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Abstract—In this paper, we address the problem of performing
robust statistical inference for large-scale data sets whose volume
and dimensionality maybe so high that distributed storage and
processing is required. Here, the large-scale data are assumed to
be contaminated by outliers and exhibit sparseness. We propose a
distributed and robust two-stage statistical inference method. In
the first stage, robust variable selection is done by exploiting
7-Lasso to find the sparse basis in each node with distinct
subset of data. The selected variables are communicated to a
fusion center (FC) in which the variables for the complete data
are chosen using a majority voting rule. In the second stage,
confidence intervals and parameter estimates are found in each
node using robust 7-estimator combined with bootstrapping and
then combined in FC. The simulation results demonstrate the
validity and reliability of the algorithm in variable selection and
constructing confidence intervals even if the estimation problem
in the subsets is slightly underdetermined.

Index Terms—statistical inference, robust, sparse,
dimensional, large-scale data, variable selection, bootstrap
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I. INTRODUCTION

The proliferation of heterogeneous large-scale data sets
generated in an unprecedented volume and speed have led to
dramatic changes in data storage, processing and inferential
methods. In particular, distributed solutions with multicore and
cloud computing platforms facilitate the storage and process-
ing of high volume of data. Conventional statistical inference
and learning methods can not accommodate processing of such
large-scale data sets due to a lack of scalability. In order to
address the scalability, statistical methods are needed to be
compatible with distributed computing and storage platforms.
Moreover, in many practical applications often large-scale data
sets are contaminated by outliers, and bias in estimated pa-
rameters and confidence intervals may be significant. In order
to achieve a desired accuracy and reliability, robust statistical
methods are preferred, see [1]. A statistically robust, fast and
scalable bootstrap compatible with distributed architectures
was introduced in [2]. The inference method employs one-
step estimators in combination with fixed-point equations to
faithfully estimate parameters of interest and measures of
uncertainty in terms of confidence intervals.

In many large-scale and high-dimensional data analysis
problems, the number of explaining variables may be of
the same order or larger than the number of observations.
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Hence, the problem may become ill-posed and some regu-
larization may be necessary. High-dimensional data sets are
arising in many applications such as genomics, finance, face
recognition as well as medicine. To obtain valid inference in
high-dimensional scenarios, it is required to impose structural
constraints such as sparsity and low-rank on the large-scale
data.

In this paper, we proposed a robust and scalable two-stage
statistical inference method concerning with high-dimensional
data and compatible with distributed architecture. In order
to achieve scalability, data are stored and processed locally
at each node. This may be achieved by subdividing the full
data into smaller distinct subsets, for example by resampling
without replacement. In the first stage of the proposed method,
robust variable selection is done by employing 7-Lasso [3],
[4] to identify the sparse basis for each distinct subset of data.
The selected variables are then communicated to a cloud or
fusion center that selects the variables for all the nodes via
majority voting rule. The selected basis is then communicated
back to each distributed node. The estimates of parameters and
confidence intervals at each node are found by using a robust
extension of the Bag of Little Bootstraps (BLB) method [5]
proposed in this paper. The bootstrap replicates are computed
using a robust T-estimator. The estimated confidence intervals
from all nodes are combined in the fusion center by using
trimmed means. Tuning-free estimation of bootstrap replicates
and exploiting multinomial weighting in 7-estimation offers
high scalability. The simulations demonstrate the high relia-
bility of the proposed algorithm both in variable selection as
well as finding point estimates and confidence intervals. The
method has comparable performance to MM-estimator based
inference in mildly under-determined scenarios (subsets of
data). Moreover, it outperforms the MM-Lasso based method
in variable selection performance, having lower false positive
rate under given scenario.

This paper is organized as follows: In section 2, the basics of
statistical inference for large-scale data and brief explanation
of the proposed method is introduced. In section 3 and
4, the robust variable selection and distributed inference is
explained in details. Section 5 provides simulation studies and
investigates the performance of the proposed method.

II. PRELIMINARIES AND PRIOR WORKS

In this paper, the large-scale data under investigation follow
a linear regression model y = X3 + v where X € R"*P
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denotes a regression matrix, y € R" is a response vector,
v € R™ is a measurement noise and 3 € RP denotes a
sparse parameter vector with ks = |S| non-zero entries and
S={jel,---,p: B # 0}. Because of the large volume,
the data’ Y = (y, X? are divided into s smaller distinct subsets
of data Y = (3, X(®)) € RE*(#+D j =1 ... s that can
be stored and processed separately. The subsets are formed
by resampling without replacement from the rows of the
complete data set where b = {|n”]|y € [0.5,1)}. The same
situation would occur if subsets of data are stored on s storage
and computing nodes and each node contains b observations.
Sometimes, the value of b may be such that p ~ b, p/b > 1
or data may be contaminated by outliers. Statistically robust
regularized estimators can be used to address these problems
simultaneously [6], [7] and [8]. In high-dimensional statistics,
performing inference tasks such as finding confidence intervals
or hypothesis testing require further effort to reduce the bias
introduced by regularization. State-of-art statistical inference
methods in high-dimensional statistics follow two avenues,
debiased-Lasso [9] and post-Lasso estimators [10] and [11].
The debiased-Lasso compensates for the bias introduced by
the Lasso estimator and provides valid solutions to finding
confidence intervals and hypothesis testing. Alternatively, post-
Lasso estimators offer inference solutions in two stages where
in the first stage a subset of variables is selected and in
the second stage bootstrapping least square type estimators
is employed to perform the actual inference.

In order to deal with potentially under-determined models
and perform robust variable selection in the presence of
outliers, we proposed a statistical inference technique in [12],
inspired by Bolasso [13] and post-Lasso estimators. In this
paper, we propose a two-stage distributed statistical inference
method where robust variable selection is performed in the first
stage. The actual inference is done in the second stage using
statistically robust bootstrapping and the variables selected in
the first stage. The robust variable selection method exploits
the 7-Lasso method [3], [4] to find the sparse basis for each of
the s distinct data sets of b observations. The selection results
from each node are fused in a cloud or fusion center by using
a k-out-of-p voting scheme to choose the variables for the
complete large data set. The chosen basis is communicated
back to each distributed computing and storage node and used
in the second stage of the inference. A statistically robust
extension of Bag of Little Bootstraps (BLB) [11] is employed
to find parameter estimates and confidence intervals for the
selected basis in each node. Bootstrap replicates are computed
using a robust low-dimensional 7-estimator of regression [14].
The bootstrap percentile method is used to estimate confidence
intervals associated with the selected variables. The estimated
confidence intervals from each node are communicated to the
cloud or fusion center for the inference on complete large-
scale data. The confidence intervals are combined in the fusion
center by applying trimmed mean over the lower and upper
bound of confidence intervals. The details of the proposed
method is presented in the following sections.

III. DISTRIBUTED ROBUST VARIABLE SELECTION

In this section, the proposed consistent support recovery
algorithm employed in the first stage of the inference method
is described in detail. The main steps of the algorithm are
summarized in Figure 1.
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Fig. 1: First Stage: The support recovery algorithm extracts
the support from different bags using sparsity and finds the
support of the parameter by using the majority rule.

In the first step, the large-scale data are assumed to be
divided into s distinct subsets by resampling without replace-
ment. The robust 7-Lasso estimator [3], [4] is applied to each
distinct subset of observations Y = (3 X#) i =1, ... s
as follows:

@(i) = argmin £(3) = argmin ([&g)]Z + AHBH&)
s p (1)
~(i)y2 b - (4)
Bl S (L) - sl ).
=1 b

where A determines the level of sparsity imposed by the ¢;-
norm penalty term, #(9(3) = y( — X® 3, p;(-) is an even
and bounded function satisfying the properties of bounded p-
function defined by Maronna et al. [15]. In this work, Tukey’s
bisquare p-function is used, defined as p(t) = 1 — (1 —
(t/c)2)31(|t\ < ¢) where c is a tuning constant that trades
off between robustness and efficiency. 5\ = 6,.(+(?)(3)) and
6" = 6,(¥9)(B)) are the T-scale and M-scale of the residual
vector ©(*)(3), respectively. Here, the M-scale estimate of
the residual vector satisfies (1/b) Z?Zl po(fl(z) (5)/67152)) =
where pg(+) is similarly an even and bounded p-function and ¢,
controls the break-down point of the estimator. The constants
¢o and ¢; (¢1 > ¢p) are tuned according to E[po(t)] = §*
and  (E[¢_(1)])2/E[2(t)] = ¢* to ensure the desired
high break-down point §* and efficiency (* are satisfied
for linear models with normal errors, simultaneously. It is
assumed that ¢t ~ N(0,1), and ¥, (t) = wbo(t) + ¥1(t),
Po(t) = Opo(t)/Ot and ¥ (t) = Op1(t)/Ot, respectively. @,
is given by w, = (2E[p1(t)] — E[¢1(t)t])/E[to(t)t]. The
objective function given in equation [1] consists of a non-
convex term and a non-smooth ¢;-norm penalty term. There-
fore, minimizing such an objective function is not a trivial task
and we address this issue by taking the generalized gradient of
the objective function, defined as 5‘5([&9]2 + Al|B|le,)- Here,
the generalized gradient of the non-convex smooth, continu-
ously differentiable term 9g[6"”]? is identical to its gradient
V[64”]? and the generalized gradient of the non-smooth,

= argmin (
B8
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convex term g (\|| 3¢, ) coincides with its subdifferential [7],
[16]. As the objective function is locally Lipschitz, any point
B, at which 0 € 9a([6)]2 + A||B]l¢,) is a local minimum
of the 7-Lasso estimation problem. To find local minima of
the given estimation problem, the generalized gradient of the
objective function is taken wrt 3. It is given by

PON
dsL(B :7%2

where the generalized gradient of the objective function turns
out to be equivalent to the sub-gradient of the weighted least
square penalized by ¢;-norm except that the weights wl(’)(ﬁ)
here depend on the unknown 3. Therefore, we can reformulate
the optimization problem as follows:

A(l) 7 v (7 !
B —arg[raan Ny —XD8)2 + X 1B, (3)

B)xy) +29s(1Blle,). @)

where \ = 2bA/ 6,@, Q9 is a diagonal matrix whose entries
(1) (1)

on diagonal are \/w, "’ and w; "’ is given by,
(i) _ [wg)@/’O(fz(l)) + Y (7:1(2))}

i 7@ ’

Zl 1[2p1(7°l ) — (7 Z) }
Zl 1¢0( (1)) ~(4)

Here, the notation fl( ) is a shorthand for 7 V(Z) (B) and fl(i) =
fl(l) /&éz). The optimization problem deﬁned in equation (3)
is solved by using the iteratively reweighted Lasso (IR-

WLASSO) that alternates between ﬁndlng the weight matrices

QW refining Ué R

“4)

Wl —

and updating [)' - Each node computes an

estimate of the parameter vector B and communicates its
selected support SO = {j € 1,--- ,p: Bj(.l) # 0} to the cloud
or fusion center which uses the majority voting rule to select
the variables for the complete large-scale data set. The chosen
basis S is communicated back to each node and used in the
second stage of inference. S = {j : 37_, I(BJ@ #0)/s >
0.5}, i.e. if a parameter is in the support within the majority
of subsets, it is selected to the support for the complete data
set. In order to tune the regularization parameter \, we create
a grid of N, _ lambdas for tuning the regularization parameter
of 7-Lasso and N, lambdas for tuning the regularization
parameter of S-Lasso and find the optimal values using the
method explained in our earlier paper [12].

IV. INFERENCE USING 7-ESTIMATOR AND BLB

In this section, we describe the inference performed in stage
2 of the proposed approach. We develop a new statistically
robust extension of Bag of Little Bootstraps (BLB) [5] to
address the robustness and avoiding bias in estimation of 3
and confidence intervals. The algorithm operates by using the
explaining variables selected in stage 1. Hence, the columns
of X that correspond to variables excluded from S are
discarded. The algorithm generates B bootstrap samples for

each subset of data Yg) = (y(i),Xg)),i =1,---,s where the
multiplicity of observations in the bootstrap sample is deter-
mined by a random weight vector w*(¥) € R’ j =1,--- | B
drawn from a mult1n0m1a1 distribution (7, (1/b)1;). Here, the

bootstrap replicates 55 ) are estimated using a robust 7-
estimator of regression [14] as follows:
(i) A*(ij)}z

b
. g (5 ~x(ij
Bg = = argmin <7[ b Zwl(])pl(rl(”)),
B [ (5)
— argmin Hn*(w)(y(i) _ X?ﬁ})”?y
s

where(l\/)l scale of res1du)als ab(('; satlsﬁes( (%/n) Zz 1 w*(”)
) = 8, 15 = 508/ and 0
diag(vw*(i7) © w* ( 7). wl*(”) is given by

S 2o () — (7 )i ]
O ©
I a1 U A R G )
l #(8%)

The iteratively reweighted least square (IR-WLS) is em-
ployed to deal w1th dependence of weights on the unknown

8% §- Once ﬂ g () s are robustly estimated for each bootstrap
replicate, the confidence intervals can be estimated using
the bootstrap percentile method, for example. The estimated
confidence intervals are transmitted from each computing node
to the fusion center to perform the inference for the complete
large-scale data. In the fusion center, the confidence intervals
for the complete large-scale data are estimated by applying
p-trimmed mean over upper bounds and lower bounds of
transmitted confidence intervals as follows:

wr(9) =

S—K

CI, = ! > [CIg® (7)

1=Kk+1

where 11 € [0,1/2) denotes the proportion of entries to be
discarded from lower bound and upper bound, x = [su]
determines the number of entries within upper bound and
lower bound each to be truncated ([.] stands for the integer
part) and [CI¢]*(") denotes the order statistics. The overall
procedure to construct confidence intervals is summarized in
the following steps:

1) Generate B bootstrap sam

<ples for each distinct subset
of data, Y = (y, X

*w )j=1,..B

2) Compute bootstrap T estimates, ﬁ 5 )

3) Compute (1 — )% confidence intervals Clz(l) for each
subset of data using the bootstrap percentile method,

4) Fuse the lower and upper confidence bounds by using
pi-trimmed mean, CI, = 24— >"7"" | [CI¢]*C

V. RESULTS

In this section, the performance of the proposed method is
investigated in simulations considering both variable selection
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and inference. In particular, identifying sparse basis correctly,
statistical robustness, the quality of the parameter estimates
and confidence intervals are studied. Different proportions of
outliers and a variety of SNR levels are used in simulations.
The performance is compared to an inference method using
MM-Lasso and MM-estimators in [12]. It is assumed the large-
scale data follow a linear regression model where the parame-
ter vector 3 € RP is sparse with k5 = 40 non-zero entries. 3
is set to 3 x 1s and their positions are chosen randomly. The
regression matrix is a Toeplitz matrix with i.i.d rows drawn
from a multivariate Gaussian N(0,X) with ¥;; = pli—7l
where p is a constant. The measurement noise vector, v, is
an additive white Gaussian noise with a variance (AWGN)
o2 = [|XB2,10-SNR/10/, (SNR in dB). The outliers are
introduced by randomly choosing the observations in y and
replacing them with random values chosen from a standard
Gaussian distribution with o, = 250. We set the simulation pa-
rameters as follows: n = 8100, p = 270, b = 225, v = 0.602,
c1 = 6.04 for 7-Lasso and ¢; = 3.44 for MM-Lasso, s = 36,
N, g = 50 (number of points in the grid of lambda for S),
Ny, = 70 (number of points in the grid of lambda for 7),
N, = 7 (maximum number of iterations), B =100, p = 0.5,
uw=0P/2, Kk =1/2(OP x s) and o = 0.1. The tuning con-
stant ¢; is adjusted to provide 85% efficiency under Gaussian
errors for bootstrap 7-estimates and bootstrap MM-estimates
(c1 = 3.44 for MM). The remaining of parameter set-up for
MM-Lasso and MM estimator will be identical to the above
set-up.

Across all simulations, it is assumed the linear regression
model has an intercept component and all columns of the
augmented regression matrix [1;,;X ()] are robustly stan-
dardized by centring the columns using a bisquare location
estimator and scaling them using bisquare scale estimators
[17]. The response vector y(@ is centred using the bisquare
location estimator [17]. In order to tune ¢y for the initial
S-Lasso estimator and M-scale of residuals, we set §; =
0.25 x 1(OP < 0.2) + (OP + 0.05) x 1(OP > 0.2), which
controls the breakdown point according to Theorem 4.1 in
[7]. Tt is well justified to set &; to a higher value than the
outlier proportion OP and keep a safety gap large enough
between 9; and OP. This would mitigate the chances of
breaking the estimator when the subsets of data contain higher
proportion of outliers than the nominal OP. On the other
hand, there is a trade-off between robustness and bias in M-
scale estimators which is more pronounced in the presence
of sparsity [12]. When tuning ¢ for the initial S estimator
and M-scale of residuals for bootstrap samples, we need to
increase the safety gap even more 6o = OP + 0.1. Because
bootstrapping may lead to having larger proportion of outliers
in replicate data sets than ds. The proposed algorithm was
implemented in MATLAB except the estimation of initial S-
Lasso which was done in R using PENSE [7], (https://cran.r-
project.org/package=pense). In addition, we used the Dual
Augmented Lagrangian [18] implementation to solve the IR-
WLASSO.

We run 10 trials of the above simulation setup for which
a random realization of outliers is used at each trial. X, 3
and v are kept fixed across all trials. The simulation results of
variable selection performance are reported by taking average
of 10 trials and then shown in Table I and II. As it can
be observed, the proposed algorithm exhibits a very reliable
performance in variable selection and the true positive rate is
100%. It’s worth noting that even though the number of false
positives is remarkably low, they can be further reduced in
the second stage by rejecting variables when corresponding
CI contains zero. In addition, the proposed robust variable
selection outperforms the robust variable selection employing
MM-Lasso estimator under the given scenario.

The reliability of parameter and CI estimates is demon-
strated in Figure 2 and Table III. The performance is compared
to inference method using Conventional Lasso and least square
estimators. In simulations for outlier free scenario, 10 random
realizations of measurement noise is generated and X and
3 are kept fixed across all trials. The estimated confidence
intervals are obtained by averaging the CIs over lower and
upper bounds from 10 trials at SNR level of 20 dB. Employing
non-robust estimators results in a false positive rate of 100%,
indicating that all zero entries were incorrectly identified as
non-zero and the estimated CIs are extremely wide and hence
non-informative. RMSE of the parameter estimates, as given
in Figure 2, are significantly large for this case. As it can
be observed, the proposed method provides robust estimates
of Cls that are just slightly inflated when the proportion of
outliers increases. This can be confirmed by RMSE values of
the parameter estimates given in Table III and how well they
are concentrated about the true values. Only in very few cases
the true parameter values were not within the estimated CI.
Comparing the proposed algorithm to the inference method
employing MM-Lasso and MM estimators indicates that with
the proposed method, confidence intervals are slightly larger
and provide better coverage properties under given scenario
for higher proportion of outliers.

TABLE I: Contingency table for under-determined case (p/b =
1.2) and OP = 0.3, CERppp = 0.0015 > CER, = 0.0011,
(RERpp = 0.9985 < RER, = 0.9989), SNR=30 dB.

Classified Classified
T Sparse | Zero MM Sparse | Zero
§ Sparse 100 0 § Sparse 100 0
& [ Zero 0.13 99.87 & | Zero 0.17 99.83

TABLE II: Contingency table for under-determined case
(p/b = 1.2) and OP = 0.3, CERpp\p = 0.0059 > CER, =
0.0015, (RERpp = 0.9941 < RER; = 0.9985), SNR=20
dB.

Classified Classified

T Sparse | Zero MM Sparse | Zero

5 Sparse 100 0 “E’ Sparse 100 0
B | Zero 0.17 99.83 = | Zero 0.70 99.30
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Fig. 2: The wide confidence intervals obtained by using
non-robust estimators convey no information whereas the
confidence intervals obtained by using robust estimators are
minimally affected when the proportion of outlier increases.
Reliable parameter estimates and their confidence intervals
are obtained even in the presence of outliers (35 blue dots).
Moreover, the proposed method achieves lower CER values
compared to the inference method using MM-based estimators.

TABLE III: RMSE values of the parameter estimates for
different proportion of outliers. The proposed method using 7-
based estimators have almost equal performance in comparison
to the inference method using MM-based estimators in terms
of RMSE values with a slightly lower RMSE in higher outlier
ratio and in contrast a slightly higher RMSE in lower outlier
ratios.

RMSE MM T
OP=0% | 0.157 | 0.163
OP =15% | 0.153 | 0.155
OP =30% | 0.187 | 0.186

VI. CONCLUSION

In this paper, a robust and distributed two-stage statistical
inference method for large-scale data sets having sparse under-
lying structure and outlying observations was proposed. The
performance of the algorithm was studied in terms of variable
selection, measured by Classification Error Rate (CER), Re-
covery Error Rate (RER) and contingency table and accuracy
of confidence intervals, quantified by RMSE of parameter
estimates, coverage and box-plots. In addition, the proposed
algorithm was compared to the non-robust counterpart and
a robust inference method based on MM-estimators. The
results show the high reliability of the proposed algorithm in
variable selection, computing parameter estimates and finding
confidence intervals while avoiding the bias introduced by
regularization. The proposed method outperformed the infer-
ence method using MM-Lasso estimator in terms of variable
selection, having lower false positive rate under the given
scenario in simulations. The RMSE performances of these two
methods are almost equal.
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