

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Li, Yun; Taskinen, Pekka; Wang, Yuejun; Yang, Shenghai; Tang, Chaobo; Chen, Yongming; Jokilaakso, Ari PbSO, Reduction Mechanism and Gas Composition at 600–1000°C

Published in: JOM

DOI: 10.1007/s11837-020-04551-4

Published: 01/03/2021

Document Version Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Li, Y., Taskinen, P., Wang, Y., Yang, S., Tang, C., Chen, Y., & Jokilaakso, A. (2021). PbSO Reduction Mechanism and Gas Composition at 600–1000°C. *JOM*, *73*(3), 881-891. https://doi.org/10.1007/s11837-020-04551-4

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

PbSO₄ reduction mechanism and gas composition at 600-1000 °C

YUN Li ^{1, 2}, PEKKA TASKINEN ³, YUEJUN WANG ⁴, SHENGHAI YANG ^{1, 2}, CHAOBO TANG ^{1, 2}, YONGMING CHEN ^{1, 2, 5}, and ARI JOKILAAKSO ^{1, 3}

1.—School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P.R China. 2.—National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, Changsha, Hunan, 410083, P.R China. 3.—Department of Chemical and Metallurgical Engineering, Aalto University, Espoo, 02150, Finland. 4.—Department of Ecology and Resources Engineering, Hetao College, Inner Mongolia Bayannur, 015000, China. 5.—e-mail: <u>csuchenyongming@163.com</u>.

ABSTRACT

A promising lead-containing wastes recycling method, with sulfur conservation and reductive sulfur-fixing co-smelting process (RSFCS), is proposed. This work investigated the PbSO₄ reduction equilibrium composition, phase conversions, and microscopic transformation mechanisms during the RSFCS process at different temperatures, times, and CO-CO₂ mixtures using thermodynamic modelling, thermogravimetric analysis, x-ray diffraction, and SEM-EDS analysis techniques. At the same time, the gaseous products were collected and analyzed. The results showed that three reduction paths existed: (1) PbSO₄^{CO/CO_2} PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ 2PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄ +SO₃ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄ (x=1, 2, 4), PbO, Pb and SO₂ were the major products. When temperature and the CO concentration increased, PbSO₄ was selectively reduced to PbS, with sulfur in PbSO₄ fixed in PbS, instead of emitting SO₂/SO₃.

INTRODUCTION

A large amount of lead-containing waste is generated and discharged annually from metallurgical, chemical, electronic and environmental industries worldwide ¹, including lead-acid battery paste ², zinc hydrometallurgical residues (hot acid leaching residues, jarosite and goethite residues etc.), smelting dusts and ashes, electrolytic anode slimes and scrubber sludges, etc. ^{3, 4}. These kinds of wastes are generally characterized by a wide range of sources, complex properties and variable components ⁵, that make them very difficult to deal with. For example, lead is present in the forms of PbSO₄, PbS, PbO₂, PbO, PbSiO₃ and metallic Pb ⁶, regardless of other components, like zinc (Zn), copper (Cu), antimony (Sb), bismuth (Bi), iron (Fe), gold (Au), silver (Ag) and hazardous cadmium (Cd), arsenic (As), chromium (Cr) and mercury (Hg) ⁷. In many countries, these lead-bearing wastes are classified as hazardous waste due to the toxicity of some heavy metals, e.g. lead and/or arsenic ⁸. They are greatly detrimental to environment and human health if left untreated or abandoned directly in the environment ⁹.

Over the last few decades, recycling and harmless disposal are two alternatives for treatment of waste materials ^{3, 10}. Harmless disposal techniques ¹¹, however, do not recover the metal values in the wastes. Therefore, recycling is the most promising method for the sustainable development of the industry and our society ². The recycling technologies consist of pyrometallurgy, hydrometallurgy ¹² and electrometallurgy .¹³ Pyrometallurgy acts as the dominant method for primary lead production and also the secondary lead recycling ⁸. In China, double-side blowing and bottom blowing techniques are two advanced techniques, represented by Anhui Huabo, Narada, (http://www.naradahb.com/). It employs double-side blowing technique to treat 0.6 million tonnes lead-acid paste and around 67 thousand tonnes other lead-containing waste materials per year. Another representative company, Henan Yuguang Gold and Lead, (http://www.yuguanggold-lead.com.cn/), uses bottom blowing to treat 0.4 million tones lead paste annually. Hydrometallurgy processes are usually considered as low cost and green technologies. ^{2, 14} However, the current hydrometallurgical techniques are less competitive than pyrometallurgy in secondary materials recycling and treatment, because of their laborious procedures, low efficiency and processing capacity, as well as generation of large amounts of problematic waste water and residues ^{15, 16}.

However, current pyrometallurgical technologies are always accompanied with high temperature and high energy consumption, poor operational conditions and emissions ¹⁷, especially in the disposal of

secondary lead-bearing wastes. The problems are particularly serious. The sulfur content in the waste materials is lower than the primary lead concentrates. As a result, if a current pyrometallurgical technique were employed to recycle lead-containing wastes, the SO₂ in the smelting off-gas generally fluctuates between $0.05\sim2$ vol%, which is lower than that of primary lead smelting (typically 7~12 vol%)¹⁸. Thus, it is hard to reach the general sulfuric acid making (SAM) off-gas level (SO₂ vol% > 4 vol%). Alternatively, H₂SO₄-making from low concentration SO₂ tail gas or desulfurization treatment (apply to SO₂ vol% <1 vol%) is available ¹⁹, but the cost is high. At the same time, the SAM using lean 1~4 vol% SO₂ gas has been a technical bottleneck ¹⁸. Therefore, the disposal of flue gas containing low concentration SO₂ formed from lead-containing waste treatment has always been a serious challenge.

The authors proposed a promising cleaner and short-flowsheet technique, named as reductive sulfurfixing co-smelting process (RSFCS) $^{20, 21}$, to recycle and recover various valuable metals from leadcontaining waste mixtures 22 . This novel technique is distinguished from the conventional pyrometallurgy techniques by a reducing atmosphere in the processing, combined with sulfur transformation and fixation as a sulfide matte. Thus, the generation and emissions of SO₂/SO₃ are expected to be low ⁵. At the same time, the lead components would expect to be rapidly reduced and decomposed to easy-recycled by-products, such as PbO, Pb and PbS 16 .

PbSO₄, as one of the dominant and refractory components in lead-containing wastes ^{23, 24}, has a reduction behavior that not only affects lead recovery but also determines the generation and emissions of sulfurcontaining gases. Studies were devoted to dissociation of metal sulfates ^{25, 26}, but less attention has been paid to PbSO₄ reduction. This study investigated the PbSO₄ reduction mechanism at different temperatures, reduction times and atmospheres. MTDATA ver. 8.2 ²⁷ software and its MTOX database ²⁸ were firstly used to model thermodynamically the gas-liquid-solid phases equilibrium compositions at different temperatures during the PbSO₄ decomposition and reduction process. Furthermore, thermogravimetric analysis, XRD and SEM-EDS techniques were employed to investigate the PbSO₄ reduction behavior, phase conversion and microscale transformation mechanisms. Moreover, the gaseous products generated at different temperatures, times and CO-CO₂ mixtures were collected and analyzed for inferring the formation mechanisms of the sulfur-bearing off-gas.

EXPERIMENTAL MATERIALS AND METHODS

High purity PbSO₄ powder (99.99 % purity, Aladdin Industrial Corporation, China) was used to ensure a high experimental accuracy. PbSO₄ powder was dried at 85 °C for 24 h to remove moisture and crystal water. The dry PbSO₄ powder was prepared for thermogravimetric analysis (STA 494 F3; NETZSCH, Germany) and isothermal reduction experiments. CO and CO₂ (99.99 % purity) were used to provide different CO-CO₂ concentrate mixture. The experimental PbSO₄ reduction study was carried out in a horizontal tube furnace equipped with a gas and temperature controller (SR3-8P-N-90-100Z, SHIMADEN Co., Ltd., Japan, accuracy ± 1 °C), as shown in Figure 1.

Figure 1. Schematic diagram of the experimental apparatus.

Alumina crucible was used to carry the specimen. 5 g PbSO₄ powder was evenly spread in alumina crucible and then loaded into the hot zone of the furnace. A Pt-PtRh working thermocouple was positioned immediately next to the specimen to measure the sample temperature. The furnace temperature was preset and heated up to the required level and held for fixed time. The left and right ends of the working tube were connected with CO-CO₂ inlet and off gas collection devices, respectively, and the gas was led into the working tube from the right. The reduction off-gas was discharged from the left and was collected and cleaned in four stages. The first two empty bottles submerged in distilled ice water (0 °C) were used to separate and collect the potential SO₃ gas (boiling point 16.8 °C) by condensation, while the SO₂ gas passed through and was collected in the following two 100 mL 3 % H₂O₂ wash bottles. The tail gas was absorbed by a NaOH solution. After experiments, the first two bottles were washed by 100 mL distilled water to dissolve and collect the captured SO₃.

The gas collection samples are analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES, Perkin Elmer, Optima 3000, USA) to determine the total concentration of the collected SO₂ and SO₃ as H₂SO₄, then translate it to molar quantity of SO₂ and SO₃, respectively. The solid reduction samples were quenched in liquid N₂ after each test. X-ray Diffraction (XRD, D/max 2550PC, Rigaku Co. Ltd., Japan) and Scanning Electron Microscope and Energy Dispersive Spectroscopy (SEM-EDS, Carl Zeiss LEO 1450, Germany; EDS, INCA Wave 8570, Oxford Instruments, UK) were employed to determine the phase compositions and microstructures of the solidified reduction products.

PbSO₄ reduction degree γ was calculated according to following equation:

$$\gamma = \frac{M_{PbSO_4}}{M_{PbSO_4}} \text{ before decomposition} \times 100 \%$$
(1)

Partial pressure of gas products SO₃ and SO₂ is determined by the ideal gas law PV=nRT, as:

$$p = \frac{n_{gas \ product} \times RT}{V} = \frac{8.314 \times n_{gas \ product} \times T}{t \times f}$$
(2)

where *M*: mass of PbSO₄, g; *P*: partial pressure of SO₃ or SO₂ gas, atm; *V*: total volume of gas, liters; *n*: SO₃ or SO₂ in moles; *R*: gas constant 8.314, L·atm·mol⁻¹·K⁻¹; *T*: temperature, K; *t*: PbSO₄ reduction time, min; *f*: CO-CO₂ gas flow, L/min.

THERMODYNAMIC MODELLING

Figure 2 compared the gas-liquid-solid phases equilibrium compositions of PbSO₄ in the Ar and CO-CO₂ atmosphere. Figure 3 presents the PbO-PbSO₄ binary phase diagram. The figures were calculated by MTDATA ver. 8.2 software and its MTOX database. In the PbSO₄-Ar system, as shown in Figures 2 a, c and e, PbSO₄ self-decomposed gradually when temperature exceeded around 800 °C, and, as temperature increased, PbSO₄ decomposed to gas and a limited amount of PbO·PbSO₄. At the same time, PbO·PbSO₄ further melted and generated PbO(1) and PbSO₄(1) at around 972 °C. The amount of liquid oxide increased from 972 °C to around 1050 °C, and then decreased sharply, whereas, PbSO₄(1) continuously decomposed to PbO(l) and SO₂(g), O₂(g) and a small amount of SO₃(g). SO₃(g) further decomposed to SO₂(g) and O₂(g) as temperature increased. The total amount of gas continually rose up. Figure 2 (e) shows the gas species compositions, it is comprised of SO₂(g), O₂(g), PbO(g), Pb(g) and a limited amount of SO₃(g). Pb(g) generated from PbO(l) when temperature exceeded 1400 °C. Figure 3 illustrates that PbSO₄ and PbO·PbSO₄ mixture melts at 955 °C, PbSO₄ melts at around 1170 °C, and PbO melts at 886 °C. Therefore, in Ar, the decomposition mechanism of PbSO₄ is thermodynamically determined as that part of PbSO₄ firstly decomposes to $PbO \cdot PbSO_4$ and emits $SO_2(g)$ and $O_2(g)$, then liquid PbO(l) and $PbSO_4(l)$ starts to generate at 955 °C until PbSO4 and PbO·PbSO4 disappear in 972~1050 °C temperature range; Next, the liquid continuously decomposes, producing SO₃(g) (T>1000 °C), PbO(g) (T>1200 °C), and further releasing Pb(g) (T>1400 °C) together with SO₂(g) and O₂(g).

Figure 2. PbSO₄ equilibrium compositions in (a), (c), (e) Ar (PbSO₄: Ar = 1 : 1 mol) and (b), (d), (f) CO-CO₂ (PbSO₄: CO : CO₂ = 1 : 0.5 : 0.5 mol) system, the data were taken from MTDATA ver. 8.2 software and its MTOX database.

Figure 3. PbO-PbSO₄ binary phase diagram calculated using MTDATA ver. 8.2 software and its MTOX database.

However, in the PbSO₄-CO-CO₂ (1: 0.5 : 0.5 mol) system illustrated in Figures 2 (b), (d) and (f), a part of PbSO₄ will firstly be reduced to PbS below 500 °C. The remaining PbSO₄ was decomposed to PbO·PbSO₄ and SO₂(g) in a temperature range around 500~700 °C. At the same time, PbS will also react with PbSO₄ to form PbO·PbSO₄ and SO₂(g) according to the reaction PbS+7PbSO₄=4(PbO·PbSO₄)+4SO₂ until PbS and PbSO₄ gradually disappeared. In the vicinity of 972 °C, PbO·PbSO₄ melted forming PbO(l) and PbSO₄(l). When temperature exceeded around 1050 °C, the liquid further decomposed, but no SO₃(g) formed. As temperature exceeded 1200 °C and 1400 °C, PbO(g) and Pb(g) were emitted, respectively. Therefore, in the reductive atmosphere, both reduction and self-decomposition of PbSO₄ occurred.

EXPERIMENTAL RESULTS AND DISCUSSION

PbSO₄ reduction thermogravimetric analysis

The TG-DTG-DSC curves of different mole ratios of $PbSO_4$ -C mixture are presented in Figure 4. Figure 4 (a) shows that weight loss of $PbSO_4$ -C mixture occurred above 436 °C, and two obvious weight loss zones, 13.96% and 10.46%, respectively, were detected. They ascribed to carbon gasification (seen from Figure 4 (b)) and $PbSO_4$ decomposition and reduction. At the same time, the DTA curves recorded two endothermic peaks, detected at 735.6 °C and 866.6 °C. They were associated to xPbO·PbSO₄ and PbS generation reactions. TG curves in Figure 4 (c) illustrates that an increasing carbon addition in the PbSO₄-C mixture caused a larger weight loss after deduction of the additional carbon.

Figure 4. TG-DTG-DSC curves of (a) $PbSO_4$: C = 1:4 mixture; (b) carbon and (c) different mole ratio of PbSO₄-C mixture in Ar atmosphere (heating rate 10 °C/min, Ar gas flow 0.1 NL/min, NL is normal litre at 1 atm and 25 °C)

PbSO₄ reduction experimental phase conversion mechanisms

The XRD patterns of PbSO₄ reduction products at different CO-CO₂ atmospheres, variable temperatures and reduction times are presented in Figure 5. The results in Figures 5 (a)-(b) show that at a relatively low CO concentration 5% and 10% CO, PbO·PbSO₄ appeared at 700 °C before 2 h reaction. With temperature further increased, 2PbO·PbSO₄, PbS, 4PbO·PbSO₄ and individual PbO were generated successively. Furthermore, at the same temperature 867 °C and same reduction time 2 h, metallic Pb appeared in the 10% CO reduction system while the major phase formed in 5% CO system was 4PbO·PbSO₄. This suggests that a strongly reductive atmosphere can promote the PbSO₄ reduction.

Figures 5(c)-(f) illustrate that at a relatively high CO concentration 15% and 20% CO system, PbSO₄ was reduced to PbO·PbSO₄ below 600 °C in less than 1 h reduction time. At 700 °C, PbS was reduced from PbSO₄ after 1 h reaction in the 15% CO atmosphere. When temperature rose up to 800 °C, in 15% CO reduction system, the main products after 1 h and 2 h were PbO·PbSO₄ and 2PbO·PbSO₄, respectively, as Figures 5(c) and (e) show. However, in the 20% CO reduction system, PbS dominated the reduction product within 1 h reaction time. No obvious PbS diffraction peaks were detected until 867 °C and 2 h reduction time in the 15% CO system, as shown in Figure 5(f). This indicates that a suitable reductive atmosphere and temperature can change PbSO₄ reduction mechanisms and path from PbSO₄→PbO·PbSO₄→2PbO·PbSO₄→2PbO·PbSO₄→PbS.

Figure 5. XRD patterns of PbSO₄ reduction products at different temperatures, times and variable reductive atmospheres; (a) reduction in the 5% CO for 2 h, (b) reduction in the 10% CO for 2 h, (c) reduction in the 15% CO for 1 h, (d) reduction in the 20% CO for 1 h, (e) reduction in the 15% CO for 2 h and (f) reduction in the 20% CO for 2 h (CO-CO₂ gas flow 0.1 NL/min).

Figure 6 presents SEM-EDS results of the solid reduction products generated in different reduction systems. Figures 6 (a)-(f) show that PbO·PbSO₄ was preferentially reduced from PbSO₄ particles and changed to an irregular loose substance and filled the interspaces of PbSO₄ particles. Then PbO·PbSO₄ was further reduced and gathered to dense cake of 2PbO·PbSO₄, 4PbO·PbSO₄ and PbO. PbS would be reduced directly and *in situ* from PbSO₄ particles in high CO systems in Figures 6 (g)-(i). A small amount of PbSO₄ was also reduced through the PbSO₄→2PbO·PbSO₄→PbO path. Thus, PbS, PbO and 2PbO·PbSO₄ coexisted during the reduction, but PbS dominated in the end product.

Figure 6. SEM micrographs of PbSO₄ reduction products at different temperatures, times and atmospheres: (a)-(b) 5% CO, 867 °C, 2 h; (c)-(e) 10% CO, 900 °C, 1 h; (f) 15% CO, 900 °C, 1 h; (g) 15% CO, 800 °C, 2 h; (h)-(i) 20% CO, 800 °C, 2 h.

PbSO₄ reduction degree, gas compositions and its changing mechanisms

PbSO₄ reduction degree vs. CO% concentration, temperature and reduction time curves are shown in Figures 7 (a)-(b). The results indicate that PbSO₄ reduction degree increased along with temperature, CO% concentration and time. This is in full agreement with the above results by thermogravimetric analysis. Figures 7 (c)-(f) illustrate SO₂ and SO₃ partial pressures (p_{SO_2} and p_{SO_3}) in the PbSO₄ reduction process offgas in the isothermal experiments. It shows that the SO₂ and SO₃ gas species were indeed generated during the experimental PbSO₄ reduction at laboratory scale.

Figure 7. Effect of different atmospheres, temperature and the reaction time on (a)-(b) PbSO₄ reduction degree, (c)-(f) p_{SO_2} and p_{SO_3} in PbSO₄ reduction off-gas (CO-CO₂ gas flow 0.1 NL/min)

It can be observed in Figures 7 (c)-(d) that, p_{SO_2} and p_{SO_3} increased along with increasing of temperature and CO concentration in the process gas. Additionally, p_{SO_2} was greater than p_{SO_3} and SO₂ was the major sulfur-bearing off-gas species in the outlet because SO_{3(g)} tended to decomposed to SO_{2(g)} and O_{2(g)} at high temperatures. This is in full agreement with the thermodynamic calculations. However, considering Figure 2(d), SO₃ should not generate in the reductive environments. Therefore, the observed SO₃ existence indicates that direct PbSO₄ decomposition reactions also took place in the reduction system but at a very slow rate:

$PbSO_4 = 1/2 (PbO \cdot PbSO_4) + 1/2 SO_{3(g)}$	$\Delta G_T = -0.01977 + 22.67$ 0 °C < T < 1000 °C	(3)
$(PbO \cdot PbSO_4) = 2/3 (2PbO \cdot PbSO_4) + 1/3 SO_{3(g)}$	$\Delta G_T^{\theta} = -0.050 \ T + 80.852$ 0 °C < T < 1000 °C	(4)
$(2PbO \cdot PbSO_4) = 3/5(4PbO \cdot PbSO_4) + 2/5 SO_{3(g)}$	$\Delta G_T^{\theta} = -0.067 \ T + 116.25$	(5)
$(4PbO \cdot PbSO_4) = 5 PbO + SO_{3(g)}$	$\Delta G_T^{\theta} = -0.0197 T + 35.07$ 0 °C < T < 1000 °C	(6)
$(2PbO \cdot PbSO_4) = 3 PbO + SO_{3(g)}$	$\Delta G_T^{\theta} = -0.186 \ T + 301.85$	(7)
$(PbO \cdot PbSO_4) = 2 PbO + SO_{3(g)}$	$\Delta G_T^{\theta} = -0.168 \ T + 279.17$	(8)

$$PbSO_4 = PbO + SO_{3(g)} \qquad \qquad \Delta G_T^{\theta} = -0.151 \ T + 246.37 \tag{9}$$

$$2 \operatorname{SO}_{3(g)} = 2 \operatorname{SO}_{2(g)} + \operatorname{O}_{2(g)} \qquad \qquad \Delta G_T^{\theta} = -0.045 \ T + 34.959 \tag{10}$$

The Gibbs energies ΔG_T^{θ} of the reactions above were calculated by HSC 9.2.6 software and its database ²⁹ (unit of ΔG_T^{θ} is *kJ/mol*, temperature *T* is °*C*).

In Figures 7 (e)-(f), with extending reduction time, partial pressures of SO₂ and SO₃ gradually decreased after 800 °C. This implied that the SO₂ and SO₃ generation reactions slowed down. Combined with the XRD patterns in Figures 5 (e)-(f), the PbSO₄ reduction and decomposition mechanism changed from 'decomposition dominated' PbSO₄ \rightarrow PbO·PbSO₄+SO₂/SO₃ \rightarrow 2PbO·PbSO₄+SO₂/SO₃ \rightarrow 4PbO·PbSO₄+ SO₂/SO₃ \rightarrow PbO+SO₂/SO₃ \rightarrow Pb to a 'reduction dominated' PbSO₄ \rightarrow PbS sequence. Sulfur-containing gas SO₂ and SO₃ generation was limited, and sulfur was fixed in the system as PbS. This suggests that PbSO₄ \rightarrow xPbO·PbSO₄ + SO₂/SO₃ reactions mainly occurred at low CO concentrations and in a low temperature range. In a proper strongly reductive atmosphere and at high-enough temperature, PbSO₄ will be selectively reduced to PbS. Thus, sulfur present in the feed as PbSO₄ will remain as PbS in the product without generating gaseous SO₂ and/or SO₃. However, the reduction temperature cannot be too high, because the high vapor pressures of the reduced by-products PbS and PbO will cause dust losses of lead in the off-gas. Possible PbSO₄ reduction mechanisms are graphically summarized as Figure 8.

Temperature

Figure 8. Schematic of PbSO₄ reduction phase conversions and microscopic transformation mechanisms

CONCLUSION

Lead-containing wastes can be recycled using a novel, promising reductive sulfur-fixing co-smelting technique to recover various valuable components and immobilize sulfur as condensed sulfide matte. Thus, the low-concentration sulfur-containing off-gas generation and its environmental pollution are expected to be reduced significantly and can be captured e.g. by scrubbing.

This paper investigated reduction mechanisms of the major component, PbSO₄, in lead-bearing wastes during the RSFCS process. Thermodynamic modelling, thermogravimetric, XRD and SEM-EDS analysis showed that three different transformation paths exist in the PbSO₄ reduction process:

showed that three different transformation paths exist in the PbSO₄ reduction process: (1) PbSO₄ $\xrightarrow{CO/CO_2}$ PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ 2PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ 4PbO·PbSO₄+SO₂ $\xrightarrow{CO/CO_2}$ PbO+SO₂ $\xrightarrow{CO/CO_2}$ $\xrightarrow{CO/CO_2}$ PbO+SO₂ $\xrightarrow{CO/CO_2}$ $\xrightarrow{CO/CO_2}$ PbO+SO₂ $\xrightarrow{CO/CO_2}$ $\xrightarrow{CO/CO$

(2) $PbSO_4 \xrightarrow{CO/CO_2} PbS;$

(3) $PbSO_4 \rightarrow PbO \cdot PbSO_4 + SO_3 \rightarrow 2PbO \cdot PbSO_4 + SO_3 \rightarrow 4PbO \cdot PbSO_4 + SO_3 \rightarrow PbO + SO_3$.

Through paths (1) and (3), PbSO₄ was reduced to PbO, Pb and SO₂/SO₃ gas, while the reduction path (2) allowed PbS formation without generation of gaseous SO₂/SO₃ in the process off-gas.

Reduction temperature and the CO concentration in the gas feed showed the major effects on the PbSO₄ reduction path and degree of reduction. In a relatively weakly reductive atmosphere (generally CO less than

10 vol%) and low temperature range (below around 700 °C), the reduction paths (1) and (3) dominated, but path (1) was the main reduction route.

Thus, xPbO·PbSO₄ (x=1, 2, 4), PbO and SO₂ were the major products at low temperatures. When temperature and reductivity of the process gas increased, the direct PbSO₄ reduction was emphasized, and the reduction path PbSO₄ $\xrightarrow{CO/CO_2}$ PbS was increasingly dominated. The experimental results suggested that controlling the process temperature at 800~900°C, using CO concentrations within 15-20 vol% and a flow rate of 0.1 NL/min, 5 g PbSO₄ can be selectively reduced to PbS within a 2 h reaction time, and the sulfur in PbSO₄ fixed in the condensed product as PbS, instead of emitting to off-gas as gaseous SO₂ and SO₃.

ACKNOWLEDGEMENTS

This work is supported by China Postdoctoral Science Foundation (Grant No. BX20200391); Hunan Provincial Science Fund for Distinguished Young Scholars, China [Grant No. 2018JJ1044]; the Regional Program of the National Natural Science Foundation of China (Grant No. 51664013); Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT-17-B35) and Bayannur Science and Technology Project from Bayannur Bureau for Science and Technology (Grant No. K201509).

There is no conflict of interest.

REFERENCES

- 1. D. Gregurek, Z. Peng and C. Wenzl, JOM, 67, 1986 (2015).
- 2. X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu and R. Chen, Chem. Soc. Rev., 47, 7239 (2018).
- 3. P. Frohlich, T. Lorenz, G. Martin, B. Brett and M. Bertau, Angew. Chem. Int. Ed. Eng., 56, 2544 (2017).
- 4. C. S. Brooks, Metal recovery from industrial waste, CRC Press, 2018.
- 5. Y. Li, S. Yang, W. Lin, P. Taskinen, J. He, Y. Wang, J. Shi, Y. Chen, C. Tang and A. Jokilaakso, *Minerals*, 9, 119 (2019).
- 6. L. Zhang, Morden lead metallurgy, Central South University Press, Changsha, China, 2013.
- 7. X. Tian, Y. Wu, S. Qu, S. Liang, W. Chen, M. Xu and T. Zuo, J. Clean. Prod., 199, 391 (2018).
- B. Blanpain, S. Arnout, M. Chintinne and D. R. Swinbourne, "Lead Recycling", in Handbook of Recycling, Elsevier, 2014.
- 9. X. Tian, Y. Wu, P. Hou, S. Liang, S. Qu, M. Xu and T. Zuo, J. Clean. Prod., 144, 142 (2017).
- 10. A. Pinasseau, B. Zerger, J. Roth, M. Canova and S. Roudier, Eur. Comm. Ind. Emiss. Dir., 75, (2010).
- 11. C. O. Onwosi, V. C. Igbokwe, J. N. Odimba, I. E. Eke, M. O. Nwankwoala, I. N. Iroh and L. I. Ezeogu, J. Environ. Manage., 190, 140 (2017).
- 12. W. Zhang, J. Yang, X. Wu, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang and J. Hu, *Renew. & Sustain.Ener. Rev.*, 61, 108 (2016).
- 13. X. Ma, S. Wang and X. Li, Mater. Res. Appl., 2, 141 (2008).
- 14. D. Andrews, A. Raychaudhuri and C. Frias, J. Power Sources, 88, 124 (2000).
- 15. Y. Li, S. Yang, P. Taskinen, J. He, Y. Chen, C. Tang, Y. Wang and A. Jokilaakso, JOM, 71, 1 (2019).
- 16. Y. Zheng, W. Liu, W. Qin, F. Jiao, J. Han, K. Yang and H.. Luo, J Cen. South Univ., 22, 2929 (2015).
- 17. Y. Li, C. Tang, Y. Chen, S. Yang, L. Guo, J. He and M. Tang, 8th International Symposium on High-Temperature Metallurgical Processing, Springer, 767 (2017).
- 18. L. Ji. and S. Jin, Sulphuric Acid Ind., 04, 1 (2016).
- 19. C. Mohanty, S. Adapala and B. Meikap, J. Hazard. Mater., 165, 427 (2009).
- Y. Li, S. Yang, P. Taskinen, J. He, F. Liao, R. Zhu, Y. Chen, C. Tang, Y. Wang and A. Jokilaakso, *J. Clean. Prod.*, 217, 162 (2019).
- 21. Y. Li, Doctoral Thesis, Aalto University, 2019. DOI: https://aaltodoc.aalto.fi/handle/123456789/38022.
- Y. Li, Y. Chen, C. Tang, S. Yang, L. Klemettinen, M. Rämä, X. Wan and A. Jokilaakso, in *Extraction 2018*, Springer, 1109 (2018).
- 23. Y. Li, S. Yang, P. Taskinen, J. He, Y. Chen, C. Tang and A. Jokilaakso, JOM, 72, 7 (2019).
- 24. Y. Li, S. Yang, P. Taskinen, Y. Chen, C. Tang and A. Jokilaakso, Metals, 9, 911 (2019).
- 25. Q. Liu, J. Tan, C. Q. Liu, Z. L. Yin, Q. Y. Chen, L. Zhou, F. C. Xie and P. M. Zhang, *Chin. J. Nonferr. Metals*, 24, 1629 (2014).
- 26. M. Scheidema, Doctoral Thesis, Aalto University, 2015. DOI: https://aaltodoc.aalto.fi/handle/123456789/17902.
- 27. R. Davies, A. Dinsdale, J. Gisby, J. Robinson and S. Martin, CALPHAD Comput. Coupling Phase Diagr. Thermochem., 26, 2, 229 (2002).
- 28. J. Gisby, P. Taskinen, J. Pihlasalo, Z. Li, M. Tyrer, J. Pearce, K. Avarmaa, P. Björklund, H. Davies, M. Korpi, S. Martin, L. Pesonen and J. Robinson, Metall. & Mater. Trans. B, 48B, 91 (2017).
- 29. A. Roine, HSC Chemistry. Outokumpu Research Oy, Pori, Finland, 2019, DOI: www.hsc-chemistry.com.