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Abstract—Nonlinear state estimation using Bayesian filtering
and smoothing is still an active area of research, especially
when sparsity-inducing regularization is used. However, even
the latest filtering and smoothing methods, such as unscented
Kalman filters and smoothers and other sigma-point methods,
lack a mechanism to promote sparsity in estimation process.
Here, we formulate a sparse nonlinear state estimation problem
as a generalized L1-regularized minimization problem. Then, we
develop an augmented sigma-point Lagrangian splitting method,
which leads to iterated unscented, cubature, and Gauss–Hermite
Kalman smoothers for computation in the primal space. The
resulting method is demonstrated to outperform conventional
methods in numerical experimentals.

Index Terms—Nonlinear state estimation, sparsity, sigma-point,
Kalman filter, variable splitting.

I. INTRODUCTION

In many applications, the fundamental problem is to estimate
the original states from degraded measurements, based upon
prior knowledge on the nonlinear stochastic dynamics [1],
[2]. This problem is of central importance, for example, in
target tracking, biological processes, tomographic imaging
reconstruction, and automatic music transcription [2], [3].
Generally, nonlinear Gaussian filtering and smoothing methods,
for instance, Taylor series expansion based methods [4] or
sigma-point based methods [2] can be used to estimate the
state by analytical or statistical linearization of the nonlinear
functions. Although such filtering and smoothing methods have
been studied extensively, there is comparatively little work
using sparsity-inducing regularization.

Promoting sparsity in state estimation is difficult but very
much desired [3], [5]. Typically, the state is estimated by per-
forming penalized least squares along with a sparsity-inducing
regularized function [5]. It has already been demonstrated
[6]–[10] that sparsity assumption can lead to significant gains
in state estimation. For instance, the method [8] combined
dynamic penalization with L1-norm to obtain a cost function
for sequentially estimating the state. A pseudo-measurement
technique has been proposed for the Kalman innovations or
filtering errors to promote sparsity [9]. The joint state estimation
and parameter learning problem was solved by jointly using
Kalman filter and L1-regularization in [11].

Variable splitting optimization methods such as augmented
Lagrangian splitting (ALS) [12], [13], Peaceman-Rachford
splitting (PRS) [14], and first-order primal-dual (FOPD)
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method [15], have a significant impact in many engineering
fields due to splitting of the problem into smaller parts.
However, when the datasets are extremely large, consisting of
hundreds of millions or billions of states in a dynamic system,
solving such problems by conventional splitting methods
becomes challenging. In our recent paper, we have proposed a
general variable splitting framework for L1-regularized state
estimation, which is based on the combination of iterated
extended Kalman smoother (IEKS) and alternating direction
method of multipliers (ADMM) [3]. However, IEKS requires
the Jacobians of the model functions, and may lead to an impre-
cise estimation result when the system is strongly nonlinear. For
more accurate, but still computationally efficient estimation, our
paper develops an augmented sigma-point Lagrangian splitting
(ASPLS) method for the large-scale nonlinear state estimation
problem.

Figure 1. Our framework. With introducing the general L1-norm, the
sparse nonlinear state estimation problem is formulated as a generalized
L1-regularized minimization problem. The problem is solved by using
iterated sigma-point smoothing methods combined with augmented Lagrangian
splitting.

In this paper, we propose a novel approach based on
a variable splitting strategy which aims at overcoming the
limitations of the existing methods when introducing sparsity
to nonlinear state estimation problems. First, we define a
generalized L1-regularized nonlinear least-square cost function
for state estimation. We then develop a method which combines
a sigma-point Kalman smoother (SPKS) with an augmented
Lagrangian splitting (ALS) approach. The overall architecture
is shown in Figure 1. Compared to our previous work [3],
the main difference here is better capturing the higher order
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moments caused by the nonlinear transforms via the use of
sigma-point methods. To summarize, our main contribution is
to propose a new sigma-point-based augmented Lagrangian
splitting method to solve the sparse nonlinear state estimation
problem. Experimental results demonstrate that the proposed
method has low computational complexity and high estimation
accuracy.

II. PROBLEM FORMULATION

Let xt be an Nx-dimensional state of a dynamic system
and yt be an Ny-dimensional noisy measurement. Then, the
relations between the states and the measurements are governed
by the nonlinear dynamic state-space model

xt = ft(xt−1) + qt,

yt = ht(xt) + rt, t = 1, . . . , T,
(1)

where ft : RNx → RNx and ht : RNx → RNy are nonlinear
functions, and t is the time step. The process and measurement
noises qt ∼ N (0,Qt) and rt ∼ N (0,Rt) are assumed to be
zero-mean Gaussian with covariances Qt and Rt, respectively.
The initial condition is given by x1 ∼ N (m1,P1) at t = 1.
This paper is concerned with the estimation of the states x1:T

from the measurements y1:T .
When the system is underdetermined, that is, Ny � Nx,

we can use analysis sparsity prior to stabilize the estimation
of x1:T . This can be done by incorporating a generalized L1-
regularization on the solution. For this purpose, we define a
pseudo-measurement variable st ∈ RP , such that elements of
st are conditionally independently Laplacian for p = 1, . . . , P .
The actual realizations of st are set to be zeros. Herein, the
unnormalized posterior is then given by

p(x1:T | y1:T , s1:T )

∝ p(x1)

T∏
t=1

p(yt | xt)
T∏
t=2

p(xt | xt−1)

T∏
t=1

p(st | xt),
(2)

where

p(yt | xt) ∝ exp

(
−1

2
(yt − ht(xt))

TR−1t (yt − ht(xt))

)
,

p(xt | xt−1) ∝ exp

(
−1

2
(xt−ft(xt−1))TQ−1t (xt−ft(xt−1))

)
,

p(st | xt) ∝ exp

(
− µ
P
‖st −Gtxt‖1

)
.

(3)

Here, ∝ denotes proportionality and Gt ∈ RP×Nx . Then the
maximum a posteriori (MAP) solution x̂1:T to the posterior (2)
when st = 0 is obtained by minimizing the negative logarithm
of the posterior,

x̂1:T =arg min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+µ
T∑
t=1

‖Gtxt‖1

+
1

2

T∑
t=2

‖xt − ft(xt−1)‖2
Q−1

t
+

1

2
‖x1 −m1‖2P−1

1
,

(4)

where ‖ · ‖R denotes a R-weighted Euclidean norm. Note that
Gt can be any linear transform, for example, a frame analysis
operator [6], learned analysis operator [7], or discrete gradient
operator [10].

In the particular case corresponding to µ = 0, the posterior
distribution (or actually the smoothing distribution) can be
approximated by a nonlinear Gaussian smoother (e.g., SPKS
[2], [16]). Also, when the functions ht(xt) and ft(xt−1)
are affine, the minimization (4) can be done exactly by the
Rauch–Tung–Striebel (RTS) smoother [2], [17]. However, when
µ > 0, these classical solutions are not applicable.

III. THE PROPOSED METHOD

In this section, we present the method which is based on the
combination of the ALS framework and sigma-point smoothing.
We present the ALS framework in Section III-A, and introduce
a sigma-point smoothing approximation as the primal variable
update in Section III-B.

A. The augmented Lagrangian splitting (ALS) framework

ALS [13] is a splitting-type method that is particularly
suitable for dealing with nondifferentiable term in (4). First, we
introduce a sequence of auxiliary variables v1:T and equality
constraints vt = Gtxt. Then, we reformulate the problem in
(4) as an equivalent constrained problem, which is the idea
of splitting methods in general. Our solution is computed by
iteratively optimizing for a subset of variables at a time, while
keeping all other variables fixed. We start with defining an
augmented Lagrangian function

Lρ(x1:T ,v1:T , ζ1:T ) =
1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+
1

2

T∑
t=2

‖xt − ft(xt−1)‖2
Q−1

t
+

1

2
‖x1 −m1‖2P−1

1

+ µ

T∑
t=1

‖vt‖1 + ζT
t (vt −Gtxt) +

ρ

2

T∑
t=1

‖vt −Gtxt‖2,

(5)

where ρ > 0 is a penalty parameter. Then, we iteratively
update the primal sequence x1:T , the dual sequence v1:T , and
the Lagrange multiplier sequence ζ1:T , until the convergence
or the maximum iteration count Imax. At each iteration i, we
have the steps

x
(i)
1:T = arg min

x1:T

Lρ(x1:T ,v
(i−1)
1:T , ζ

(i−1)
1:T ), (6a)

v
(i)
t = max

(
|e(i−1)
t | − µ/ρ, 0

)
sgn

(
e
(i−1)
t

)
, (6b)

ζ
(i)
t = ζ

(i−1)
t + ρ

(
v
(i)
t −Gtx

(i)
t

)
, (6c)

for t = 1, . . . , T , e
(i−1)
t = Gtx

(i)
t + ζ

(i−1)
t /ρ, and sgn

represents the signum function. The advantage of this iteration,
using ALS, is to avoid the computational difficulties that arise
when working only on the primal or the dual side.

Notice that the computational burden is mainly on the primal
variable update. Ideally, we can compute the minimization

2091



problem (6a) by batch solution, see [3] for details, but it
involves the high-dimensional matrix inversion due to stacking
the states of all T time steps into a batch form. Thus, we use
filtering and smoothing here. Now let us describe our solution
to the x1:T -subproblem (6a).

B. Sigma-point method in the primal space

Similarly to [3] we can rewrite the x1:T -subproblem (6a) as

x̂1:T = arg min
x1:T

1

2

T∑
t=1

‖yt − ht(xt)‖2R−1
t

+
1

2
‖x1 −m1‖2P−1

1

+
1

2

T∑
t=2

‖xt − ft(xt−1)‖2
Q−1

t
+

1

2

T∑
t=1

‖zt −Gtxt‖2Σ−1
t
,

(7)

where σt ∼ N (0,Σt) is an artificial measurement noise
with covariance Σt = I/ρ and zt = vt + ζt/ρ is a pseudo-
measurement. Then, we can recognize (7) to be a special case
of optimization problems, which can be solved by running a
recursive smoother on the following augmented state-space
model,

p(xt | xt−1) = N (xt | ft(xt−1),Qt), (8a)
p(yt | xt) = N (yt | ht(xt),Rt), (8b)
p(zt | xt) = N (zt | Gtxt,Σt), (8c)

that is also depicted in Figure 2. Strictly speaking, only a
recursive smoother which computes the MAP estimate of the
state is equivalent in the above sense (cf. [3]). However, it
can be argued that the state estimation problem above is more
fundamental than the corresponding optimization problem and
hence we can replace a MAP-estimator seeking smoother with
another one.
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��+1

��+1
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Figure 2. Augmented dynamic state space model with measurement yt and
argumented measurement zt.

As the recursive smoother we use the iterated posterior
linearisation smoother [16]. In the approach, we linearize the
nonlinear functions in (8) using statistical linear regression as

ft(xt−1) ≈ Ftxt−1 + at + bt,

ht(xt) ≈ Htxt + et + gt.
(9)

Here Ft ∈ RNx×Nx , Ht ∈ RNy×Nx , at ∈ RNx , et ∈ RNy ,
bt ∼ N (0, ∆t), gt ∼ N (0, Ξt). In sigma-point-based

statistical linear regression (see, e.g., [16]), for linearizing ft,
we fix a base distribution N (m̄, P̄) for xt−1, select K weight
values ω1, . . . , ωK , compute K sigma-points X 1, . . . ,XK
using the base distribution, and compute transformed sigma
points as Zk = ft(X k). The linearization is then given by

Ft = ΨTP̄−1, (10a)
at = z− Ft m̄, (10b)

∆t = Φ− Ft P̄ FT
t , (10c)

where

z =
∑
k

ωkZk, (11a)

Ψ =
∑
k

ωk(X k − m̄)(Zk − z)T, (11b)

Φ =
∑
k

ωk(Zk − z)(Zk − z)T. (11c)

The linearization of ht is similarly computed by

Ht = ΨT P̄−1, (12a)
et = z−Ht m̄, (12b)

Ξt = Φ−Ht P̄ HT
t , (12c)

where the sigma points for computing the quantities in (11)
are now defined as Zk = ht(X k) and the base distribution
N (m̄, P̄) is formed for xt.

The primal variable estimate is then computed by first
running the Kalman filter (cf. [3]), from t = 1 to T ,

m−t = Ft mt−1 + at, (13a)

P−t = Ft Pt−1 FT
t + ∆t + Qt, (13b)

ŷt = Ht m
−
t + et, (13c)

Syt = Ht P
−
t HT

t + Ξt + Rt, (13d)

Ky
t = P−t HT

t [Syt ]−1, (13e)

my
t = m−t + Ky

t [yt − ŷt], (13f)

Py
t = P−t −Ky

t Syt [Ky
t ]T. (13g)

Szt = Gt P
y
t GT

t + Σt, (13h)

Kz
t = Py

t GT
t [Szt ]

−1, (13i)

mt = m−t + Kz
t [zt −Gtm

y
t ], (13j)

Pt = P−t −Kz
t Szt [Kz

t ]
T. (13k)

Then, we run a RTS smoother [2], [17] by the steps

Gt = Pt F
T
t+1 [P−t+1]−1, (14a)

ms
t = mt + Gt [ms

t+1 −m−t+1], (14b)

Ps
t = Pt + Gt [Ps

t+1 −P−t+1] GT
t , (14c)

for t = T − 1, . . . , 1.

In this article we use so-called sigma-point posterior lin-
earization smoothers [16], where the linearization in (9) is
iteratively computed by sigma points. The resulting steps of the
augmented sigma-point Lagrangian splitting (ASPLS) method
are summarized in Algorithm 1.
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Algorithm 1: Augmented sigma-point Lagrangian split-
ting (ASPLS) method.

Input: y1:T , ft, ht, Qt, Rt, and matrix Gt; m1 and
P1; and parameters µ and ρ.

Output: x1:T .
1 Initialize: x

(0)
1:T , v

(0)
1:T , ζ(0)

1:T .
2 for i = 1, . . . , Imax do
3 Start from suitable m

s,(0)
1:T and P

s,(0)
1:T ;

4 for j = 1, . . . , Jmax do
5 for t = 1, . . . , T do
6 Linearize function ft using (10), where the

nominal distribution is set to
N (m

s,(j−1)
t−1 ,P

s,(j−1)
t−1 );

7 Linearize function ht using (12), where the
nominal distribution is set to
N (m

s,(j−1)
t ,P

s,(j−1)
t );

8 end
9 Run the Kalman filter for t = 1, . . . , T and the

smoother for t = T − 1, . . . , 1 defined by (13)
and (14), respectively, to obtain m

s,(j)
1:T ;

10 end
11 update the sequence x

(i)
1:T = m

s,(Jmax)
1:T ;

12 compute the sequence v
(i)
1:T by (6b);

13 compute the sequence ζ
(i)
1:T by (6c);

14 end

IV. EXPERIMENTAL RESULTS

In this numerical experiment, we consider a classical
multi-sensor range measurement problem, in which the state
xt = [xt,1;xt,2;xt,3;xt,4] contains the location (xt,1, xt,2)
and the corresponding velocities (xt,3, xt,4). The measurement
dynamic model for sensor k ∈ {1, 2, 3} is the following

hkt (x) =
√

(xt,2 − sky)2 + (xt,1 − skx)2, (15)

and the dynamic model function is

ft(xt−1) =


1 0 4t 0
0 1 0 4t
0 0 1 0
0 0 0 1

 xt−1, (16)

where (skx, s
k
y) is the position of the sensor k, the mea-

surement noise covariance is Rt = σ2I with σ = 0.2,
Qt = diag(0.01, 0.01, 0.1, 0.1), ∆t = 0.1, and T = 100.
We assume the target has many stops (the velocities xt,3,
xt,4 are sparse), which corresponds to Gt = [0 0 1 0; 0 0 0 1].
The performance is measured in terms of relative error
xerr =

∑T
t=1 ‖x

(i)
t −xtrue

t ‖2∑T
t=1 ‖xtrue

t ‖2
, where xtrue

t is the ground truth.
Choice of the parameter µ. Figure 3 shows the rela-

tive error xerr at the iteration number i obtained by iter-
ated unscented Kalman smoother (IUKS), iterated cubature
Kalman smoother (ICKS), and iterated Gauss–Hermite Kalman
smoother (IGHKS) based ALS methods for different values

of the parameter µ ∈ {0.01, 0.1, 1}. With the values of
µ ∈ [0.1, 1], the relative errors are large. On the other hand,
the value µ = 0.01, appears to be a trade-off between iteration
count and precision of the estimation. Figure 3 also shows
IUKS-ALS (pink), ICKS-ALS (blue), and IGHKS-ALS (green)
have similar convergence curves.

1 10 20 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 = 1  = 0.1

 = 0.01

Figure 3. Convergence results of different parameter µ obtained by ASPLS.
Please note that the y-axis is in log-scale.

Performance results. In Figure 4, the proposed methods
(IUKS-ALS, ICKS-ALS, and IGHKS-ALS) are compared with
IEKS-ADMM [3]. We also evaluate the performance without
adding generalized L1-penalized terms (i.e., µ = 0) in which
case we can use the classical sigma-point smoothers. We have
set Imax = 20, Jmax = 20, and µ = 0.01. Figure 4 shows the
relative error as function of the iteration number i. As can
be seen, although the classical smoothers are computationally
lighter as they only need a single outer iteration, their error
is larger than the error of the proposed ASPLS methods. The
error of IEKS-ADMM is slightly lower than of the classical
methods, but the proposed methods outperform it significantly.

Table I
AVERAGE CPU TIME (SEC) OF THE METHODS AS THE NUMBER OF TIME

STEPS T INCREASES.

T
Imax = 20 Imax = 20, Jmax = 2

FOPD PRS ALS IUKS-ALS ICKS-ALS IGHKS-ALS
102 0.28 0.21 0.21 0.26 0.26 1.36
103 12.3 6.9 6.8 1.3 1.3 11.4
104 2394 829 812 3.3 3.2 115.9
105 – – – 8.1 8.1 461
106 – – – 77 77 4669
107 – – – 750 749 42188
108 – – – 7267 7269 –

Large scale data computation. Table I reports the CPU
time when the number of time steps T is varying from 102

to 108. We compare the performance with batch methods
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Figure 4. Relative error versus iteration number in the proposed methods and
other state-of-the-art methods.

using first-order primal-dual (FOPD) method [15], Peaceman-
Rachford splitting (PRS) [14], and ALS. We observed that
Imax = 20, Jmax = 2 were sufficient for convergence for out
proposed methods. When T ≥ 105, the batch optimization
methods run out of memory (‘–’). Figure 5 plots the average
CPU time obtained by the mentioned methods, showing that
the proposed methods successfully decrease the computation
time as compared to batch methods.

It can be seen that ASPLS methods significantly outperform
the batch optimization solvers, for example ALS, with respect
to the CPU time. This is mainly because our methods deal with
the objective using the smoother computations, while the batch
methods use direct matrix or proximal gradient computations.
Additionally, among the proposed methods IGHKS-ALS is the
most time-consuming due to the large number of sigma points.

102 103 104 105 106 107 108
10-1

100

101

102

103

104

105

Figure 5. Average CPU time (sec) versus number of time steps in batch
variable splitting methods and in the proposed methods.

V. CONCLUSION

In this paper, we have proposed a new method for solv-
ing nonlinear L1-regularized state estimation problems. The
methods uses a combination of sigma-point Kalman smoother
(SPKS) and an augmented Lagrangian splitting (ALS) approach,
where SPKF is used to efficiently update the variable in the
primal space. Experiments demonstrate that when compared
with other state-of-the-art methods for the same problem, the
proposed augmented sigma-point Lagrangian splitting (ASPLS)
method has a good accuracy while having a low computational
complexity.
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