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ABSTRACT

Context. Results from global magnetoconvection simulations of solar-like stars are at odds with observations in many respects: simu-
lations show a surplus of energy in the kinetic power spectrum at large scales; anti-solar differential rotation profiles with accelerated
poles, and a slow equator for the solar rotation rate; and a transition from axi- to nonaxisymmetric dynamos at a much lower rota-
tion rate than what is observed. Even though the simulations reproduce the observed active longitudes in fast rotators, their motion
in the rotational frame (the so-called azimuthal dynamo wave, ADW) is retrograde, in contrast to the prevalent prograde motion in
observations.
Aims. We study the effect of a more realistic treatment of heat conductivity in alleviating the discrepancies between observations and
simulations.
Methods. We use physically motivated heat conduction by applying Kramers opacity law to a semi-global spherical setup that
describes the convective envelopes of solar-like stars, instead of a prescribed heat conduction profile from mixing-length arguments.
Results. We find that some aspects of the results now better correspond to observations: the axi- to nonaxisymmetric transition point
is shifted towards higher rotation rates. We also find a change in the propagation direction of ADWs that means that prograde waves
are also now found. However, the transition from an anti-solar to solar-like rotation profile is also shifted towards higher rotation rates,
leaving the models in an even more unrealistic regime.
Conclusions. Although Kramers-based heat conduction does not help in reproducing the solar rotation profile, it does help in the
faster rotation regime, where the dynamo solutions now better match the observations.

Key words. magnetohydrodynamics (MHD) – convection – turbulence – Sun: activity – dynamo

1. Introduction

The solar surface differential rotation has been known for a long
time (Scheiner 1630; Carrington 1863): the equator completes
a turn in around 25 days, while the poles take roughly 30 days.
Helioseismic inferences also allowed the subsurface rotation to
be uncovered (Schou et al. 1998), and revealed that the lines
of constant angular velocity are radial. This was somewhat
unexpected, as in a uniform, incompressible flow, the Taylor–
Proudman theorem (Chandrasekhar 1961) states that the hor-
izontal components of the velocity field cannot vary in the
direction of the rotation axis, and the flow is forced to move in ver-
tical columns, in which case constant angular-velocity contours
on cylinders would be observed. Therefore, the Sun is able to
break the Taylor–Proudman balance by some means. Another sur-
prising observational result came from time-distance helioseis-
mology (Hanasoge et al. 2012), which revealed a lack of power
in the kinetic energy spectrum at large scales, where the peak for
giant cells should be located. Such a peak would be expected from
mixing-length theory (MLT; Vitense 1953; Böhm-Vitense 1958):
in its original formulation, MLT predicts convection at all possi-
ble scales, which would also correspond to cells of the diameter of
the entire convective layer. Also, more recent measurements (e.g.,
Rincon et al. 2017) suggest that supergranulation may indeed be
the largest scale excited in the Sun.

Theoretical explanations as to how the Sun breaks the
Taylor–Proudman balance include a “thermal wind”, generat-
ing a clockwise meridional circulation pattern. This circulation
results from a latitudinal temperature gradient, which is such
that the pole is warmer than the equator by a small amount,
namely of the order of a few Kelvin (Rüdiger 1989). This tem-
perature difference is comparable to the error of current instru-
ments, although Rast et al. (2008) reported an enhancement of
∼2.5 K at the Sun’s poles. One possible theoretical explanation
of such a temperature gradient evokes the importance of turbu-
lent effects, such as latitudinally anisotropic heat flux, which
has been shown to be able to lead to a temperature difference
of ∼4 K (Kitchatinov & Rüdiger 1995). Also, the presence of a
weakly subadiabatic layer at the base of the convection zone has
been shown to generate a thermal wind and sustain the neces-
sary temperature gradient in a mean-field hydrodynamic model
(Rempel 2005). Furthermore, small-scale dynamo action (see,
e.g., Kazantsev 1968) could be the reason for the Sun not to be in
Taylor–Proudman balance, as has been shown recently by Hotta
(2018).

Modeling efforts of stellar convection in spherical or semi-
spherical shells still struggle to produce solutions in which
the Taylor–Proudman balance is self-consistently broken, and
thus still tend to show cylindrical isocontours for the differ-
ential rotation (e.g., Guerrero et al. 2013; Gastine et al. 2014;
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Käpylä et al. 2014; Augustson et al. 2015). This is commonly
interpreted as suggesting too strong a rotational influence. More-
over, such models are unable to reproduce an accelerated equa-
tor when using the solar rotation rate (Gastine et al. 2014;
Käpylä et al. 2014; Karak et al. 2015). Most present-day numer-
ical setups use fixed heat conduction profiles and depths of
convection zones (e.g., Brun et al. 2011; Käpylä et al. 2013)
motivated by MLT. Although MLT-designed setups have been
successful in reproducing the pattern of granulation and super-
granulation in surface convection (e.g., Brandenburg et al. 2005;
Nordlund et al. 2009), models simulating deeper parts of the
convection zone (CZ) produce far more power in the veloc-
ity spectrum at large scale than measured in observations
(Gizon & Birch 2012). All of the above-mentioned discrepan-
cies between observations and numerical models are collectively
known as the “convective conundrum” (see, e.g., O’Mara et al.
2016) and solving it is one of the major challenges of contempo-
rary solar physics.

One proposed way to crack the convective conundrum is to
hypothesize that the actual convectively unstable layer in the
Sun, according to the Schwarzschild criterion (Chandrasekhar
1961), is shallower than expected. Spruit (1997) described con-
vection as being driven by cool threads descending from the
surface into deeper layers, overwhelming the convection driven
by heating from below. Such a phenomenon is now denoted as
entropy rain (Brandenburg 2016) and describes surface-driven
convection that would excite only small to medium length scales.
By extending MLT to include entropy fluctuations, Brandenburg
(2016) identified the presence of a Schwarzschild stable, sub-
adiabatic layer in which the convective flux is still positive.
Such a layer was first identified in the Earth’s atmosphere
(Deardorff 1961, 1966), and was therefore termed the “Deardorff
layer”.

Although recent studies (e.g., Hotta et al. 2019) have not
found evidence to support their existence, the formation of
such sub-adiabatic layers was reported in the hydrodynamic
studies of for example Hotta (2017), Korre et al. (2017), and
Käpylä et al. (2017). The study by Käpylä et al. (2017) is espe-
cially relevant here, as these authors demonstrated the emer-
gence of a substantial sub-adiabatic layer and the existence of
nonlocal surface-driven convection using Kramers opacity law
in a Cartesian model. Consequently, they redefined the convec-
tion zone as the sum of the convection zone in the traditional
sense –now called the buoyancy zone– plus the sub-adiabatic
part –now denoted the Deardorff layer. The depth of the layers
was not determined a priori, but was rather an outcome of the
simulations.

However, these studies did not investigate large-scale
dynamo action. The effect of sub-adiabatic layers in global MHD
simulations was investigated by Käpylä et al. (2019). The for-
mation of a stably stratified layer at the bottom of the domain
allowed for the storage of magnetic field beneath it, also found
in an earlier study by Browning et al. (2006), but these strong
fields were also seen to be capable of suppressing the oscillating
magnetic field at the surface. Käpylä et al. (2019) also consid-
ered the effect of sub-adiabatic layers on the convective velocity
spectra, but found that the decrease in power at large scales was
not enough to solve this part of the conundrum.

Another mechanism to reduce the overly high rotational
influence on convection in simulations, studied first in a Carte-
sian model by Hotta et al. (2015) and then in fully spherical
models by Karak et al. (2018), could be provided by the Lorentz
force feedback from the magnetic to the velocity field. Such
feedback could result from strong magnetic fluctuations, orig-

inating for example from the action of a small-scale dynamo
instability operating in the CZ. Thus-generated magnetic fluc-
tuations could suppress the turbulent velocity field through
the Lorentz force, hence acting as an enhanced viscosity, and
increasing the magnetic Prandtl number, that is, the ratio of the
viscosity and resistivity of the fluid. Karak et al. (2018) inves-
tigated such a situation numerically; their simulations devel-
oped an overshoot zone at the base of the domain, and also
showed a decrease in the convective power at large scales due to
downward-directed plumes. These results, although arising for a
different reason, are consistent with the results of Käpylä et al.
(2017, 2019). Another finding of Karak et al. (2018) was that
the plumes, carrying their angular momentum inward, caused
the rotation profile to switch to anti-solar.

Observations of rapidly rotating stars, younger and more
active than the Sun, indicate concentrations of magnetic
activity at high latitudes persisting for a long time (e.g.,
Berdyugina & Tuominen 1998). A common configuration is two
activity patches on two “active” longitudes, separated by roughly
180◦ in longitude (e.g., Jetsu 1996). Active longitudes usually
migrate in the rotational frame of the star, forming azimuthal
dynamo waves (ADW; Berdyugina & Tuominen 1998). The
direction of migration of these structures can follow the plasma
rotation, and in this case we discuss prograde ADWs; these
can also drift in the opposite direction (retrograde ADWs), or
can appear stationary to the observer (standing ADWs). These
ADWs can persist for time-spans extending to ten years (e.g.,
Lindborg et al. 2011), or their appearance can be more erratic
(e.g., Olspert et al. 2015), with a short-lived ADW reappear-
ing after some time. Lehtinen et al. (2016) and See et al. (2016)
reported on a threshold in activity above which stars show active
longitudes. In the study of Lehtinen et al. (2016), the active
longitudes found were mostly migrating in the prograde direc-
tion. The appearance of active longitudes has been attributed
to nonaxisymmetric dynamo modes operating in these stars
(Tuominen et al. 2002), in contrast to the axisymmetric dynamo
operating in less active stars. The transition from nonaxisymmet-
ric to axisymmetric dynamos has also been studied numerically
(Cole et al. 2014; Viviani et al. 2018), but these latter studies
reported a majority of retrograde ADWs, and a transition from
axi- to nonaxisymmetric solutions at overly low rotation rates
in comparison to observations. Both studies used prescribed and
MLT-motivated profiles for heat conduction, resulting in a priori
fixed depth of the CZ.

The aim of this paper is to extend the study of Viviani et al.
(2018) to include a dynamically adaptable heat conduction. In
order to do this, we use a Kramers-like opacity law, as was done
in Käpylä et al. (2019) for semi-spherical wedge simulations.
We use computational domains extending over the full longi-
tudinal extent in order to be able to study both axi- and nonax-
isymmetric dynamo solutions.

2. Setup and model

We apply a similar setup as in Käpylä et al. (2013, 2019), repre-
senting the outer envelope of a solar-like star, 0.7R ≤ r ≤ R (with
R the radius of the star), in a semi-spherical domain, 0 ≤ φ ≤ 2π
and θ0 ≤ θ ≤ π − θ0 (θ0 = 15◦). We solve the system of MHD
equations numerically:

D ln ρ
Dt

+ ∇ · U = 0,

DU
Dt

= g − 2Ω0 × U +
1
ρ

(J × B − ∇p + ∇ · 2νρS) ,
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T
Ds
Dt

=
1
ρ

[
−∇ ·

(
Frad + FSGS

)
+ µ0ηJ2 − Γcool

]
+ 2νS2,

∂A
∂t

= U × B − µ0ηJ, (1)

where ρ and U are the density and the velocity field, g =
−GM/r3 is the gravitational acceleration, with G being the
gravitational constant and M the mass of the star, Ω0 =
Ω0 (cos θ,− sin θ, 0) is the bulk rotation, J, B, and A are the
electric current, the magnetic field, and the vector potential,
respectively, p, ν, and µ0 are the pressure, the viscosity, and the
magnetic permeability in vacuum, while η is the magnetic diffu-
sivity. Here, S is the rate-of-strain tensor, and Frad and FSGS are
the radiative and sub-grid scale (SGS) fluxes, expressed by:

Frad = −K∇T and FSGS = −χSGSρT∇s′, (2)

where K is the radiative heat conductivity, χSGS is the SGS
heat diffusivity, assumed to be constant, and s′ is the fluctuating
entropy, s′ = s − 〈s〉θ, where the overbar denotes longitudinal
average and the brackets express averaging over the variable in
the subscript. Finally, Γcool is a term acting near the surface and
cooling towards a reference temperature, and its flux is expressed
as:

Fcool =

∫ R

0.7R
Γcooldr. (3)

In our previous studies with fixed K-profile in spherical geome-
try (e.g., Käpylä et al. 2013) and in the Cartesian study adopting
Kramers opacity law, Käpylä et al. (2017), we employed a SGS
scheme that acted on the mean entropy gradient rather than on its
fluctuations in order to take the role of the cooling layer applied
here, namely to transport the flux near the surface. In addition to
that, Käpylä et al. (2017) introduced an additional SGS scheme
that acts on the entropy fluctuations to ensure numerical stabil-
ity in the bulk of the convection zone, where the thermal dif-
fusivity χ = K/(ρcP) varies over several orders of magnitude
when Kramers opacity law is used. This same scheme was used
in Käpylä et al. (2019) and is also adopted here.

The initial velocity and magnetic fields are Gaussian seeds.
The initial stratification is isentropic. The radiative heat con-
ductivity, K, follows from Kramers opacity law for free–free
and bound–free transitions (used also in Barekat & Brandenburg
2014; Käpylä et al. 2017, 2019, 2020; Käpylä 2019):

K = K0

(
ρ

ρ0

)−2 (
T
T0

)13/2

, (4)

where ρ0 and T0 are reference values for density and temperature
taken at the bottom of the convection zone. The constant K0 is
defined via:

K0 =
L

4π
cV (γ − 1) (nad + 1) ρ0

√
GMR,

L =
L0

ρ0 (GM)3/2 R1/2
, (5)

where L is the normalized luminosity, cV is the specific heat at
constant volume, γ = cP/cV is the ratio between the specific heat
at constant pressure and volume, and nad = 1.5 is the adiabatic
index.

The velocity field is impenetrable and stress free at all bound-
aries, while entropy derivatives are set to zero at θ = θ0 and
θ = π − θ0. The magnetic field is radial at r = R and a perfect

conductor boundary condition is applied at the bottom bound-
ary. At the latitudinal boundaries, B is tangential, which means,
in terms of the vector potential:

Ar = Aφ =
∂Aθ

∂θ
= 0 at θ = θ0 and θ = π − θ0 (6)

Käpylä et al. (2020) showed that this latitudinal boundary condi-
tion does not generate major differences with respect to the per-
fect conductor boundary condition used in previous works (e.g.,
in Käpylä et al. 2013; Cole et al. 2014; Warnecke et al. 2014;
Viviani et al. 2018).

The simulations are defined by the parameters Ω0, ν, η,
χSGS, K0, ρ0, T0, and the energy flux at the bottom, Fbot =
−K∂rT |r=0.7R. As we have discussed at length in our previous
papers (for an extended discussion, see Käpylä et al. 2013), the
Rayleigh number in our simulations is much lower than in real
stars, which means that the energy fluxes and Mach number are
higher than in reality. Also the temperature and density fluctu-
ations are several orders of magnitude larger than in the Sun.
For these reasons, the pre-factor in the Kramers opacity law and
how it acts on the heat conduction are all overestimated in the
model. Furthermore, all the other values of diffusive quantities
that are used here are enhanced from their real counterparts by
orders of magnitude, to be able to run the numerical model on
the finite-sized grid.

Moreover, important nondimensional input parameters are
the magnetic and SGS Prandtl numbers:

PrM =
ν

η
, PrSGS =

ν

χSGS
· (7)

Output parameters of the simulations are the fluid and magnetic
Reynolds numbers:

Re =
urms

νkf
, Rm =

urms

ηkf
(8)

with urms =
√

3/2
〈
U2

r + U2
θ

〉
rθφt

the rms velocity and kf =

2π/0.3R the wave number of the largest eddy, corresponding to
the radial extent, and the Coriolis number:

Co =
2Ω0

urmskf
, (9)

quantifying the relative importance of rotation and convection.
Physical units are chosen using the solar radius R = 7 ×

108 m, the solar angular velocity Ω� = 2.7 × 10−6 s−1, the
density at the bottom of the solar convection zone ρbot =
200 Kg m−3, and the magnetic permeability in vacuum µ0 =
4π×10−7 H m−1. We performed our simulations using the Pencil
Code (Brandenburg et al. 2020)1, a high-order, finite-difference,
open source code for solving the MHD equations.

3. Results

The simulations and their defining parameters are summarized
in Table 1. Runs R1 and R2 correspond to Run C3 and D of
Viviani et al. (2018), where the radiative heat conductivity K was
only a function of depth, as described in Käpylä et al. (2013).
Here, our aim is to study the effect of the more physical treat-
ment of heat conduction on the anti-solar-to-solar-like differ-
ential rotation transition and the transition to nonaxisymmetric
magnetic fields. Run C3 was the simulation with the slowest

1 https://github.com/pencil-code/
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Table 1. Summary of the runs.

Run Ω[Ω�] PrSGS PrM Re Rm Co Corev rBZ rDZ rOZ ∆r ∆θ Γ

R1 1.8 1/3 1.0 32 32 2.7 2.1 0.769 0.767 0.710 −0.05 −0.07 15
R2 2.1 3 1.0 20 20 3.6 2.3 0.834 0.809 0.784 −0.09 −0.17 52
R3 3.0 1 1.0 29 29 4.2 3.7 0.773 0.738 0.706 0.02 0.03 41
R4 6.0 1 1.0 24 24 10.2 8.8 0.778 0.740 0.710 0.03 0.04 37

Notes. Columns 9−11 indicate the latitudinally averaged values for the depths of BZ, DZ, and OZ. The columns ∆r and ∆θ express the values for
radial and latitudinal differential rotation, as defined in Sect. 3.1.2. The last column indicates the density contrast at the end of the simulations.

rotation rate showing both accelerated equator and nonaxisym-
metric magnetic field, and is therefore a good choice for this
study. Run D had a rotation rate 2.1 times the solar value and
exhibited a nonoscillatory dynamo solution with dominance of
the m = 1 Fourier mode with a retrograde ADW. Run C3
behaved otherwise similarly, but the dynamo solution was oscil-
latory. This difference between the runs was most likely con-
nected to the higher amount of differential rotation in C3 than
in D; see also Appendix A, where we reproduce the rotation
profiles of these runs. Run R3 is the extension of the three-
times-solar rotation rate Run MHD2 of Käpylä et al. (2019) over
the full longitudinal extent. Run MHD2 was a wedge simula-
tion covering one-quarter of the full longitude, thus not allowing
for nonaxisymmetric solutions to develop. We repeat this run in
an extended azimuthal domain to study the possible topological
changes of the magnetic field. Run R4 has the same setup as Run
R3, but twice the rotation rate. Simulations in the same rotation
range, but with fixed heat conduction profiles (e.g., Viviani et al.
2018), all showed a clear dominance of the nonaxisymmetric
mode over the axisymmetric one, and ADWs with retrograde
migration. For direct comparison, we keep the same numerical
resolution as in the studies mentioned above. Such setups were
shown to adequately describe magnetoconvection in the rotation-
rate range explored here (see Viviani et al. 2018).

3.1. Convection zone structure

We define the convection zone according to the revised struc-
ture proposed by Käpylä et al. (2019), and indicate the bottom
of the different layers in Figs. 1, 2 and A.1. The radial enthalpy
flux is defined as Fenth

r = cp (ρur)′ T . The bottom of the buoy-
ancy zone (BZ), in which the radial enthalpy flux is greater
than zero, Fenth

r > 0, and the radial entropy gradient is nega-
tive, ∂rs < 0, is indicated with a continuous green line; we note
that our BZ would be the convection zone if defined based on the
Schwarzchild criterion. We denote the bottom of the Deardorff
layer (DZ), in which Fenth

r > 0 and ∂rs > 0, by a dashed line, and
the bottom of the overshoot zone (OZ), for which Fenth

r < 0 and
∂rs > 0, with a dash-dotted line. What we denote the convection
zone is the combination of the BZ and DZ, where enthalpy flux is
positive, but entropy gradient can be also positive, meaning that
the DZ part of our convection zone is sub-adiabatic. In the radia-
tive zone (RZ), Fenth

r ≈ 0 and ∂rs > 0. The values averaged over
latitude and longitude for the depth of the layers are also shown
in Table 1. We quote two Coriolis numbers for each simulation.
The first one is obtained from Eq. (9); the second one, denoted
as Corev in Table 1, takes into consideration the wave number
of the revised convection zone (BZ and DZ); therefore, we use
kfrev = 2π/ (R − rDZ) (see, also, Käpylä et al. 2019), where rDZ is
the latitudinally averaged radius of the Deardorff layer reported
in Table 1.

Run R1 has the deepest BZ of all runs, a very thin DZ and
a considerable OZ. A thin RZ develops at the bottom. Run R2
has the thinnest convection zone of all runs. The OZ is also thin,
and therefore the run develops a very thick RZ. In Runs R1 and
R2, the thickness of the layers does not change considerably as
a function of latitude, except for a slight tendency of the DZ
to become thicker near the equatorial region for Run R2. For
Run R3, the convection zone structure at higher latitudes again
resembles that of Run R1. However, in the equatorial region
the convection zone becomes very deep. Close to the tangent
cylinder, the BZ becomes considerably shallower and the DZ
develops a “bulge” in that region. Run R4 also exhibits a convec-
tion zone structure that varies strongly with latitude, and closely
resembles the one seen in Run R3. Also, a hemispheric asymme-
try develops in Run R4: the DZ “bulge” is larger and the BZ is
deeper in the lower hemisphere than in the upper one.

We indicate the value of the density contrast Γ =
ρ(R)/ρ(0.7R) in the last column of Table 1. Run R2 has the
largest stratification, Γ = 52. These values are very different
from those of the real density stratification in the Sun and stars
(for the Sun, Γ ≈ 106, see, e.g., Christensen-Dalsgaard et al.
1996).

3.1.1. Enthalpy flux

We inspect the radial enthalpy flux, Fenth
r , by representing the

enthalpy luminosity, Lenth
r = 4πr2Fenth

r , in Fig. 1 with black
arrows. The enthalpy flux in Runs R1 and R2 is isotropic in lati-
tude and rather radial everywhere in the BZ. There is a slight ten-
dency of the flux being enhanced or diminished in the equatorial
region for Runs R1 and R2, respectively. A weak negative flux in
the equatorial region is present in the OZ for Run R1. A different
situation arises for the two more rapidly rotating runs, where the
convective transport of energy is stronger at low latitudes. Espe-
cially for Run R3, there is a decrease in the enthalpy flux in the
regions of the tangent cylinder. A clear equatorial asymmetry is
present in Lenth

r for Run R4. This asymmetry is also reflected in
the convection zone structure, as discussed above.

3.1.2. Differential rotation

The last two columns in Table 1 quantify the relative radial and
latitudinal differential rotation, defined as:

∆r =
Ωeq −Ωbot

Ωeq
and ∆θ =

Ωeq −Ωpole

Ωeq
· (10)

Here, Ωeq is the surface rotation rate at the equator, Ωbot
the equatorial rotation rate at the bottom of the simulation
domain, and Ωpole = (Ω(R, θ0) + Ω(R, π − θ0)) /2. We show the
differential rotation profiles in Fig. 2 and compare with the
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Fig. 1. Radial Lenth normalized by L0. The arrows show the direction of Lenth
r . The continuous, dashed, and dash-dotted green lines represent,

respectively, the bottom boundaries of BZ, DZ, and OZ.

Fig. 2. Differential rotation profiles. Continuous, dashed, and dash-dotted green lines are as in Fig. 1.

corresponding simulations from other works, showing their pro-
files in Appendix A.

Run R1 corresponds to the simulation with the lowest rota-
tion rate, showing an accelerated equator in Viviani et al. (2018),
the rotation profile in that case appearing quite solar-like (see
Fig. A.1, first panel). With an adaptable heat conduction pre-
scription, the rotation profile is less solar-like (see, Fig. 2, left
panel and Table 1): the equatorial acceleration becomes less
pronounced, the angular velocity contours are more cylindrical,
and additional regions of negative shear appear at mid-latitudes

and in the equatorial region close to the surface. Such regions
of negative shear at mid-latitudes, which appear in many sim-
ulations (e.g., Käpylä et al. 2012; Warnecke et al. 2014), have
been identified as responsible for the equatorward propagation
of the magnetic field at the surface. However, in this case we
measure weaker relative differential rotation and also the oppo-
site sign in comparison to the results of Viviani et al. (2018),
where ∆r = 0.07 and ∆θ = 0.17 for Run C3. Hence, our model
is even closer to the anti-solar-to-solar-like differential rotation
transition than in Run C3 of these latter authors. Therefore, the
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Table 2. Magnetic energy from the decomposition in the first 11 spherical harmonics (0 ≤ l,m ≤ 10) of the near-surface (r = 0.98R) radial
magnetic field.

Run Edec
mag,tot Edec

0 Edec
1 Edec

2 Edec
3 Edec

4 Edec
5 Edec

l,m>5 τcyc[yr]

R1 1.4(−2) 4.9(−3) 1.6(−3) 8.2(−4) 7.5(−4) 8.0(−4) 8.5(−4) 4.5(−3) 1.8(m=0)
R2 1.5(−2) 9.9(−3) 3.7(−4) 3.9(−4) 4.2(−4) 4.1(−4) 4.8(−4) 2.9(−3) 1.7(m=0)
R3 1.8(−2) 5.4(−3) 8.2(−3) 1.2(−3) 7.5(−4) 5.2(−4) 4.4(−4) 1.0(−3) 3.3(m=0)
R4 5.0(−2) 1.2(−2) 2.6(−2) 3.4(−3) 1.7(−3) 1.2(−3) 1.0(−3) 4.2(−3) 2.8(m=1)

Notes. The labels Edec
m indicate the energy in the corresponding m mode, in units of 105 J m−3. We define 0 ≤ l,m ≤ 5 the large-scale field. The

numbers in parenthesis represent the power of ten. The last column indicates the characteristic time of the dynamo, calculated on the dominant
mode and indicated in the subscript.

contribution of the differential rotation to the large-scale dynamo
should be negligible. Nevertheless, to confirm this hypothesis, a
more thorough analysis would be required.

In comparison to Run D in Viviani et al. (2018) (Fig. A.1,
second panel), which had weak values for the relative differ-
ential rotation (∆r = 0.003 and ∆θ = 0.007), Run R2 presents
stronger DR in absolute value, although with the opposite sign.
The rotation profile is anti-solar with a retrograde flow at the
equator. At mid-latitudes, a region of accelerated flow develops
and the isorotation contours here and at higher latitudes are radi-
ally inclined. In the thick RZ, the rotation does not vary signifi-
cantly in latitude or depth.

The rotation profile of Run R3 (Fig. 2) is very similar to
the one from its wedge counterpart shown in the third panel of
Fig. A.1; it is solar-like, showing an accelerated equator, and has
a rather weak relative differential rotation in terms of ∆r and ∆θ.
The minimum at mid-latitudes is present, and its location corre-
sponds to the sub-adiabatic region at the top boundary, which is
probably numerical in nature. A near-surface shear layer, with a
negative radial gradient, is present from mid to low latitudes.

The rotation rate of Run R4 is similar to that of Run H in
Viviani et al. (2018), while its Coriolis number is close to Run
Ga in the same study, see also the last two panels in Fig. A.1.
Hence, the use of the Kramers opacity law produces higher con-
vective velocities and therefore smaller Co. The values for ∆r
and ∆θ coincide with those from Ga. The rotation profile shown
in the rightmost panel of Fig. 2 closely resembles that of Run H,
with a deep minimum at mid-latitudes.

3.2. Dynamo solutions

All the presented runs develop large-scale dynamo (LSD) action,
and thereby sustain a magnetic field. However, the magnetic
Reynolds numbers are too low to allow for small-scale dynamo
action (SSD). Our dynamo solutions therefore not only exhibit
magnetic fields on the largest scales, but also a strong fluctuating
component, that is generated by tangling of the LSD-generated
magnetic field by the turbulent motions rather than from an SSD.
We present the results of the decomposition of the magnetic field
in the first 11 spherical harmonics (0 ≤ l,m ≤ 10) in Table 2. The
decomposition was performed on the radial magnetic field com-
ponent near the surface of the simulation (r = 0.98R). Although
not always showing polarity reversals, all the runs show varia-
tion of the magnetic energy over time. Such variations would be
akin to intensity variations in stellar light curves. Tracing these
variations over time for our runs could be a possible measure
for the magnetic activity. For each of the runs, we calculate the
characteristic time of variation of the magnetic field, τcyc, from
the time evolution of the dominant dynamo mode. The results
are shown in the last column of Table 2, and the mode from

Fig. 3. Normalized power spectrum of the radial magnetic field at three
different depths for R3.

which τcyc is calculated is indicated as a subscript. As described
in Viviani et al. (2018), these cycles are at most quasi-periodic,
and therefore Fourier analysis is not suitable here. Instead, we
use a syntactic method, which means that we count how many
times the dominant mode of the magnetic field peaks above its
mean value, and τcyc is obtained by dividing the length of the full
time span of measurement by the number of peak times.

Runs R1 and R2 have a dominant axisymmetric large-scale
magnetic field, but also a significant contribution from the small-
scale field (l,m > 5). The energy in the first nonaxisymmet-
ric large-scale mode is less than in the mode m = 0. This is
opposite to the case in Viviani et al. (2018), where simulations
with the same rotation rates, but a fixed heat-conduction profile,
showed a substantial m = 1 component. Run R3 is in a regime
where the axisymmetric and the first nonaxisymmetric mode are
of comparable strength, and therefore we characterize this run
as being nonaxisymmetric. Upon closer inspection, R3 shows a
weak ADW (see, also, Sect. 3.2.2). However, in order to cal-
culate τcyc, we follow the same convention as in Viviani et al.
(2018) for runs in this regime, and use m = 0 to obtain it. Run
R4 has a strong m = 1 component, which is reflected by the
presence of the ADW in the lower panel of Fig. 6.

We show the magnetic energy spectra for the radial magnetic
field of R3 at three different depths in Fig. 3. The black and red
curves correspond, respectively, to the top and middle of the BZ,
while the blue curve is the magnetic energy in the DZ. From this
figure we can see that larger scales have more energy close to
the surface, while smaller scales are excited deeper in the BZ.
Large-scale magnetic fields are also present in the DZ.
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Fig. 4. Azimuthally averaged azimuthal component of the magnetic
field, Bφ, at r = 0.98R for Runs R1 (top), R2 (middle), and R3
(bottom).

3.2.1. Axisymmetric magnetic field

We show the Bφ near the surface as a function of time (the so-
called butterfly diagram) in Fig. 4. We note that other modelling
groups plot their butterfly diagrams from the base of the CZ (e.g.,
Fan & Fang 2014), but in our case, no migration of the magnetic
field occurs there. We show the radial magnetic field in time at
the bottom of the CZ in Appendix B. Run R1 is characterized
by an equatorially symmetric magnetic field with nonmigrating
negative polarities at low latitudes, and a poleward migrating
positive field at higher latitudes. A stationary negative field is
present at all times close to the latitudinal boundary. A similar,

oscillatory dynamo solution was reported and analyzed in detail
in Viviani et al. (2019). There, it was concluded that two dynamo
modes were competing in the model, a stationary and an oscil-
latory one, the latter with polarity reversals. These latter authors
came to the conclusion that this dynamo is driven mostly by tur-
bulent effects, as the differential rotation was found to be weak
in the model. Run R1 appears to be another incarnation of such
a dynamo in the transition regime from solar-like to anti-solar
differential rotation.

Bφ in Run R2 is dipolar (equatorially antisymmetric) at the
surface. The polarity is positive in the upper hemisphere and
there are no signs of polarity reversals, if the weak ones at the
latitudinal boundaries are not counted for. Also, no equatorward
migration can be seen, although there is again a tendency for
weak poleward migration with a very high frequency.

Run R3 exhibits equatorial propagation of the azimuthal
magnetic field, and the pattern in the butterfly diagram (low-
est panel in Fig. 4) is very similar to that of Run MHD2
in Käpylä et al. (2019), also showing a similar periodicity of
∼2 yr. In contrast to Run MHD2, the solution shows a pro-
nounced hemispheric asymmetry, with a regular cycle in the
upper hemisphere and an irregular periodicity in the lower
one. The latter cycle seems to be longer than the one in the
upper hemisphere. Such hemispheric dynamos have already
been reported in global magnetoconvection models with vari-
ous different numerical methods (see e.g., Grote & Busse 2001;
Busse & Simitev 2006; Käpylä et al. 2010; Gastine et al. 2012).
In comparison to our earlier work (Viviani et al. 2018), where no
hemispheric dynamos were found, the additional non-linearity
resulting from the Kramers opacity law increases the likelihood
of obtaining such solutions.

In Fig. 5 we show butterfly diagrams at three different depths
for Run R4. Two dynamo modes can be seen at the surface: a
high-frequency one in the lower hemisphere, and a lower fre-
quency one in the upper hemisphere with a periodicity similar
to that seen in Run R3. Deeper down into the CZ, the high-
frequency mode disappears, and we can trace its origin to the
depth of 0.80 ≤ r ≤ 0.85, that is, to the bottom of the BZ. How-
ever, the lower-frequency mode persists until the OZ, and there-
fore we infer that it is generated there. The existence of different
dynamo modes at different depths has already been reported in
other studies (such as Käpylä et al. 2016, 2019).

3.2.2. Nonaxisymmetric magnetic field

In Run R3 a weak azimuthal dynamo wave is present. The upper
panel of Fig. 6 shows the reconstructed m = 1 mode at 45◦
above the equator close to the surface as a function of time and
longitude. The magnetic field would follow the inclination of
this line if it was advected by the surface flow. Deviations indi-
cate drift-independent surface flow. In Fig. 6, the magnetic field
does not fall on the line for most of the time, and therefore it
has its own motion as a wave, traveling in the prograde direc-
tion. Weak ADWs such as the one seen in the case of Run R3
were found to be typical in simulations that are close to the axi-
to nonaxisymmetric transition (Viviani et al. 2018). In this lat-
ter study it was observed that, when the energy in the modes
m = 0 and m = 1 is comparable, the ADW can be affected
by the differential rotation, in which case the ADW becomes
advected by it for some time intervals (see Fig. 6, upper panel,
0 yr≤ t≤ 15 yr). Azimuthal dynamo waves were already found in
other numerical studies (Käpylä et al. 2013; Cole et al. 2014;
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Fig. 5. Azimuthally averaged azimuthal component of the magnetic
field, Bφ, for Run R4 at different depths: r = 0.98R (top), r = 0.86R
(middle), and r = 0.75R (bottom).

Viviani et al. 2018), but their direction was mostly retrograde,
in contrast with observational results (see, e.g., Lehtinen et al.
2016).

A stronger prograde ADW is also present in Run R4. The
wave does not persist at all times, but there are periods when it
disappears. Similar behavior was also observed in the tempera-
ture maps of the active star II Peg in Lindborg et al. (2011) for
example, where a very clearly defined prograde ADW persisted
over ten years, but then vanished. Also, Lehtinen et al. (2012)
and Olspert et al. (2015) reported ADWs for the young solar
analogue star LQ Hya, but these lasted for an even shorter period
of time, that is a couple of years.

Fig. 6. Azimuthal dynamo wave for Runs R3 and R4 as a function of
longitude and time, at latitude θ = +45◦ and depth r = 0.98R. The black
and white dashed line represents the differential rotation at the same
latitude.

We attribute the change in the ADW direction to the differ-
ent heat-conduction prescription in these runs. Moreover, in Run
R3 the ADW can even change direction from prograde to ret-
rograde during some short epochs, which is most likely related
to the stronger influence from the differential rotation. Such a
change of direction in the migration of active longitudes was also
observed in the study of, for example, Korhonen et al. (2004) in
the case of the intensively studied single active star FK Coma
Berenices.

We calculate the period of the ADW, PADW, as in
Viviani et al. (2018), taking the latitudinal and temporal average
of the slope of the reconstructed time evolution of the m = 1
mode. For R3, we obtain PADW = −24.5 yr, the minus sign
indicating a negative slope, which means a retrograde direc-
tion for the dynamo wave, in contrast with the mostly prograde
appearance of the migration in the upper panel of Fig. 6. As
discussed above, the ADW in R3 is chaotic, even changing its
direction, and also disappearing, which means that the average
period is not an accurate measure of the period of the wave.
PADW = 44.9 yr for Run R4, the positive sign indicating a pro-
grade wave, as expected. However from the lower panel of Fig. 6
we would infer a shorter period of ∼30 yr.

4. Conclusions

This paper presents the results of our study of the effect of
a dynamically adapting heat-conduction prescription, based on
Kramers opacity law, in conjunction with semi-global MHD
simulations. The main aim is to determine the effect of this
prescription on the two major transitions reported in numerical
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studies (e.g., Gastine et al. 2014; Viviani et al. 2018). One con-
cerns the rotation profiles, and is the transition from accelerated
poles and decelerated equator to a solar-like profile, with a faster
equator. The other involves the large-scale magnetic field, and
is the transition from an axisymmetric magnetic field, as in the
Sun, to a nonaxisymmetric magnetic field found in more rapid
rotators. Previous studies (Viviani et al. 2018) found these tran-
sitions to occur at the same rotation rate, in contrast with the
current interpretation of observations. The fact that simulations
usually produce anti-solar differential rotation for the solar rota-
tion rate could indicate that the Sun is in a transitional regime
(e.g., Käpylä et al. 2014; Metcalfe et al. 2016), or could also
mean that simulations still cannot fully capture the true rotational
influence on turbulent convection in the Sun. Lehtinen et al.
(2016) reported on the existence of nonaxisymmetric structures
in stars with varying rotation rates, and were therefore able to
determine quite a sharp transition point in terms of the rotation
period, when fields turn from axi- to nonaxisymmetric configu-
rations. According to dynamo theory, these two modes can com-
pete, and there can be a transition region, where both dynamo
modes co-exist, as is also clearly demonstrated by the models
presented in this paper and those of Viviani et al. (2018). There-
fore, the observational transition point must be regarded as a
lower limit for the transition in terms of the rotation period, as it
could be that the sensitivity of the current instruments is insuf-
ficient to detect the very weak nonaxisymmetric components.
However, since active longitudes have not been detected on the
Sun (Pelt et al. 2006), these two transitions should not be located
at the same, nearly solar rotation rate.

In runs with slow rotation, the differential rotation profile
is significantly affected by the Kramers opacity law and, as a
result, solutions with less solar-like characteristics develop, such
as for example an almost rigid body rotation and a minimum
at mid-latitudes. The different heat conduction prescription also
promotes the formation of a stably stratified layer in the lower
quarter of the domain that is rather isotropic in latitude. For
faster-rotating runs, the rotation profile is solar-like, but still
maintains the minimum at mid-latitudes, and a latitudinally
changing subadiabatic region forms near the equator. Also, the
Coriolis number is lower than in the corresponding cases using
fixed profiles for heat conduction, which is most likely the largest
contributing factor to pushing the transition from anti-solar to
solar differential rotation to an unwanted direction of more rapid
rotation rates.

The convective transport is efficient, isotropic and almost
radial everywhere in the convective region in models with slow
rotation (Runs R1 and R2), while it becomes strongly concen-
trated to the equatorial region in runs with more rapid rotation
(Runs R3 and R4). Also, the BZ becomes shallower close to the
tangent cylinder in the rapid-rotation regime. Moreover, hemi-
spheric asymmetries in the convection zone structure are seen in
the run with the fastest rotation (Run R4).

The large-scale magnetic field is axisymmetric in Runs R1
and R2, while for Run R3 and R4 the first nonaxisymetric mode
is dynamically more important. Both the fast rotating runs have
a hemispherically asymmetric oscillating magnetic field with a
periodicity of ∼2 yr. As in Viviani et al. (2018), the magnetic
cycle lengths do not strongly depend on the rotation period
overall. The strong magnetic field in all the runs originates
from the subadiabatic layer. In Run R4 a high-frequency mode
is present in the lower hemisphere. This component is gener-
ated at the bottom boundary of the BZ. The co-existence of
multiple dynamo modes at different depths of the convection
zone is consistent with previous studies (e.g., Käpylä et al. 2016)

using prescribed profiles for heat conduction. In this latter study,
the high-frequency mode was generated near the surface, while
the low-frequency one formed in the middle of the CZ.

In the nonaxisymmetric runs, ADWs are present: a weak one
for Run R3 and a stronger one for Run R4. In both cases, the
direction is prograde, in agreement with photometric observa-
tions (Lehtinen et al. 2016). In a previous numerical study using
a prescribed heat-conduction profile (Viviani et al. 2018), a pref-
erence for retrograde ADWs was found. The ADWs also show
time variations. For Run R3, the ADW is rather weak and the
differential rotation can advect it for some time, changing the
direction of the wave. This could be caused by the compara-
ble relative energies in the m = 0 and m = 1 modes. In Run
R4 the stronger ADW disappears at certain times. Such behav-
ior is also observed for active stars (e.g., Korhonen et al. 2004;
Lindborg et al. 2011; Lehtinen et al. 2012; Olspert et al. 2015),
where the active longitudes disappear or have the same velocity
as the surface rotation.

In summary, in this study we show that both the major transi-
tions related to stellar dynamos are affected by the use of a more
physical description of heat conduction in global magnetocon-
vection simulations. The differential rotation profiles undergo a
significant change near the transition from anti-solar to solar-like
differential rotation, but all the runs are still in Taylor–Proudman
balance, with almost cylindrical isocontours. For the same rota-
tion rates, the convective velocities are higher, and therefore
Coriolis numbers are lowered, resulting in an anticipated tran-
sition to anti-solar differential rotation, in contrast with obser-
vations. The transition from axi- to nonaxisymmetric magnetic
fields is shifted towards higher rotation rates. The direction of
the ADW is reverted with respect to previous studies, producing
a better agreement with observations.
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Appendix A: Comparison with rotation profiles in
previous works

For comparison, we reproduce in Fig. A.1 the differential rota-
tion profiles for the simulations with fixed heat conduction
profiles (Runs C3, D, Ga and H) from Viviani et al. (2018), cor-
responding, respectively, to R1, R2, and R4 (the latter for Ga and
H) presented in this paper. We also show again the wedge simu-

lation MHD2 from Käpylä et al. (2019), this time showing both
the hemispheres.

The rotational profile of Run D was not presented in our pre-
vious publications. An equatorial prograde flow and mid-latitude
minima are present, while in its Kramers counterpart, Run R2,
the profile is swapped to anti-solar with a decelerated equator
and accelerated mid-latitude regions.

Fig. A.1. Differential rotation profiles for runs C3, D, Ga, and H from Viviani et al. (2018), and MHD2 from Käpylä et al. (2019). The green lines
for MHD2 indicate the internal structure as for the simulations in the main text.

A141, page 11 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038603&pdf_id=7


A&A 645, A141 (2021)

Appendix B: Azimuthal magnetic field at the bottom
of the CZ

Figure B.1 shows the time evolution of the radial magnetic field
at the bottom of the convection zone. As an indicative depth of
the CZ we used rDZ from Table 1. However, this is an aver-
aged value and, especially when anisotropies are present, as in
the case of R4, it is an imprecise measure of the depth of the
convective layer.

In R1, the bands of negative time-varying surface magnetic
field at latitudes ±15◦−30◦ are not present at depth rDZ. The
radial magnetic field in R2 shows multiple polarity reversals in
latitude, and a poleward propagation in time at high latitudes. No
trace of the equatorial propagation at mid-latitudes is present at
the bottom of the CZ in R3. As already shown in the main text,
the high-frequency mode in R4 is not visible, originating higher
up in the CZ, at depth r' rBZ.

(a) (b)

(c) (d)

Fig. B.1. Radial magnetic field calculated at rDZ from Table 1. (a) R1[rDZ = 0.767], (b) R2[rDZ = 0.809], (c) R3[rDZ = 0.738],
(d) R4[rDZ = 0.740].
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