published in generations, and they only cite publications of
the previous generation.2 Further, we assume that the number
of publications n(t ) in each generation t grows at a constant
rate μ = n(t + 1)/n(t ), and the maximum values of the in-
and out-degree distributions are always small compared to the
current system size n(t ). Now, if the in- and out-degrees of
papers are statistically independent, the sum of the influence
values of all the papers in generation t + 1 is on average given
by

I (t + 1) = μp(kin = 0)I (t ) , (2)

2This assumption is for simplicity, but it is based on the reality: the
number of citations a publication receives peaks few years after its
publication [33].

where p(kin = 0) is the probability that a node has zero in-
degree (i.e., it receives no citations). That is, the total influence
of a paper to all future research grows or decays exponen-
tially with the factor μp(kin = 0) or remains constant if the
generation sizes do not change and there are no “dead-end”
publications, or if these two factors counter each other out.
In reality, the scientific input has been continuously growing
(μ > 1) [33], and thus we expect that on average the influence
of early papers will grow. However, this is only the average
picture. While some papers’ influence values die out, others’
grow faster than the average.

B. Empirical results

We will now apply the process of persistent influence to a
citation network with millions of publications covering most
fields of science. The data also contain information about
the journal each publication is published in and the subfield
classifications of the journals. These data are combined with a
coarser field classification of the subfields and the information
about the papers that led to Nobel prizes [33], see Appendix A
for details. We begin by examining the persistent influence
profile of a publication depicting how we can evaluate the
cumulative influence of a paper on other papers, journals,
and fields of science across time. Later, we move on to a
large-scale analysis of source publications and assess the
outperformance of papers related to Nobel prizes.

1. Case study: Glauber’s Nobel winning publication

Roy J. Glauber’s seminal paper on photon correlations [34]
was published in 1963, which eventually led him winning
the Nobel Prize. Around nine years after the publication
date, already 10 thousand publications can be connected to
Glauber’s paper through a chains of citations. The subnetwork
containing these publications and the citations between them
are visualized in Fig. 2(a). Different subfields in this network
of persistent influence can be seen to roughly organize to their
own branches, and the developments within these subfields
can be approximately assessed. For example, publications in
interdisciplinary physics journals are seen to be the early ones
citing Glauber’s work, but after few years the publications
in the sphere of influence are more and more in the journals
categorized to more specific fields of physics.

As expected, the number of publications that could be in-
directly influenced by Glauber’s paper in the citation network
grows exponentially, reaching millions of publications before
2008 that is already a significant part of all the publications
in the data set (compared to 473 direct citations). The size
and topology of such a large subnetwork may be of little
practical interest, but the persistent influence values are still
meaningful: even though a massive number of publications
could be influenced through chains of citations on long time
ranges, most of the persistent influence values are extremely
small. That is, even for the long time ranges, the influence is
concentrated on a small subset of publications that can often
be reached through multiple routes. By aggregating yearly
influence values within the categories of publications, we can
see in Figs. 2(b), 2(d), 2(f), and 2(h) that these publications are
mostly on fields and subfields which are known to be impacted
by Glauber’s work.
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FIG. 2. Persistent influence profile of Glauber’s Nobel prize winning paper from 1963 to 2008. (a) The first ten thousand, or about 9 years
of, papers and citations between them in the downstream network of Glauber’s paper. The edges are colored according to the subfield of the
citing paper. In case of multiple subfields, the color is chosen according to which of these subfield has the largest area in (d). Glauber’s paper
is at the center of the figure. The polar coordinates of the other publications are chosen so that older publications are closer to Glauber’s
paper, and the angles are determined using a force-directed layout algorithm. (b), (d), and (f) show the relative, aggregated persistent influence
values of Glauber’s paper on different groups of publications based on the publication year. (c), (e), and (g) show similar yearly sums for local
influence values that have been calculated using only direct citations. (b) and (c) show the relative distribution of influence among fields (F) of
science ordered in decreasing order of area in the figure starting from the bottom. The most influenced fields are physics (green), mechanical
(orange) and engineering (light blue)). Similarly, (d) and (e) show the influence on subfields (SF) with the most influenced subfields being
optics (red), physics, and multidisciplinary physics, and (f) and (g) show the influence on journals (J) with Physical Review A (light green),
Physics Letters A (light purple), and Physical Review Letters (light orange) being the most influenced ones. Only the contribution of eight
largest fields/subfields/journals are shown and the rest is shown as light grey space. In (g) and (h), we show the total influence at the resolution
of one year, i.e., the sum of influence values I (t ) for publications published in each year. The legend on the bottom corresponds to subfields,
that is, (a), (d), and (e).

To illustrate the difference between the local viewpoint
of counting direct citations and the persistent influence, we
show a local influence profile calculated using Eq. (1) but only
considering direct citations to the Glauber’s original publica-
tion in Figs. 2(c), 2(e), 2(g), and 2(i). At first sight, the most
notable difference between the global and local profiles is that
the global profile is much smoother than the local one. This
is expected as if a field was influenced by a seed paper, the
papers from the field are also likely to cite the seed. However,
a closer inspection reveals more subtle differences between
the global and local profiles. The influence of Glauber’s paper
on publications categorized to fields [Fig. 2(b)] shows a strong
persistence in physics with a gradually growing contribution
to fields called mechanical and engineering. This pattern is
already stable after ten years in the persistent influence, but it
is not visible in the local profile even though the second most
influenced field, mechanical, starts to cite the seed publication
later on. A similar effect of optics becoming prominent in the
persistent influence much before it is picked up by the local in-
fluence profile can be seen when looking at the categorisation
in the level of subfields [Figs. 2(d) and 2(e)]. Going down to

the level of journals we can see that the contribution to optics
is mainly due to two journals: Physical Review A and Optics
Communications, which once again are not as strongly present
in the local profile [Figs. 2(f) and 2(g)].

The total persistent influence of Glauber’s publication on
publications published during each year grows (except for few
years), but the local influence remains relatively stationary
when one considers only direct citations. This observation is
qualitatively in line with what would be expected based on the
generational model defined in Sec. II A, because the persistent
influence values are sensitive to the expansion in science that
has happened at a rapid pace since 1963. However, it is not
clear from this analysis if the rate at which the persistent
influence grows is a typical example of a publication of that
time or if this Nobel winning publication is somehow special.

2. System level analysis of seed publications

In order to gain insight into the relationship between the
persistent influence and local citation count at the system
level, we repeated the influence profile calculation described
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FIG. 3. Relationship between citation counts C and persistent
influence I , and the outperformance of Nobel papers. (a) The total
persistent influence of a paper on average increases as a function its
citation count, but citation counts alone can not explain the persistent
influence values. Gray dots correspond to individual papers, and the
colored markers show the total persistent influence value averaged
over papers with similar citation counts and same publication year,
〈I〉C,t . The crosses represent Nobel papers with the colors chosen
according to the closest 10 years. (b) The same as in (a), but with
citations and persistence influence being aggregated only for the first
ten years after the publication of each paper: C10 = C(�t < 10y) and
I10 = I (�t < 10y). The average curves thus correspond to 〈I10〉C10,t .
(c) The distribution of total persistent influence values divided by
the average total persistent influence of a group of papers with
similar order of magnitude of citations (≈100). The inset shows
the same distribution for publications with one order of magnitude
less citations. The color coding is the same as in (b) and (c). These
corresponds to the distribution of aggregated persistent influence
values for vertical slices of (b). (d) The outperformance of Nobel
winning papers in total number of citations C/〈C〉C10,t0 and total
persistent influence I/〈I〉C10,t0 when compared to a group of reference
papers with similar publication years (t0) and numbers of citations in
the first 10 years (C10). Now Nobel papers outperform their peers in
70% of the cases in terms of citations, but outperform their peers at
even a higher rate (87%) in terms of persistent influence.

above for all the papers in our dataset published between
1970 and 2008 and having at least 20 citations. We chose
20 as the required number of citations primarily to limit the
computational costs of our analyses while focusing on papers
with significant scientific impact. In total, this amounts to
approximately 6.2 million seed publications. To summarize
the results, we focus on the total persistent influence that each
publication gathers [I = ∑

t I (t )].
There is a strong positive correlation between the total

number of citations C and the total persistent influence I a
publication receives [Fig. 3(a)]. However, at the same time
there is large variation, up to several magnitudes, in the

total persistent influence values of publications that receive
similar numbers of citations. This dependence between the
local citation counts and the globally computed persistent
influence values resembles the results in Ref. [29] obtained
for another global measure of publication importance. Further,
this result indicates that the number of citations per se is not
sufficient to fully summarize the persistent influence that a
single paper has had within the scientific literature. Also, we
see that older papers manage to gather a significantly higher
amount of impact with the same number of citations. This is
expected, as the older papers have had more time to gather
cumulative influence among their scientific off-springs, and
may also benefit from the growing system size.

To remove this advantage of the older papers, we cal-
culate the total persistent influence that each paper gathers
during the first 10 years since its publication date t0 [I10 =∑

t−t0�10 years I (t )]. We have chosen to use 10 years as the
limit so that there would be sufficient time for publications to
gather citations and persistent influence. Note however, that
if 5 years were used as the limit instead, the results would
remain qualitatively similar. This partly removes the effect
of the publication year, but older publications with the same
number of citations are still seen to have slightly higher total
persistent influence as compared to the newer ones [Fig. 3(b)].
The remaining difference between the publication years might
be due to other changes in the citation practices such as the
increase in the length of reference lists, which causes the
denominator in Eq. (1) to reduce the amount of influence to
a single citing paper. However, the distributions of persistent
influence values of publications with the same number of
citations within 10 years (C10) have superexponential tails that
are relatively independent of the publication year [Fig. 3(c)].
This shows that even on a time scale of 10 years, publications
having similar numbers of citations can have varying scientific
impacts when measured using the total persistent influence.

3. Performance of Nobel-winning publications

What are the publications that achieve higher persistent
impact values than expected based on their citation count and
are these publications somehow more important for science
than the others? To begin to answer these questions, we
studied 74 papers that were associated with a Nobel prize [35],
which we assume here is a hallmark of scientific importance.

The Nobel prize winning papers mainly populate the top-
right corner in Figs. 3(a) and 3(b), indicating that, generally,
they tend to gather high absolute values of citations and influ-
ence. However, as many of them are among the few most cited
papers in the data their persistent influence is not significantly
higher than other papers with similar citation counts. Because
the Nobel prizes are often given with a significant and growing
delay [35] indicating that their significance is acknowledged
only long after the original research is published, we divert our
attention to the longitudinal aspect of the influence process.
The idea behind this approach is to take a set of control papers
which, at a certain point in time, are apparently equivalent to
the Nobel paper and to compare the performance of the Nobel
paper with respect to the control group at a later point in time.
Practically speaking, we construct a set of control papers that
have been published in the same year, t0, as the reference
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paper and have at most 10% difference in the citation count
after 10 years, C10. We calculate the out-performance of a
Nobel paper to its controls as the ratio I/〈I〉C10,t0 , where I
is the total persistent influence value of the Nobel winning
publication and 〈I〉C10,t0 is the average total persistent influence
of the control papers. These outperformance values can be
compared to the outperformance of Nobel papers in terms
of total number of citations C/〈C〉C10,t0 : Out of 74 Nobel
papers 65 outperform their controls in persistent influence
and 50 of them outperform the controls in citations [see
Fig. 3(d)], which makes the persistent influence significantly
more likely to display outperformance than citation counts
(p value <10−4 for the hypothesis that 50/74 chances could
have produced 65 or more successes). Furthermore, in 73%
of the cases (54 papers out of 74) the persistent influence
outperformance is greater than the citation one (again, the
p value <10−4 for the hypothesis that this difference was
produced with a null model that gives equal probability for
the persistent influence and citation count to outperform the
other).

Based on the above numbers and the overall picture pre-
sented in Fig. 3(d), it can be said that the Nobel papers outper-
form the controls in terms of persistent influence and citation
counts, and that typically the outperformance of the Nobel
papers is greater in terms of the persistent influence than
citation counts. For some Nobel papers, the outperformance is
smaller in terms of persistence influence but the difference to
citation-count-based outperformance is then typically small.
An interpretation of these results is that the Nobel papers often
constitute the starting points of new growing areas of science
that reach beyond the publications directly citing them, as
one would expect from publications with influential results.
This conclusion supports the finding of Ref. [32], where the
groundbreaking papers by important Nobel laureates were
found to have large networks of child nodes spanning over
multiple layers.

4. Using rankings to detect influential but low-cited papers

The raw values of the persistent influence and citation
counts have fat tails, which can make the analysis very sen-
sitive to outliers, and also depend heavily on the publication
year. Instead of looking at these raw values, we will now use
ranks as a more robust measure of publication importance. To
this end, we order the papers published within the same year
according to the citation count and persistent influence, and
give each paper ranks RC and RI in terms of the citations and
persistent influence, respectively, such that small rank means
high value. We analyze the ranks by the publication year to
avoid the biases due to higher values of citation counts and
persistent influence for older papers. Now, we are primarily
interested in identifying those publications that have high
persistent influence values but have received relatively few
citations over the years. To this end, we define the relative
change in ranking as

δ = RC − RI

RI
. (3)

Here we divide the absolute difference in rankings by RI

to emphasize the publications that have low ranks in terms

FIG. 4. Nobel papers have higher ranks in terms of persistent
influence than citations. (a) Cumulative distributions of relative
difference in persistent influence rank and citation count rank, δ =
RC−RI

RI
. Only the positive values of δ are shown, and the amount

of probability mass in the negative side of the distribution can be
read from the smallest shown value. Three categories of papers are
considered: Nobel papers (red circles), Nobel control set of papers
having the same publication year and being within 3% in citation
volume (green squares), and papers selected uniformly at random
from all papers (blue triangles). In case no papers were found within
the 3% interval, the most similar paper in terms of citation was used
as the control. (b) The same distributions as in (a) but using persistent
influence values and citation counts after 10 years (i.e., I10 and C10

instead of I and C).

of the persistent influence: given two publications with the
same absolute difference in ranks, the higher δ is given to the
publication with more persistent influence.

Figure 4(a) shows the cumulative distribution of δ values
at different times for the 74 Nobel papers, a control group
of papers within 3% of citations of each Nobel paper and
uniformly randomly selected papers. The Nobel publications
are seen to be much more likely to be among the publications
that have high persistent influence but relatively low citation
count than publications in either of the control groups. This
effect persists when we use the 10-year persistent influence
values I10 and citation counts C10 for computing the ranks
[Fig. 4(b)].

The Nobel publications are overrepresented in the publica-
tions with high δ values, but what are the publications with
the largest relative difference in the persistent influence and
citation counts? Table I shows the publications with largest δ

values for all the papers in our data set. Some of these publica-
tions might be “forgotten beauties” in the sense that they have
contributed to the development of several other important
publications but were forgotten as these more prominent pub-
lications gathered all the citations related to the breakthroughs
that were made. Indeed, such forgotten publications appear
in the list. The publication with the highest δ score (No. 1)
is related to DNA hybridisation techniques and is cited by
several early publications in the emerging field of molecular
biology, most notably by E. M. Southern’s work on the South-
ern Blot, a widely-used method for identifying specific DNA
sequences from DNA samples. The second, third and fifth are
in the reference list of Sanger’s Nobel paper “DNA sequencing
with the chain terminating inhibitors,” which had a massive
impact on the biological and medical sciences. Papers 5, 9,
15, and 21 are all linked to the identification, classification,
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TABLE I. The 30 publications with the highest relative difference in influence rank and citation count rank δ given in Eq. (3).

Rc RI Title (year)

1 37588 5 Hybridization On Filters With Competitor Dna In Liquid-Phase In A Standardand A Micro-Assay (1974)
2 23366 5 Nucleotide And Amino-Acid Sequences Of Gene-G Of Phix174 (1976)
3 62269 18 Invitro Polyoma Dna-Synthesis - Inhibition By 1-Beta-D-Arabinofuranosyl Ctp (1975)
4 88381 32 Inhomogeneous Superconducting Transitions In Granular A1 (1980)
5 26353 10 An Adjustment To The 1997 Estimate For New Prostate Cancer Cases (1997)
6 28047 11 Molecular Hybridization Between Rat Liver Deoxyribonucleic Acid And Complementary Ribonucleic Acid (1970)
7 63260 25 A Novel Method For The Detection Of Polymorphic Restriction Sites By Cleavage Of Oligonucleotide

Probes - Application To Sickle-Cell-Anemia (1985)
8 105590 42 Phase-Diagram Of The (Laalo3)1-X (Srtio3)X Solid-Solution System, For X-Less-Than-Or-Equal-To 0.8 (1983)
9 131750 72 A New Method Of Predicting Us And State-Level Cancer Mortality Counts For The Current Calendar Year (2004)

10 114723 67 Zn Related Electroluminescent Properties In Movpe Grown Gan (1988)
11 26020 16 Structure And Intercalation Of Thin Benzene Derived Carbon-Fibers (1989)
12 12231 8 The Oxygen Defect Perovskite Bala4Cu5O13.4, A Metallic Conductor (1985)
13 19801 13 Translation Of Encephalomyocarditis Viral-Rna In Oocytes Of Xenopus-Laevis (1972)
14 4216.5 3 Amplified Ribosomal Dna From Xenopus-Laevis Has Heterogeneous Spacer Lengths (1974)
15 42143 30 Classification Of Acute Leukemias (1975)
16 62485 48 Wild Topology, Hyperbolic Geometry And Fusion Algebra Of High Energy Ppaper Physics (2002)
17 58242 46 Relation Between Mobility Edge Problem And An Isotropic Xy Model (1978)
18 42981 34 Transcriptional And Posttranscriptional Roles Of Glucocorticoid In The Expression Of The Rat 25,000

Molecular-Weight Casein Gene (1986)
19 114240 91 The Use Of Biotinylated Dna Probes For Detecting Single Copy Human

Restriction-Fragment-Length-Polymorphisms Separated By Electrophoresis (1986)
20 92031 74 A Solid-State Nmr-Study On Crystalline Forms Of Nylon-6 (1989)
21 89271 74 Multiple Opportunistic Infection In A Male-Homosexual In France (1982)
22 11535 10 Synthesis Of Ribosomal Rna In Different Organisms - Structure And Evolution Of Rrna Precursor (1970)
23 11227 10 Small-World Networks: Evidence For A Crossover Picture (1999)
24 12064 13 Superconductivity At 52.5-K In The Lanthanum-Barium-Copper-Oxide System (1987)
25 71919 82 Fractals - Wheres The Physics (1986) The Complete Structure Of The Rat Thyroglobulin Gene (1986)

Interference Detection Among Solids And Surfaces (1979) Comparison Of The New Miniature Wright Peak Flow
Meter With The Standard Wright Peak Flow Meter (1979)

29 7962 10 Studies On Polynucleotides.105. Total Synthesis Of Structural Gene For Analanine Transfer Ribonucleic-Acid From
Yeast - Chemical Synthesis Of An Icosadeoxyribonucleotide Corresponding To Nucleotide Sequence 31 To 50 (1972)

30 26908 34 Materials Science - Strength In Disunity (1992)

or prediction of very well known diseases (prostate cancer,
AIDS, leukemia).

As expected, Biology is the main contributor to the list,
due to it being the largest field in our dataset. However, unlike
for the highest cited papers for each year where Biology is
virtually the only field present (see Table III in the Appendix),
in this list diverse aspects of science are included. There are
many papers from physics, with 4, 12, and 24 being linked
to the discovery of high-temperature superconductivity, while
11 and 30 are linked to the development of carbon nanotubes
and, in general, of Material science. 10 is among Amano’s
works that led to his Nobel prize for the invention of efficient
blue light emitting diodes. 25 is a small summary of the recent
(at the time) discoveries in the mathematical field of Fractals,
as it was among the few cited works in the famous Self-
Organized Criticality: An Explanation of 1/f Noise. Also, we
can see contributions from Economics and Engineering with
27, which discusses a computer method able to improve the
efficiency of production of industrially assembled products.
28 is one of the earliest attempts of statistical methods for
assessing agreement between different clinical measurements.

Finally, the list also shows evidence of the relatively new
field of complex networks, with 23 being among the earliest

papers in the field and cited by virtually all the most significant
early publications in the field. Overall, we can see how δ

is able to describe the growth in the whole scientific field
of certain discoveries/subfields/hot topics by being able to
identify low cited papers that have been crucial in their early
stages.

III. DIFFUSION

The persistent influence spreading method we just intro-
duced is a simple and elegant method to model the spreading
of knowledge in the citation network, but it is not the only
plausible one. In the influence spreading, the tracked quantity
can be copied, and the total amount in all publications can
grow. Next, we instead define a diffusion method where the
original mass placed on the seed node (or nodes) is always
strictly conserved. This allows us to track the diffusion of
ideas not only from single publications but across journals,
subfields, and fields.

The idea behind the diffusion method is to start a random
walker from a seed publication that is randomly selected
from a set of seed publications, and then, at each step, let
it move from a publication to future publications citing it
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(see Fig. 1). That is, if we have N seed papers we assign
the same initial probability D̂s→s = 1/N to all of them, and
calculate the probability that the random walker goes through
the rest of the publications as

D̂s→ j =
∑

i∈�in
j

D̂s→i

kout
i

, (4)

where �in
j is the set of publications cited by j, and kout

i is the
number of publications citing i (or, the out-degree).

Note that this process is sensitive to the time window we
choose, as the future publications that we do not know about
yet will change the degrees kout

i , and thus probabilities of tra-
jectories of the walkers. To negate this effect, we will focus on
walks that have not passed beyond our observation year. That
is, we only use the information available of each observation
year, and the random walk process is recalculated for each
starting year and observation year pair. In addition, we are not
interested in the raw probabilities of random walkers visiting
the nodes D̂s→i, but on the conditional visiting probabilities
Ds→i(t ) given that the walker is within given year t . Further,
we will disregard any citations within each observation year to
avoid emphasising the publications that are published towards
the end of each year. It is also possible to define the model
such that both the distribution of the initial mass and the
diffusion process are based on the citations of the seed papers
and of the child nodes. The results, although qualitatively
different, are quantitatively identical. See Appendix B for
details about these methods and Appendix C for details of how
the diffusion probability is calculated.

Relationship to persistent influence

The equation for diffusion, Eq. (4), resembles the equation
for the persistent influence, Eq. (1), but the similarity between
these two runs deeper than that. In fact, the persistent influence
values Is→i can also be considered in terms of a diffusion
process that goes backwards in time. That is, the persistent
influence value starting from a single seed publication s,
Is→i, is equal to D̂i→s in a network where the directions
of the links are reversed and the diffusion process starts
from the node i. In this sense, the two processes, the persis-
tent influence and the diffusion are complementary to each
other.

A. Empirical results

When starting the diffusion process, we select a field, a
subfield, or a journal and a starting time t0, and track the
probability that the random walker is found in a field DF (t ), a
subfield DSF (t ), or a journal DJ (t ) at time t (using a resolution
of one year). This process is illustrated in Figs. 5(a), 5(c),
and 5(e) for the initial field of economics (in 1970), the
subfield of evolutionary biology (in 1980), and the British
Medical Journal (in 1990). In the case of journal-level ag-
gregation, the probability for finding the random walker in
the seed journal equals one in the beginning. However, when
aggregating results on the level of fields or subfields, papers
can be associated with multiple fields or subfields. In this case,
we initially split the total probability equally among all the
fields or subfields the paper belongs to.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Examples of the diffusion process [(a), (c), and (e)] and
the exponential decays to the metastable state [(b), (d), and (f)]. The
diffusion of scientific value for [(a) and (b)] economics in 1970,
[(c) and (d)] evolutionary biology in 1980, and [(e) and (f)] the British
Medical Journal in 1990. [(a), (c), and (e)] The area in the bottom
shows the amount of scientific value retained by the initialization
field (F), subfield (SF), or journal (J). The contribution of the eight
largest fields/subfields/journals are also shown individually, and the
contribution of other fields/subfields/journals are shown as light grey
space. In (c), the colors represent the following subfields (from
bottom to top): evolutionary biology, biology, miscellaneous, plant
sciences, anthropology, ecology, zoology, genetics and heredity, arts
and humanities, and general biology. In (e), the colors represent the
following journals (from bottom to top): Br. Med. J., Lancet, Br. J.
Gen. Pract., Bmj-British Medical Journal, Med. J. Aust., Postgrad.
Med. J., Arch. Dis. Child., J. Clin. Pathol., and Med. Clin. (b), (d),
and (f) instead show the renormalized value of D retained within
each field/subfield/journal for different years (markers) and with the
exponential fitting (solid line).

As the diffusion process progresses, the random walker
jumps between publications that can be in different groups
(i.e., fields, subfields, or journals) with the possibility of
returning to the original one. However, as expected in any
diffusion process, the random walker will forget its origin,
and the amount of probability mass in the original group
goes down monotonically as time progresses. This process is
observed to be slow in the examples of Figs. 5(a)–5(c). For
economics, the probability of finding the walker in other fields
has not grown significantly even after 40 years of random
walk. Similarly, for the subfield of evolutionary biology and
British Medical Journal, the walker is far from forgetting its
origin during the observation period. These two initial groups
seem to lose probability mass very fast to other groups in the
beginning, but this fast phase is then followed by a very slow
change, which is almost like a plateau compared to the initial
rate of change.
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In a stationary system, which the citation network is not,
one would expect the diffusion eventually to completely forget
its origin and settle to a stationary distribution. Furthermore,
such stationary citation system would likely be ergodic, and
the stationary state would be unique. The behavior observed
for the fields, subfields and journals do not reach such a
unique stationary state, but they seem to be rapidly reaching
a metastable state, where the probability of finding a random
walker in a specific field, subfield or journal does not change
much in time but where these probabilities are not indepen-
dent of the origin. This observation could, for example, be
explained by a network structure containing strong clusters
where the random walkers get trapped for the time scales of
the data.

B. Summarizing the diffusion curves

The above procedure of observing the diffusion patterns is
very cumbersome if the goal is to get an idea of the system-
wide behavior of diffusion starting from different groups. In
order to summarize the results of the patterns such as the ones
presented in Figs. 5(a), 5(c), and 5(e), we have looked only at
the amount of value retained by each group. For each starting
year t0, we observe the yearly values of the initial group DG(t )
and normalize them with the initial value before any diffusion
DG(t0). We then fit each curve with an exponential of the form:

DG(t )/DG(t0) = (1 − β )e−αt + β, (5)

which follows well the typical shape we observe for the curve.
The fits for the previously discussed example cases are shown
in Figs. 5(b), 5(d), and 5(f). These fits allow us to summarize
both the rate of change of the value of the initial years (through
α) and find the final plateau value (through β). Therefore α

can be used to measure the rate at which one group shares
its knowledge with other groups that are close to it, and β

instead represents the intrinsic “conservativeness” of a group
and the other groups related to it, i.e. the amount of knowledge
retained within the boundaries of the group itself in medium
time scales.

In order to provide an easier metric for the exponential
decay, we introduce a related parameter called half-life t1/2

defined as the time required to lose half of the possible plateau
value. That is by solving

(1 − β )e−αt1/2 + β = 1 − 1 − β

2
, (6)

we get the conventional definition of half-life:

t1/2 = ln(2)/α. (7)

C. t1/2 and β in the data

With the above-mentioned ideas on summarizing the diffu-
sion processes in mind, we can put together information about
all the possible initial times and fields, subfields, and journals.
Table II shows the values for the half-lives, t1/2s, and plateau
values, βs, in 1970 and 1995. We can see that in general there
is a decreasing trend for half-lives while the plateau value β

instead shows a much more stable pattern.
Some of the individual fields display interesting patterns.

The field of multidisciplinary has the lowest half-life for both

TABLE II. The half-lives in years (t
1
2 ) and the asymptotic frac-

tions (β) for a subset of fields in 1970 and 1995 when the evolution
of the diffusion process is fitted to Eq. (6). The relative changes from
1970 to 1995 in these values are given in the last two columns.

1970 1995 �

Field t
1
2 β t

1
2 β t

1
2 β

Philosophy 19.7 0.84 4.36 0.90 −78% +7%
Economics 11.0 0.83 4.20 0.76 −62% −8%
Psychology 8.93 0.72 3.44 0.67 −61% −7%
Linguistics 8.86 0.87 3.02 0.90 −66% +3%
Chemistry 8.55 0.80 1.99 0.80 −77% 0%
Music & Dance 7.83 0.82 6.18 0.98 −21% +20%
Gen. Humanities 7.25 0.85 3.43 0.95 −53% +12%
Mathematics 7.14 0.87 3.21 0.79 −55% −9%
Medicine 6.54 0.83 3.20 0.85 −51% +2%
Sociology 6.34 0.80 3.72 0.73 −41% −9%
Engineering 4.89 0.82 2.33 0.79 −52% −4%
Law 4.38 0.92 7.21 0.80 +65% −13%
Social Sciences 4.38 0.73 2.35 0.59 −46% −19%
Physics 4.01 0.82 2.32 0.81 −42% −1%
Management 3.72 0.78 3.60 0.66 −3% −15%
Biology 3.43 0.71 1.69 0.70 −51% −1%
Multidisciplinary 1.33 0.59 1.08 0.59 −19% 0%

starting years, coherently with the fact that it is meant to be a
field open to sharing its knowledge with others. However, its
change in β is positive and the second highest (behind music).

This could indicate that multidisciplinary might have be-
come a field of its own, which can retain random walkers
within itself for long periods of time. This observation is
coherent with the evidence that shows the increasing role
of interdisciplinarity in science [10,11,36,37]. It is also in-
teresting to note that while in 1970 some humanistic fields
show very high values for their half-lives, e.g., (philosophy,
history, anthropology, literature, and linguistics), these fields
also show some of the highest changes in time, putting them
much closer to hard sciences these days than they were before.

A more systematic observation on the changes in the
speed of the diffusion process is shown in Figs. 6(a), 6(c),
and 6(e) which displays the change of half-lives for a set of
fields and changes in the distributions of half-lives for all
subfields and journals. All of the fields show a speeding-up
pattern, losing between 20% and 60% of their half-life values,
while for subfields and journals the more recent cumulative
distributions of half-lives are above the older ones, showing
that the values have in general decreased.

D. Renormalizing the time

Previous studies show [33] that the time as such may not
be the best choice for measuring the rate at which changes
happen in science, but instead use the numbers of papers pub-
lished as the measure of progress. In other words, science can
be considered to be “updated” every time a new publication is
introduced in the system, and the count of such updates is a
better measure of “progress” in science than simply the time
elapsed.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Changes in half-lives in real time [left column, (a), (c),
and (e)] and time measured in number of papers [right, (b), (d),
and (f)]. [(a) and (b)] The evolution of the half-lives for eight fields
normalized with the half-lives they they had in 1970. All half-lives
measured in real time (a) show a downward trend, while when time
is measured in the number of papers in the field (b), most fields show
an upward trend, which indicates a slowing down in the time required
to share knowledge with other fields. The cumulative distribution for
half-lives for all subfields (SF) they are measured in (c) real time and
(d) total number of papers in the system. (e) and (f) show the same
distribution for journals (J).

As the number of publications per year N (t ) grows expo-
nentially, one would theoretically expect that the functional
form of the exponential decay given by (5) would have to be
adjusted when measuring time in terms of published papers.
However, as the growth rate of yearly publication number is
sufficiently small N (t ) ≈ N0eδt with δ ∼ 0.05 (year−1) across
all the fields, we can approximate this exponential growth
by a simple, linear function eδt ≈ (1 + δt ) for the span of
time t that we consider. This allows us to use the functional
forms given by Eq. (5) also for fitting the half-lives t

1
2 and the

asymptotic fractions β when the time is measured in terms of
published papers.

Hence we are able to follow the earlier procedure we
applied to real time and quantify the half-lives in terms of the
numbers of published papers. We chose to use the number of
published papers in each field as a unit of time for the fields,
while for the subfields and journals we used the data from all
scientific publications.

In Figs. 6(b), 6(d), and 6(f), we show the half-lives that are
fitted in terms of published papers. Interestingly, now the half-
lives do not in general decrease as a function of the publication
year as only chemistry shows such a clearly decreasing pat-
tern. The other fields, instead, either remain constant or show a
significant increase in their half-lives over time. A very similar
result can be seen in the half-life distributions for subfields

and journals, which are shifted to higher numbers of papers
as the initial time increases. That is, these results suggest that
the growth in the speed of diffusion can be explained by the
increase in the rate at which publications are published.

IV. DISCUSSION AND CONCLUSIONS

Ever since bibliometric data of scientific publications have
been available, there has been efforts to analyze such data
with the goal of quantifying scientific research. The dominant
framework has been to use the counts of direct citations
between publications, journal, and research fields in order to
quantify the relationships between them, and, for example,
to rank authors [15], publications [38], universities [39], and
institutions [40]. As these methods work reasonably well [41],
and apart from few exceptions [29,30], the improvements of
these methods have been correcting technical flaws [42,43].
However, most of the previous research has ignored the in-
trinsic conceptual issue of methods based on just counting
citations: they ignore the fact that scientific publications are
not only based on the information created in the publications
they cite, but on the whole body of literature underneath this
first layer of publications.

We have introduced two simple methods to analyze how
the knowledge created in a publication, or in a group of
publications, might percolate through the scientific literature.
This approach follows the tradition of modeling the dynamics
on networks, where a real observed network is used as a
substrate where the progress of a stylized model is tracked.
This approach has been extensively used in network science to
study epidemic spreading [44] and social dynamics [45]. In all
of these cases, the models are not expected to exactly mimic
the real behavior, but the goal is to reproduce the behavior
in the large scale with an accuracy that is enough to make at
least qualitative statements about the system. Our goal in this
work was to explore this approach in knowledge spreading in
citation networks.

The first of our two measures, persistent influence, is based
on the idea of papers inheriting the knowledge of papers they
cite, i.e., the “shoulders” on which they stand. As a con-
sequence, a paper can influence later papers through chains
of citations. As expected, the out-degree, in other words
the direct citation count, is positively correlated with the
persistent influence, but we also observe that papers that are
similar in publication date and citation count can have a wide
range of the persistent influence values. In our simulations, we
have found publications that have several orders of magnitude
higher influence values than papers with similar numbers of
citations. This finding suggests that there are publications for
which the citation count can be a poor proxy for tracking the
global cumulative influence.

We tested the hypothesis that the discrepancies in the
citation counts and global persistent influence values are not
meaningful but simply noise added by the global process,
and to do this we used papers associated with Nobel prizes
as a manually curated corpus for presumably high influence
on science. We found a significant overperformance in terms
of the persistent influence by the Nobel papers when com-
pared to the publications with similar intial citation counts
and publication dates. Thus the indirect influence (i.e., the
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persistent influence) and direct influence (i.e., the citation
count) seem to capture different aspects of the influence of
a publication. Furthermore, we looked at the papers that have
the greatest increase in rank while switching from the local to
the global scenario, and found that these papers are often early
publications in the fields that would later become hot topics of
their time in the scientific world.

The second modeling approach we employed was a simple
diffusion method. We focused on analyzing the rate of diffu-
sion of knowledge across the fields, subfields, and journals.
We summarized the curves describing the loss of diffusing
knowledge to other fields, subfields, and journals by an ex-
ponential decay function that reaches a plateau value. Each
starting time and set of seed publications can thus be described
by a plateau value of the retained knowledge β and by a
typical time required t1/2 to share half of the available knowl-
edge. We found that β varies heavily across disciplines, yet
remaining constant in time, while the values for the half-life,
t1/2, have been steadily decreasing, suggesting an increase in
the interdisciplinarity of research. However, we showed that
the faster sharing of information could be explained by the
increase in the rate at which publications are produced.

One crucial difference between the diffusion and persis-
tence influence models is that in the diffusion model the
total amount of knowledge created in some publication is
conserved across papers citing it, whereas in the persistent in-
fluence model the knowledge is allowed to “duplicate” across
papers. Given that there is no reason why many publications
could not contain a same piece of knowledge, out of these two
models the persistent influence approach is likely to provide
a more realistic picture of how knowledge spreads in citation
networks. The diffusion on the other hand could be considered
as more of a theoretical tool to understand the structure of the
citation networks.

The work done here forms a basis for future possibilities
of the model-based approaches to track global knowledge
spreading in citation networks. For example, more detailed
look at the long-term destinations of influence starting from
various sources could bring interesting results. Note also that
nothing would stop one, to introduce the initial persistent
influence to a group of papers (instead of a single publica-
tion) similar to the diffusion process, and repeat the type of
analysis done here for fields, subfields and journals using
the persistent influence model. Furthermore, one can easily
reverse the tracking direction of the persistent influence model
and investigate which publications, or groups of publications,
in the history have influenced individual papers. One can
also make the influence spreading more realistic with the
cost of increasing the complexity of the model. For example,
the amount of knowledge created by each publication can
be added as a parameter, which will effectively work as a
damping factor that will decrease the influence of very long
chains of citations.

We have introduced relatively simple methods to analyze
the spreading of knowledge in citation networks at a global
scale, and shown that these methods can lead to significantly
different results than what can be obtained by using the
local approach. With more and more bibliometric data being
available, we hope that our findings will encourage future
work to analyze science for what it is and has always been:

a cumulative process that builds over time in which the suc-
cesses in scientific discoveries are built on chains of previous
successes.
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APPENDIX A: DATA DESCRIPTION

We use the data set that consists of all publications (pub-
lications and reviews) written in English from the year 1898
till the end of 2013, included in the database of the Thomson
Reuters (TR) and now Clarivate Analytics’ Web of Science.
The data set contains a journal assignment for most publica-
tions and most journals are further assigned to one or more
subfields. We filter out publications and journals for which
this information is not available, which leaves us around 35
million publications in around 15 thousand scientific journals.
We further map the subfields of the publications into major
scientific fields as in Ref. [33]. The set of papers associated to
the Nobel prize is identical to the one described in Ref. [35],
which is a manually curated data set constructed using the
Nobel Foundation website as a primary source. Note that
Nobel prizes are not explicitly given to individual papers,
and there can be some ambiguity in determining the papers
associated to the prizes [46].

We use the set of citations between the filtered publications
to construct a network where there is a link from citing
publication to the cited publication. We use the publication
time information to remove links where the date of the cited
publication is equal or later than the date of the citing pub-
lication. In total, we remove 1.7% of the links this way, and
we are left with a citation network without any cycles, i.e., a
directed acyclic graph. To avoid boundary effects for the latest
publications, for which most publications citing them are not
in our data set, we only consider the nodes in the citation
network until the year 2008. Previous literature [47] shows
that the typical life cycle of a publication in terms of citation
is completed within 5 years from date of publication. Because
the data used here ends in 2013, limiting our attention to pub-
lications published until 2008 minimizes the boundary effects
originating from the missing data on future publications.

APPENDIX B: ALTERNATIVE DIFFUSION METHODS

We also tested assigning initial values asymmetrically by
looking at how many citations each paper has received in
the first 5 years (plus one, to take care of citationless pa-
pers): Di = 1+Ci (t<5)∑

j (1+Cj (t<5) . This count acts as a proxy of how
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successful the paper has been in general, but this alternative
initialization strategy resulted in qualitatively similar results
to the more simple strategy and we do not show these results
here.

Similar to the initialization of the diffusion process, we
tried out two different ways of selecting the probabilities that
the random walker uses to follow citations to the future. In
the simple case, the walker jumps from the cited publication
to each citing publication with the same probability, and
in the other case the random walker preferentially chooses
publications that receive more citations in the coming five
years Ci(t < 5). This is equivalent to setting the weight wi j

of each link from paper i to a citing paper j to one of the two
values:

wi j = 1∑
l∈�out

i
1

= 1

kout
i

or

wi j = c j (t < 5)∑
l∈�out

i
cl (t < 5)

. (B1)

The results for both processes are similar and here we
only show them for the simpler process. For technical details
of how the process was made computationally tractable and
implemented see Appendix C.

APPENDIX C: COMPUTATIONAL CONSIDERATIONS

In order to implement both the diffusion and influence
algorithms we had to organize the citation network in directed
acyclic graphs (DAGs), as mentioned in the Data Description
section. After this it was necessary to order the nodes in
topological order, which guarantees that for every directed
edge connecting paper i (the citing paper and j (the cited
paper), j comes before i. Such ordering should, in principle,
correspond with the time stamp of the publication. However,
for older papers, the topological ordering of the publications
could not be resolved using publication dates, as only year
information was available. Therefore we took advantage of the
fact that papers published in earlier years are bound to have a
lower rank in the order. Thus we built yearly citation networks
and ordered them topologically, starting from the oldest one.
We then proceeded to arrange the nodes topologically within
the year network, building the overall topological order adding
one layer of publications at a time. Once a topological order-
ing of the nodes was created, we built a topological ordering
for the edges, sorting them by topological order of the cited
paper. When looping through the topologically sorted edge-
list, this ordering guarantees that each paper has collected all
the value/influence upstream before pushing its own forward,
and that all value/influence contained by the paper is pushed
forward to the citing papers at once. Further, this ordering
allowed us to loop through the edge-list only once and to
control the start and end of the pushing process by checking
for each edge that the topological ordering values of each
paper lie within the year bounds.

In order to implement the diffusion process, we have
chosen as seeds the set of all papers being published in the
same field in the same year ystart . By doing this we are able
to select a very coherent set of papers both in terms of subject
and time. Once the system has been initialized, the next step is

to choose a final year yend as the year in at which we will stop
pushing values forward. Hence we loop through the node-list
of all scientific papers in our dataset published between ystart

and yend − 1 arranged in topological order to initialize the
weights for each node. We consider only links to neighbors
that point to papers published before yend.

Once the weights for the diffusion process have been
initialized we can push the value of each node by looping
again through the nodelist in by topological order, which
guarantees that no value is ever pushed from a node before
the same node has collected all the previous values available.
The pushing starts from ystart and stops in yend − 1 but spreads
to papers published all the way to yend, without pushing any
value within yend. This means that we consider as leaf nodes
of the system only the first papers to receive value in the final
year, as receiving citations in the first year is somewhat hard
to obtain (it heavily depends on the month of publication)
and one single citation might steal all its value from another
paper. In case of the existence of a sink (i.e., an uncited node)
in previous years, we also consider it being part of the final
year. However, only a small fraction of nodes remain uncited
until 2008, with most papers being only temporary sinks. This
means that the almost all of the value is pushed along, with
little risk of it being trapped in sinks along the way.

After the pushing has ended we can collect all the values
that are left not pushed in the system. Since the pushing
has been carried out by following the topological order of
the whole graph, this is simply accomplished by not storing
permanently the value of any node that appears in the first
column of the edge-list as by definition they will necessarily
get rid of all their values. Also, by construction the sum of
the values of all the leaves equal one. It is important to notice
that in order to collect the data between say 1990 and 2008
one needs to repeat the pushing process for each yend between
those years, since the network initialized is different each
time. This means that when we collect the data in a certain
year, we do not consider what happened in the future (except
the 5 year citation proxy). If we were to collect the data in
middle years while pushing the values directly to the last year,
we would be including links to recent papers that would steal
value from the middle years, thus altering the renormalization

FIG. 7. An example of the diffusion process and the collection
of data. (a) shows the original DAG, while (b)–(d) show the result
of the diffusion process for each year (delimited by the dotted line).
The sum of the values in each red box sums up to one. Note how in
the last panel a sink exists and is included as being part of the set of
papers for which to sum the values.
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factor. The data collection, like the data initialization, can be
done on paper, journal, subfield, and field levels.

In Fig. 7, we show an example of the diffusion process and
the data collection. We can see that the method explained the
previous paragraph causes the intermediate values (e.g., the
values of the first time interval in Fig. 7) to be modified when
the process is run for more recent years. This is because, new

publications and their links to older links cause a change in
the link weights computed using Eq. (7).

APPENDIX D: HIGHEST CITED PAPERS

The Table III shows the papers with highest numbers of
citations for each year between 1970 and 1999. Biology is
virtually the only field present in this list.

TABLE III. Publications with highest citation rank for each year.

Rc RI Year Title

1 1 1970 Cleavage Of Structural Proteins During Assembly Of Head Of Bacteriophage-T4
1 63 1971 The Assessment And Analysis Of Handedness: The Edinburgh Inventory
1 1 1972 Regression Models And Life-Tables
1 19 1973 Relationship Between Inhibition Constant (K1) And Concentration Of Inhibitor Which Causes 50 Per Cent Inhibition (I50)

Of An Enzymatic-Reaction
1 1 1974 Film Detection Method For Tritium-Labeled Proteins And Nucleic-Acids In Polyacrylamide Gels
1 1 1975 Detection Of Specific Sequences Among Dna Fragments Separated By Gel-Electrophoresis
1 1 1976 Rapid And Sensitive Method For Quantitation Of Microgram Quantities Of Protein Utilizing Principle Of Protein-Dye Binding
1 1 1977 Dna Sequencing With Chain-Terminating Inhibitors
1 11 1978 Rapid Chromatographic Technique For Preparative Separations With Moderate Resolution
1 1 1979 Electrophoretic Transfer Of Proteins From Polyacrylamide Gels To Nitrocellulose Sheets - Procedure And Some Applications
1 6 1980 Ligand - A Versatile Computerized Approach For Characterization Of Ligand-Binding Systems
1 1 1981 Improved Patch-Clamp Techniques For High-Resolution Current Recording Fromcells And Cell-Free Membrane Patches
1 1 1982 A Simple Method For Displaying The Hydropathic Character Of A Protein
1 1 1983 A Technique For Radiolabeling Dna Restriction Endonuclease Fragments To High Specific Activity
1 2 1984 A Comprehensive Set Of Sequence-Analysis Programs For The Vax
1 4 1985 A New Generation Of Ca-2+ Indicators With Greatly Improved Fluorescence Properties
1 3 1986 Statistical Methods For Assessing Agreement Between Two Methods Of Clinical Measurement
1 1 1987 Single-Step Method Of Rna Isolation By Acid Guanidinium Thiocyanate Phenolchloroform Extraction
1 8 1988 Development Of The Colle-Salvetti Correlation-Energy Formula Into A Functional Of The Electron-Density
1 32 1989 Gaussian-Basis Sets For Use In Correlated Molecular Calculations.1. The Atoms Boron Through Neon And Hydrogen
1 2 1990 Basic Local Alignment Search Tool
1 2 1991 Molscript - A Program To Produce Both Detailed And Schematic Plots Of Protein Structures
1 5 1992 The Mos 36-Item Short-Form Health Survey (Sf-36). 1. Conceptual-Framework And Item Selection
1 1 1993 Density-Functional Thermochemistry.3. The Role Of Exact Exchange
1 1 1994 Clustal-W - Improving The Sensitivity Of Progressive Multiple Sequence Alignment Through Sequence Weighting,

Position-Specific Gap Penalties And Weight Matrix Choice
1 4 1995 Genepop (Version-1.2) - Population-Genetics Software For Exact Tests And Ecumenicism
1 2 1996 Generalized Gradient Approximation Made Simple
1 1 1997 Gapped Blast & Psi-Blast: A New Generation Of Protein Database Search Programs
1 2 1998 Crystallography And Nmr System: A New Software Suite For Macromolecular Structure Determination
1 2 1999 Mechanisms Of Disease - Atherosclerosis - An Inflammatory Disease
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