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Abstract—Industrial Cyber-Physical Systems consist of multi-
ple machines working together and demand efficient and flexible
communication methods to function as intended. The protocols
used in industrial operations and web applications are often
contradictory in regards to the latency and security characteris-
tics. Due to these differences, the intersection of operation and
information technologies is a challenging area. But the rewards in
smoother information flow are also high, providing a fruitful area
for development. This paper introduces a general wrapper appli-
cation to enable the use of the industrial OPC UA server through
an interface implemented with web technology GraphQL. The
results demonstrate sufficient performance for the middleware to
be used in an overhead crane control application, bringing the
agility of web development to industrial environments.

Index Terms—GraphQL, Interface, OPC UA

I. INTRODUCTION

Cyber-Physical Systems, Industry 4.0, and Industrial In-
ternet of Things (IIoT) aim at enabling applications that
consist of multiple intelligent machines communicating with
each other. The communication requires the use of the same
standardized interfaces and protocols across different stake-
holders and applications. However, the various applications
often have diverse and even contradictory demands, which
has led to a situation where there is a plethora of different
interfaces and protocols [1]–[4]. Each of them was developed
to serve a distinct purpose and there are both technological
and sociological reasons why they all exist at the same time
even though it might be more sensible to have just a couple
of good methods of communication. This paper concentrates
on the intersection of two groups: the industrial and the web
development communities.

Industrial environments often include time-sensitive appli-
cations, ranging from inverter-controlled electrical motors and
surgery robots [5] to high accuracy load positioning for cranes
[6]. The applications typically require high reliability and
security of communication protocols, as human lives may be
at risk if communication fails. Traditional web applications
are usually less time-sensitive and delays in communication
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mostly cause discomfort in users instead of risking lives. From
the security point of view, compromises in web technologies
may cause financial losses or information breaches, of which
the latter may enable malicious actors to cause physical harm.
With the introduction of Internet of Things devices, security
issues in web technologies [7] are causing also physical secu-
rity risks. Regardless of the security risks, the developments of
web technologies enable their use also in control applications,
e.g. in smart homes [8].

Traditional industrial applications have been implemented in
closed environments, enabling strict control of both physical
and digital security. However, isolation from the outside world
comes at a cost, one of which is the opportunity cost of having
slower and more complicated information flow than would
be possible with the latest technologies. The operational level
is always providing information to the other hierarchy levels
of companies, creating a link between operations technology
(OT) and information technology (IT). The first application
leveraging this link is typically the monitoring of operations
for performance enhancement and even direct control.

Digital twin has emerged as a conceptual entity that con-
nects the digital and physical worlds. The added value of the
digital twin concept is mostly in providing semantic structure
for information networks and therefore it is inherently depen-
dent on other technologies before it can provide any actual
benefits. Digital twins need other technologies as building
blocks and data from physical devices. As digital twins exist
in the information domain, the connection between OT and
IT is crucial for them. This paper facilitates digital twins by
introducing a wrapper software implementation between an
OT protocol ”OPC Unified Architecture” (OPC UA) [9] and
an IT protocol ”GraphQL”[10].

OPC UA is a widely employed industrial communication
protocol, which allows monitoring and control of industrial
machinery. However, it is a relatively complex protocol and
induces large overhead for individual requests, because several
handshakes are required in connection establishment [11]. In
addition, it is not suitable for the communication of con-
strained devices without modifications [12].



Developers are seldom familiar with industrial protocols
– unlike Web protocols. Web protocols are more scalable,
efficient, suitable for constrained devices, and simpler to use
compared to OPC UA. Thus, several papers [11], [13], [14]
have proposed methods to make OPC UA RESTful. REST is
an architectural style based on stateless and resource-oriented
communication. RESTful architecture is at the core of the
current development of web applications. However, despite its
benefits such as scalability and ease of use, RESTful com-
munication is an inefficient way of querying multiple objects.
Therefore, this paper suggests a novel GraphQL wrapper for
the OPC UA industrial interface, which offers a stateless, easy-
to-use and efficient way to access objects in the OPC UA
server. The paper builds upon the master’s thesis [15] of the
first author. The main contributions of the paper are as follows:

• Introducing GrahpQL wrapper for OPC UA with source
code available in GitHub [16]

• Demonstrating the use of the developed wrapper by in-
troducing a control application for an industrial overhead
crane

• Accelerate application development for Industry 4.0 and
Cyber-Physical Systems with GraphQL wrapper for com-
monly used industrial protocol

II. LITERATURE REVIEW

A. OPC UA

OPC UA is an industrial protocol for communication stan-
dardized in IEC 62541 and currently developed by OPC
Foundation [11]. It is designed to be platform-independent and
can be used in IIoT, M2M, and Industry 4.0 [9]. The OPC
UA client/server communication is based on services offered
by OPC UA servers. These services are used to interact with
the resources, which are organized with the object-oriented
information model [11]. The resources are represented with
nodes, which can describe real-world objects such as process
variables and their relations [12]. Nodes have attributes based
on their NodeClass [17], and one of the benefits of the OPC
UA information model is that it can provide information also
on the quality of the data [18].

B. RESTful architectural style

REST is a “set of design criteria” [19] for ”distributed
hypermedia systems” introduced by Fielding in his dissertation
[20]. According to Fielding, these design criteria include e.g.
statelessness, client-server model, in which a client requests
services from a server, and a possibility for caching responses.
If a software fullfills this set of criteria, it is called RESTful.
Richardson and Ruby present [19] that a RESTful system can
be implemented by following Resource-Oriented Architecture
(ROA). In ROA, each resource has an address, which identifies
the object and can be used to access it. In addition, all
resources can be interacted with via similar interfaces – in Web
– using HTTP and its methods (GET, POST, PUT, DELETE).

RESTful architectural style is not bound to a specific
protocol [11]. Yet, REST is often used as a description for
HTTP APIs – even though these APIs often do not fulfill

RESTful criteria completely. REST APIs are currently the
most prevailing way of implementing web communication.
Statelessness of RESTful communication allows high scalabil-
ity as information about the client is not stored on the server
and responses can be cached.

C. Approaches for RESTful OPC UA

Several solutions to allow RESTful communication with
OPC UA has been presented. Grüner et al. enabled RESTful
communication by allowing communication without several
handshakes and adding expiration tags for caching [11], [21].
They also propose an extension to OPC UA standard which
allows communication optionally over UDP (User Datagram
Protocol). The comparison of stateless OPC UA and standard
OPC UA showed a significant improvement in terms of latency
for stateless communication. Paronen developed a monitoring
application for IIoT following the RESTful architectural style
[22]. The service layer of the application is used to map
HTTP requests to corresponding OPC UA services and the
presentation layer offers graphical human-machine interface
(HMI).

Schiekofer et al. [14] present an approach for RESTful OPC
UA interface, which also addresses the problem with dynamic
Namespace and ServerArray, unlike [21]. In addition, they
implemented a prototype following the approach based on the
Java OPC UA Stack. Cavalier et al. introduce an OPC UA
Web Platform consisting of Web Service Interface module,
which handles the requests, and a Middleware module, which
includes OPC UA Client enabling communication with OPC
UA Servers [13], [23]. In addition, the developed platform
has a broker, which allows monitoring services i.e. changes
to certain Variable Nodes can be subscribed by a client. To
enhance the interoperability of OPC UA, Derhamy et al. pro-
pose a protocol translator, which converts requests made with
common IoT protocols such as HTTP, CoAP or MQTT to OPC
UA compatible [24]. CoAP is a request/response protocol,
which allows RESTful communication on constrained devices
[25].

D. GraphQL

GraphQL is both a query language for building queries
and an execution engine for performing these queries on the
server-side. The development of GraphQL originally started at
Facebook in 2012 and it was used internally until 2015 when
an open specification was released [10]. The specification does
not define any programming language specific instructions.
Consequently, various community projects have been created
since then to make GraphQL available for different program-
ming languages and platforms. GraphQL has been growing
in popularity among web service providers since its release
to the public. Some of this can be attributed to its front-end
developer and application centered design principles. Queries
are structured in a way that all desired data can be fetched with
a single HTTP request to the GraphQL endpoint. Moreover,
as only necessary resources are returned, network traffic is



minimized. Despite these benefits, a GraphQL interface for
OPC UA has not yet been implemented.

E. Comparison of GraphQL and REST

Both GraphQL and REST are used to retrieve data via an
application programming interface (API). In addition, both
protocols use the HTTP protocol. However, REST APIs use
HTTP Methods (GET, POST, PUT, DELETE) for implement-
ing CRUD (Create, Read, Update, Delete) operations, whereas
GraphQL uses API specific methods. GraphQL supports GET
and POST requests to make queries.

GraphQL offers several benefits compared to REST APIs.
With GraphQL, one query can interact with multiple resources
whereas REST APIs follow the resource-oriented architec-
ture and, thus, only one resource can be modified with a
single query. GraphQL allows introspection of the schema
and supported queries. In addition,I the hierarchical queries of
GraphQL [10] matches to OPC UA Information Model which
is a graph-like [21]. GraphQL supports subscriptions and it
has possibility to deprecate outdated fields [10].

III. OPC UA - GRAPHQL WRAPPER

The purpose of the wrapper is to serve as an additional
interface for the information that is available on any OPC UA
server. The wrapper functions as a broker between the client
and the OPC UA server. It translates GraphQL queries from
clients into OPC UA service requests and passes them forward
to the OPC UA server. The response is also transformed into
a GraphQL response. Thus, clients only need to know how to
communicate with the GraphQL wrapper in order to consume
data from the OPC UA server. One of the requirements
for the wrapper is that it can be added retrospectively to
any system without modifying the existing OPC UA server
implementation. Hence, approaches similar to those used by
[11] could not be used. Moreover, due to the wrapper not
being integrated into a single OPC UA server, it is capable of
aggregating multiple unique servers under the same GraphQL
interface. Besides basic server setup, the wrapper was required
to support operations for nodes on the OPC UA server as seen
in Table I.

TABLE I: OPC UA - GraphQL Wrapper node operations.

Read Write Add
DisplayName DataValue Folder node
Description Description Variable node
Variable
• DataValue
• DataType
• SourceTimestamp
• Statuscode

NodeId
Child nodes

The wrapper is built on the Starlette framework and is
run by the Uvicorn Asynchronous Server Gateway Interface
(ASGI) server. Starlette with Uvicorn is considered as one
of the fastest Python-based web frameworks [26]. Starlette

readily supports GraphQL for which schemas are built using
the Graphene library. Communication with OPC UA servers
rely on Python OPC UA library. The wrapper application has
been containerized with Docker to allow an effortless setup of
new implementations. Containerization may prove particularly
useful in the future if Docker workers reach the factory floor
as Alam et al. [27] suggested. If Docker workers are already
on the factory floor, it is trivial to add the GraphQL wrapper
to existing systems as an additional feature.

The wrapper typically retrieves data from the OPC UA
server in batched requests. Clients may request any combina-
tion of node attributes which are then batched together into
a single service request for the OPC UA server. The first
query of a session when retrieving data via the GraphQL
wrapper takes longer than its subsequent requests as the
session is formed between the wrapper and the OPC UA
server. Following queries, even from new clients, use the
existing session to reduce the communication traffic overhead
and latency.

IV. PERFORMANCE ANALYSIS

A. Measuring setup for performance analysis

The performance measurements for the GraphQL wrapper
were conducted using a test setup shown in Fig. 1. In the test
setup, GraphQL wrapper and a test OPC UA server were run
on Raspberry Pi 1 and 2, respectively. Laptop 1 was used as
a test client, sending the test requests with a Python script.
Measurements were made with Laptop 2 using Wireshark,
a network traffic capture software. The Raspberry Pis, the
client and the measuring laptop are connected via an Ethernet
switch and cables. To ensure disturbance-free measurements,
we configured the switch to act as a normal switch for ports
1-3 and to mirror all packets from them to port 8. Each test
were performed 50 times to minimize the effects of minor
disturbances.

Fig. 1: Layout of the test setup.

The same value or values on the OPC UA server were
requested from the wrapper and directly from OPC UA server
in the tests. This way, each time a network packet passed the
Ethernet switch, the measuring software Wireshark on Laptop
2 captured it with timestamps. By using these timestamps,
the time to complete the request by each device could be
measured. Additionally, to evaluate the performance of the
wrapper alone, the time to return a value that is not fetched
from the OPC UA server was measured. This eliminates the



(a) Local (b) Test setup

Fig. 2: GraphQL wrapper query execution times when resolv-
ing value internally without the OPC UA server (average of
50 queries).

effect of OPC UA server to the performance measurements. To
examine the effect of the system performance on the request
execution times, the tests were run both in the test system
and internally on a laptop which had a considerably better
performance than a Raspberry Pi. The Raspberry Pis used in
the tests were 3 Model B+ and had ARM Cortex-A53 1.4 GHz
quad-core processor and 1 GB RAM. The test laptop running
the tests locally had a quad-core processor (Intel i5-8365U @
1.6 GHz) with a max turbo frequency of 4.10 GHz and 16
GB RAM.

B. Measurement results

The measurement results on fetching data from GraphQL
wrapper without the wrapper having to fetch data from the
OPC UA server are presented in Fig. 2 and Table II. The
differences in execution times between the local and test
setup tests are considerable. This can be explained with the
difference in performance between the Raspberry Pi and the
laptop.

TABLE II: Statistical properties of GraphQL wrapper query
execution times when resolving value internally without the
OPC UA server.

Test Min Max Mean Median SD
Local 1 1.555 2.169 1.745 1.754 0.128
Local 5 3.148 5.425 3.487 3.408 0.347
Local 10 5.127 7.117 5.503 5.412 0.349
Test setup 1 9.786 10.280 10.051 10.048 0.101
Test setup 5 27.671 29.145 27.852 27.806 0.202
Test setup 10 50.000 50.819 50.293 50.206 0.212

The query execution times on reading and writing data to the
OPC UA server both via the wrapper and directly to the OPC
UA server are shown in Table III. These tests were run locally
on the test laptop. The request execution times with wrapper

(a) Read (b) Write

Fig. 3: The average query execution times for reading and
writing values with the system ran locally (average of 50
queries).

are noticeably slower than directly requesting the OPC UA
server. Processing within the wrapper takes up most of the total
execution time (Fig. 3). Wrapper read requests to the OPC UA
server take roughly the same amount of time than direct read
requests, whereas write requests are significantly slower. The
difference between reading and writing times with wrapper
can be explained by the different way GraphQL handles these
operations. Reading is done asynchronously which enables
request batching for the OPC UA server, whereas writing is
handled synchronously i.e. each value is written separately to
the OPC UA server.

TABLE III: Statistical properties of query execution times for
reading and writing values with the system ran locally.

Test Min Max Mean Median SD
Read wrapper 1 3.662 6.879 4.460 4.312 0.638
Read wrapper 5 8.027 16.285 9.013 8.588 1.448
Read wrapper 10 12.745 25.386 13.657 13.168 1.817
Read OPC UA 1 0.342 0.471 0.364 0.356 0.023
Read OPC UA 5 0.539 0.695 0.567 0.558 0.029
Read OPC UA 10 0.738 10.083 0.809 0.790 0.062
Write wrapper 1 3.373 11.780 4.420 4.129 1.211
Write wrapper 5 11.958 17.599 13.542 13.065 1.268
Write wrapper 10 22.886 42.133 25.893 24.997 2.908
Write OPC UA 1 0.382 0.669 0.442 0.432 0.053
Write OPC UA 5 0.542 1.109 0.682 0.676 0.094
Write OPC UA 10 0.835 1.219 0.936 0.918 0.061

The similar measurements as in the previous section using
the test setup are shown in Fig. 4 and Table IV. Compared to
the locally run tests, execution times are significantly higher.
This can be mostly explained by the performance difference
between the test setups.



(a) Read (b) Write

Fig. 4: Query execution times for reading and writing values
with the test setup (average of 50 queries).

TABLE IV: Statistical properties of query execution times for
reading (=R) and writing (=W) values with the test setup.

Test Min Max Mean Median SD
R wrapper 1 26.342 27.812 26.751 26.728 0.263
R wrapper 5 71.82 74.152 72.452 72.304 0.560
R wrapper 10 126.918 202.497 129.440 127.670 10.469
R OPC UA 1 2.445 5.596 3.211 2.568 1.184
R OPC UA 5 4.026 4.650 4.321 4.320 0.110
R OPC UA 10 6.448 14.751 7.382 6.584 2.403
W wrapper 1 22.199 23.157 22.605 22.568 0.209
W wrapper 5 88.294 90.674 89.254 89.262 0.550
W wrapper 10 142.077 173.207 152.102 142.790 12.722
W OPC UA 1 2.356 2.963 2.662 2.670 0.093
W OPC UA 5 5.030 11.487 5.911 5.134 2.052
W OPC UA 10 8.052 8.472 8.148 8.179 0.065

V. CONTROL APPLICATION FOR AN OVERHEAD CRANE

For demonstrating the possibilities of GraphQL wrapper
and validating the goal of easy application development, a
control application for an industrial overhead crane [28] was
implemented. The control application allows moving the crane
using the web user interface, which is designed for mobile
devices. In addition to controlling the crane, the application
can be used to monitor the state of the crane. The monitored
variables can be freely chosen by the user and the application
is able to update them continuously. Fig. 5 shows the user
interface with buttons used to control the crane and monitored
variables. The user interface is also able to show live stream
from the camera attached above the hook.

The application is implemented with Flask, which is a
lightweight web framework for Python. The application makes
several requests per second to the GraphQL interface. These
messages consist of control commands, reading values from
the OPC UA Server of the crane, and incrementing a watch-

dog. The watchdog is used as an additional safety feature to
prevent receiving commands from malfunctioning software.

Fig. 5: An overhead crane can be controlled with a mobile
device using the developed control application [15].

VI. CONCLUSION

This paper presented a GraphQL wrapper for OPC UA to
allow more developer-friendly and quick application develop-
ment for Cyber-Physical Systems and Industry 4.0, bridging
the gap between web technologies and industrial applica-
tions. The wrapper can be plugged parallel to an existing
OPC UA server to provide a GraphQL API to the OPC
UA nodes. Hence, our wrapper implementation enhances the
interoperability of industrial machines with OPC UA interface.
Compared to RESTful OPC UA implementations, GraphQL
offers a more compatible hierarchical query structure, allows
interaction with several resources with a single query, and
enables introspection of the schema.

The wrapper was implemented with the Starlette Python
web-framework and the Uvicorn server. The measurements
show that adding GraphQL wrapper for OPC UA significantly
increases the latency compared to the direct requests to an
OPC UA server. However, for example, the latency of reading
five values from the OPC UA server is below 75 ms, indicating
the wrapper is suitable for many web-based applications. The
use of the wrapper was demonstrated with a web control
application for an industrial overhead crane. The tests also
show that increasing the performance of the wrapper server
significantly reduces the latency.

Future research activities include identifying the sources
of the high execution times and lowering the overall latency
caused by the wrapper. Furthermore, the wrapper should be
validated on diverse OPC UA server implementations.
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