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Abstract—Many signals in nature and engineering systems
can be locally modeled as relatively low degree polynomials,
thus one-dimensional polynomial predictive filters are useful
especially in time-critical systems. The goal of this paper is to
introduce the two-dimensional polynomial predictive FIR filters
and present few of their properties. First we discuss previous
main results in one-dimensional polynomial predictive filters.
Then we show how to find the coefficients and the system
functions of the minimum area polynomial predictor, and we
present the recursive form for the system function of a minimum
area polynomial predictor. Finally, we approach the general form
of 2D polynomial predictors.

I. INTRODUCTION

A linear (discrete) predictive filter is an IIR (Infinite Impulse
Response) or FIR (Finite Impulse response) linear filter that
is able to calculate (predict) a future value of a signal that
belongs to a particular class of signals and that the prediction
is exact in the absence of noise. For example, available are
. . . , x(n−2), x(n−1), x(n) and we wish to express x(n+p),
as

x(n+ p) =
N∑

k=0

hkx(n− k) ≡ y(n) (1)

where

H(z) =
N∑

k=0

hkz
−k (2)

is the system function of the predictive filter and N is either
finite or infinite.

From the theory of linear difference equations and the
theory of formal power series [1], [2], it follows that in the
case of finite N , a signal x(n) satisfying (1) is of the form

x(n) =

K∑
k=0

Lk∑
l=0

ckln
lznk (3)

where ckl, zk are complex numbers and K, Lk are positive
integers. Thus the class of finitely (K, Lk are finite) linearly
predictable signals consists of polynomially modulated expo-
nential signals.

Let us consider a one-dimensional (1D) linear polynomial
one-step ahead prediction filter of order L, i.e. a filter that
performs polynomial prediction of

π(n) = π0 + π1n+ . . . πLn
L, (4)

a polynomial of degree L.

Because many signals in nature and engineering systems,
e.g. in control applications, can be locally modeled as rel-
atively low degree polynomials, one-dimensional polynomial
predictive filters are useful especially in time-critical systems.
Their properties and design methods have been studied for
decades [3], [4].

It has been shown [5] that a polynomial one-step ahead
predicting filter can be decomposed in a natural way to a
parallel structure

H(z) = Θ(z) + Φ(z)G(z) (5)

where
- Θ(z) is the shortest one-step ahead predicting FIR filter

of order L;
- Φ(z) is order L+ 1 difference operator and G(z) is any

filter.
For any degree L the minimum length predictor can be

found e.g. noticing that the difference operator of order L
reduces any polynomial signal of degree ≤ L to a constant
[6] or by solving the linear equations that the requirement of
one-step ahead prediction of polynomial signals 1, n, . . . , nL

imposes on the coefficients of the predictive FIR filter [7], [8].
As far as we know, except [9], there was almost no study

for the two-dimensional (2D) case. One reason may be that
polynomial prediction is essentially a polynomial interpola-
tion/extrapolation problem, but for the 2D case the existence
of a unique solution depends not only on the number of distinct
points relative to the degree of polynomials, but also on the
configuration of the points on the plane [10].

The goal of this paper is to introduce the two-dimensional
polynomial FIR predictive filters and present few of their
properties. The paper is organized as follows. Section II
discusses previous main results in one-dimensional polynomial
predictive filters. In Section III we show how to find the
coefficients in general case. For prediction vector (p, q) =
(1, 1) we compute the system function of a 2D minimum
area polynomial predictor (Section III-A), then we present the
recursive form for the system function of a minimum area
polynomial predictor (Section IV). Finally we approach the
general form of 2D polynomial predictors (Section V).

II. ONE-DIMENSIONAL POLYNOMIAL PREDICTIVE FILTERS

In this Section we discuss two main results in one-
dimensional polynomial predictive filters that will be use-
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ful later: the minimum length polynomial predictor and the
Heinonen-Neuvo predictor.

A. Minimum length polynomial predictor

The impulse response of the shortest FIR filter satisfying
(1) with p = 1 has the z-transform

Θ(z) = 1 + (1− z−1) + (1− z−1)2 + . . .+ (1− z−1)L. (6)

If ∆(z) = (1− z−1), then

Θ(z) =
L∑

k=0

∆l(z). (7)

Remark 1: This has a nice formal interpretation. Consider
the following

Θ(z) = {1 + (1− z−1) + (1− z−1)2 + . . .}
−(1− z−1)L+1{1 + (1− z−1) + (1− z−1)2 + . . .} (8)

The first part (8) equals (1− (1− z−1))−1 = z.
Because of the factor (1 − z−1)L+1, the response of the

second part (8) to any polynomial of degree at most L is
zero. So from the point of view of a polynomial signal, Θ(z)
looks like a one step advance operator.

In fact, it can be shown that the system function of any
polynomial predictive filter ”of order L” can be written in the
form

Θ(z)=1 + (1− z−1) + (1− z−1)2 + . . . + (1− z−1)L

+(1− z−1)L+1G(z), (9)

where G(z) is the transfer function of an FIR filter. The proof
is based on the space of polynomials being a principal ideal
domain, whence Euclidean algorithm can be applied [5].

B. Heinonen-Neuvo Predictor

Consider a linear polynomial predictor of length N + 1
predicting the value π(n+ 1) of any polynomial signal π(n)
of degree ≤ L. That is, for all n:

π(n+ 1) =
N∑

k=0

hkπ(n− k), (10)

where π(n) is any polynomial of degree ≤ L.
Because n0, n1, . . . , nL form a basis of the space of poly-

nomials of degree ≤ L, (10) holds if and only if for all n

(n+ 1)l =

N∑
k=0

hk(n− k)l, l = 0, 1, . . . , L. (11)

To find necessary conditions for hk (that actually are also
sufficient), substitute n = −1 to (11) to get [7]:

h0 + h1 + . . .+ hN = 1
h0(−1) + h1(−2) + . . .+ hN (−N − 1) = 0

...
h0(−1)L + h1(−2)L + . . .+ hN (−N − 1)L = 0

(12)

If L > N , the system consisting of the last N+1 equations
can have only trivial solution, because the column rank of the
system is N + 1. Thus we have solutions if N ≥ L.

The solution for N = L is called minimum length predictor.
For N ≥ L the solution minimizing noise gain, i.e.

minimizing
N∑

k=0

h2k (13)

is called Heinonen-Neuvo predictor and minimizes output
mean square error for input corrupted by white noise.

Remark 2: The system functions of the four first minimum
length predictors are

Θ0 = 1
Θ1 = 2− z−1
Θ3 = 3− 3z−1 + z−2

Θ3 = 4− 6z−1 + 6z−2 − z−3 (14)

The corresponding noise gains are 1, 5, 19 and 89. We see
that to have any noise attenuation, the predictor needs to be
much longer than the minimum length predictor.

There are several ways [6], [11] to extend the minimum
length predictors to useful FIR or IIR predictor that has
optimized frequency response, tailored to the requirements of
the application.

III. TWO-DIMENSIONAL POLYNOMIAL PREDICTIVE
FILTERS

Consider a two-dimensional causal linear FIR filter ex-
pressed in Z2 domain as

y(m,n) =
M∑
k=0

N∑
l=0

hklx(m− k, n− l), (m,n) ∈ Z2 (15)

If y(m,n) = x(m + p, n + q) and (15) holds for any
polynomial π(m,n) of total degree ≤ D, that is, for a
polynomial

π(m,n) =
∑

πrsm
rns, (16)

where the summation is over r ≥ 0, s ≥ 0 and πrs = 0
for r + s > D, then hkl is the impulse response of a two-
dimensional polynomial predictive filter with prediction vector
(p, q).

In the following we shall consider the case (p, q) = (1, 1)
that is the simplest, involving simultaneous prediction to both
directions (0, 1) and (1, 0).

A. The coefficients and system function of the minimum area
polynomial predictive filters for prediction vector (p, q) =
(1, 1)

Let the filter window be as in (15), that is

W = {0, 1, . . . ,M} × {0, 1, . . . , N}.

As in the one-dimensional case we get the following nec-
essary conditions for the filter coefficients by substituting

π(m,n) = mrns, 0 ≤ m ≤M, 0 ≤ s ≤ N, r + s ≤ D (17)
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to

π(m+ 1, n+ 1) =
M∑
k=0

N∑
l=0

hklπ(m− k, n− l). (18)

We obtain the identities:

(m+ 1)r(n+ 1)s =
∑

0≤k≤M
0≤l≤N
k+l≤D

hkl(m− k)r(n− l)s, (19)

for all 0 ≤ r ≤M , 0 ≤ s ≤ N , r + s ≤ D.
When M = N = D, two-dimensional polynomial predic-

tive filter is called the minimum area polynomial predictive
filter, because there are (D+1)(D+2)/2 coefficients hkl, i.e.
the minimum number of coefficients.

By substituting m = −1, n = −1 in (19), we get the same
number of linear equations for hkl.

When (r, s) = (0, 0) we get

∑
0≤k≤M
0≤l≤N
k+l≤D

hkl = 1 (20)

and when (r, s) 6= (0, 0) we get∑
0≤k≤M
0≤l≤N
k+l≤D

hkl(−1)r+s(k + 1)r(l + 1)s = 0 (21)

The system of equations (20) and (21) provides the coeffi-
cients hkl.

From the solutions of (20) and (21) we can immediately
compute the values of the coefficients of the system function
of the minimum area polynomial predictive filters for small
values of M = N = D. The values of the coefficients hkl
are shown for polynomials of total degrees D = 1, 2, 3, 4 in
Tables I, II and III. Note that hkl are set 0 for k + l > D.

HH
HHk
l 0 1

0 3 -1
1 -1 0

H
HHHk

l 0 1 2

0 6 -4 1
1 -4 1 0
2 1 0 0

TABLE I
THE COEFFICIENTS hkl FOR D = 1 (LEFT) AND D = 2 (RIGHT).

HHHHk
l 0 1 2 3

0 10 -10 5 -1
1 -10 5 -1 0
2 5 -1 0 0
3 -1 0 0 0

TABLE II
THE COEFFICIENTS hkl FOR TOTAL DEGREE D = 3.

HH
HHk
l 0 1 2 3 4

0 15 -20 15 -6 1
1 -20 15 -6 1 0
2 15 -6 1 0 0
3 -6 1 0 0 0
4 1 0 0 0 0

TABLE III
THE COEFFICIENTS hkl FOR TOTAL DEGREE D = 4.

The system function of minimum area polynomial predictor
for prediction vector (p, q) = (1, 1) follows:

Θ(D)(z1, z2) =
∑
k,l

hklz
−k
1 z−l2 . (22)

They are for a polynomial of total degree 1

Θ(1)(z1, z2) = 3− z−11 − z−12 (23)

and degree 2

Θ(2)(z1, z2) = 6− 4z−11 − 4z−12 + z−21 + z−11 z−12 + z−22 (24)

and so on. The magnitude of the minimum area polynomial
predictive filters are shown for polynomials of total degrees
D = 1 and 4 in Figure 1.

If we write

Kr(z1, z2) =
r∑

i=0

z−r+i
1 z−i2 (25)

we can express minimum area predictor for polynomials of at
most fixed total degree compactly:

Θ(1)(z1, z2) = 3K0 −K1;
Θ(2)(z1, z2) = 6K0 − 4K1 +K2;

Θ(3)(z1, z2) = 10K0 − 10K1 + 5K2 −K3;
Θ(4)(z1, z2) = 15K0 − 20K1 + 15K2 − 6K3 +K4.

(26)

IV. RECURSIVE FORM FOR THE SYSTEM FUNCTION OF A
MINIMUM AREA POLYNOMIAL PREDICTOR FOR

PREDICTION VECTOR (p, q) = (1, 1)

The expressions (25) and (26) give a simple form of
minimum area two-dimensional polynomial predictors with
prediction vector (p, q) = (1, 1) for polynomial signals of
total degree ≤ D. However, from these expressions we do
not see immediately how the minimum length predictor for
total degree D + 1 evolves from the corresponding one for
degree D.

Observing that Θ(0)(z1, z2) = 1 is the required predictor
for polynomials of total degree 0. Moreover, we have

Θ(1)(z1, z2) = 3− z−11 − z−12 =

= 1 + [(1− z−11 ) + (1− z−12 )] (27)

and

Θ(2)(z1, z2) = 6− 4z−11 − 4z−22

+z−11 + z−11 z−22 + z−22

= 1 + [(1− z−11 ) + (1− z−12 )]

+[(1− z−11 )2 + (1− z−11 )(1− z−12 ) + (1− z−12 )2)] (28)
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Fig. 1. Magnitude of minimum area polynomial predictive filter for D = 1 and 4.

and

Θ(3)(z1, z2) = 10− 10z−11 − 10z−12 + 5z−21

5z−11 z−12 + 5z−22 + z−31 + z−21 z−12 + z−11 z−22 + z−32

= 1 + [(1− z−11 ) + (1− z−12 )]

+[(1− z−11 )2 + (1− z−11 )(1− z−12 ) + (1− z−12 )2]

+[(1− z−11 )3 + (1− z−11 )2(1− z−12 )

+(1− z−11 )1(1− z−12 )2 + (1− z−12 )3] (29)

Thus we observe that the system function of a minimum
area predictor with prediction vector (p, q) = (1, 1) for
polynomial signals of total degree ≤ D is

Θ(D)(z1, z2) =
D∑

k=0

k∑
l=0

(1− z−11 )k−l(1− z−12 )l (30)

For one-dimensional predictors it is relatively straightfor-
ward to give a combinatorial proof of the form (6) of the
minimum length predictor.

For two-dimensional polynomial signals this would be more
complicated. However, the approach using formal power series
as in Remark 1 works. We can proceed as follows.

Write ∆1(z1) = (1− z−11 ), ∆2(z2) = (1− z−12 ).
Then

Θ(D)(z1, z2) =
D∑

k=0

k∑
l=0

∆k−l
1 (z1)∆l

2(z2) (31)

=
∞∑
k=0

k∑
l=0

∆k−l
1 (z1)∆l

2(z2)−
∞∑

k=D+1

k∑
l=0

∆k−l
1 (z1)∆l

2(z2)

Because the second sum on the last line contains all mixed
differences of order at least D + 1, its response to any
polynomial of total degree ≤ D is zero. This means that the

response of (31) to any polynomial signal of total degree at
most D is
∞∑
k=0

k∑
l=0

∆k−l
1 (z1)∆l

2(z2)

= [1 + ∆1(z1) + ∆2
1(z1) + . . .][1 + ∆2(z2) + ∆2

2(z2) + . . .]

=
1

1−∆1(z1)
· 1

1−∆2(z2)
= z1z2 (32)

showing that it realizes a polynomial predictor with prediction
vector (1, 1).

V. A GENERAL FORM OF 2D POLYNOMIAL PREDICTORS

We can find a general form for 2D polynomial FIR pre-
dictors similarly to the 1D case given in (9). Following the
reasoning for 1D case, we write the minimum area predictor
for 2D polynomials of total degree ≤ L as

Θ(L)(z1, z2) = Φ(0)(z1, z2) + Φ(1)(z1, z2) + Φ(2)(z1, z2) + . . .

+ Φ(L)(z1, z2)

where Φ(0)(z1, z2) = 1 and

Φ(k) =
k∑

l=0

(1− z−11 )k−l(1− z−12 )l. (33)

Because Φ(L+1) annihilates all polynomials of total degree
≤ L, we notice that

H(z1, z2) = [Φ(0)(z1, z2) + Φ(1)(z1, z2) + Φ(2)(z1, z2) + . . .
+Φ(L)(z1, z2)] + Φ(L+1)(z1, z2)G(z1, z2)
= Θ(L)(z1, z2) + Φ(L+1)(z1, z2)G(z1, z2)

(34)
is a 2D polynomial predictor for polynomials of total degree
≤ L. However, unlike in 1D case, this representation is not
unique.

We show now that by modifying G(z1, z2), H(z1, z2)
changes too. Thus by moving the zeros of second filter
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Fig. 2. Magnitude of H1(z1, z2) (left) and H2(z1, z2) (right).

G(z1, z2), the magnitude of H(z1, z2) changes clearly enough
to indicate the existence of design possibility. As an example,
we consider two cases for L = 2:

1) G1(z1, z2) is composed of two different separate first
order filters that have zeros at -1:

G1(z1, z2) = (1 + z−11 )(1 + z−12 ); (35)

2) G2(z1, z2) is a mean filter:

G2(z1, z2) = 1
10 (1 + z−11 + z−12 + z−21 +

+z−11 z−12 + z−22 + z−31 + z−21 z−12 + z−11 z−22 + z−32 ).
(36)

The coefficients of H1(z1, z2) and H2(z1, z2) are shown
in Tables IV and V. Their magnitude frequency plots are
presented in Figure 2.

HH
HHk
l 0 1 2 3 4

0 10 -6 -1 3 1
1 -6 -1 1 2 -1
2 -1 1 2 -1 0
3 3 2 -1 0 0
4 -1 -1 0 0 0

TABLE IV
THE COEFFICIENTS hkl OF H1(z1, z2).

H
HHHk

l 0 1 2 3 4 5 6

0 6.4 -4.2 1.2 0.1 -0.3 0.3 -0.1
1 -4.2 0.6 -0.1 -0.6 0.6 -0.2 0
2 1.2 -0.1 -0.2 0.9 -0.3 0 0
3 0.1 -0.6 0.9 -0.4 0 0 0
4 -0.3 0.6 -0.3 0 0 0 0
5 0.3 -0.2 0 0 0 0 0
6 -0.1 0 0 0 0 0 0

TABLE V
THE COEFFICIENTS hkl OF H2(z1, z2).

VI. CONCLUSION

In this paper we have introduced the two-dimensional
polynomial predictive FIR filters and we have presented few
of their properties. Future work may focus on properties,
extensions, and applications of multidimensional polynomial
predictive filters utilizing both Heinonen-Neuvo approach and
the decomposition (34). A real world example where 2D
predictive filters can be applied is wind data. Sodar and Lidar
based instruments are routinely used at airports and wind farms
to measure the wind direction and strength as function of time
at different heights. The desired signal can be the smoothed
output signal or a measure of turbulence derived from the
difference of the original and the smoothed signals.
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