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Abstract This paper assesses the potential of intermediate-to-deep geothermal wells for dis-
trict heating purposes in non-hot spot regions as a means for replacing carbon-intensive heat
sources. In analysing the problem of heat transfer from the bedrock to a flowing coolant in the
well, we perform parameter scans to assess the longevity and power density of different-size
wells and derive analytical estimates to explain salient characteristics of the well behaviour.
The results are then utilized to illustrate how intermediate-to-deep geothermal wells would
compare with the requirements of typical large-scale district heating systems, by using the
city of Helsinki in Finland as an example.

1 Introduction

While geothermal heat has been exploited for centuries—if not for millennia—in the hot spots
where the heat flux through Earth’s crust is anomalously high [1–3], utilization of this energy
source in regions where no hot spots exist is still largely limited to small-scale installations. In
recent years, the idea of providing district-wide heating with intermediate-to-deep geothermal
wells in the Nordic countries has resurfaced and private companies [4–6] have duly taken the
initiative towards commercializing the technology in the wake of renewed communal interest
in low-carbon heat sources. For example Helsinki, the capital city of Finland, has announced
a price of 1 million euros to whoever drafts to best plan to decarbonize the local annual 7
TWh district heating system [7].

As of yet, by and large, mainly the surface heat radiating from the Sun has been exploited in
commercial applications, which target small houses by equipping their yards with networks
of pipes installed in the ground surface layer. The resulting gain from such installations
remains moderate, though, and consequently, the power per surface area remains too low to
be utilized effectively in large apartment complexes that are densely packed in urban areas.

The temperature in the ground, however, increases the deeper one goes. At depths of
roughly 20 m the temperature is no longer affected by the monthly variation and approaches
a steady 2–6 ◦C in Finland, while, at depths of 2 km, the temperature in the bedrock already
reaches values close to 40 ◦C. This prediction is based on the observation that the heat flux
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through Earth’s crust in the Nordic countries region is approximately 0.054 Wm−2 and the
heat conductivity of bedrock granite is roughly 3.0 Wm−1K−1, thus providing a temperature
gradient of approximately 18 K/km. In contrast to settling for a modest 2–6 ◦C at the surface,
it is anticipated that drilling a deep enough hole in the ground, placing a hollow, vacuum-
insulated coaxial pipe in the hole, and circulating water as a coolant fluid by pumping it
down through the gap between the pipe and the wall (of the well), and sucking it back up
through the pipe would improve the power-per-surface-area ratio and ultimately provide a
sustainable, low-carbon heat source applicable to district heating purposes.

While the premise sounds appealing—drilling a city full of holes and getting heat from
circulating water therein—one should also assess the sustainability and feasibility of such
an endeavour. Because the equilibrium heat flux through Earth’s crust in the Nordic region
is rather modest, one is immediately faced with two questions:

1. How much power extraction per surface area can the existing temperature gradient in the
ground support?

2. What would be the longevity of such a heat source at the requested power level?

Both of these questions are crucial in addressing the scalability of intermediate–deep geother-
mal wells for district heating purposes in densely populated urban areas with strict require-
ments for the power density. It is, therefore, the purpose of this paper to provide approximate
estimates to these questions that could prove useful for both policy makers and engineers.

We are interested in the temporal behaviour of the thermal power output without the
use of additional heat pumps. Even if they were used in a large-scale system, we would
anticipate them to be employed chiefly to lift the extracted heat to higher, better utilizable
temperatures without actually aiming to increase the total produced power, for otherwise
significant additional electricity demands could emerge. Limiting ourselves in this sense also
mitigates the risk of incurring undersizing issues with respect to the coefficient of performance
(CoP) of the heat pump. In addition, drilling deep enough is anticipated to provide sustainable
heat at temperatures directly applicable to district heating without the intervention of heat
pumps, especially for space heating.

Our assessment is based on analysing the problem of heat transfer from the bedrock to a
coolant water flowing in the well, and setting the boundary conditions of the problem such that
they correspond to a situation whereby several wells are drilled near each other, mimicking
large-scale installations. The temporal behaviour of the system will yield information on
the longevity question, while the boundary conditions furnish information on the achievable
power per surface area.

Several analytical models have been developed and studies carried out for shallow geother-
mal wells [8–14], but their direct applicability to the intermediate-to-deep wells is question-
able. The analytical solutions typically assume a Neumann type (fixed heat flux) boundary
condition at the borehole and a flat initial temperature profile, while the boundary condi-
tion in reality is of nonlinear Robin type (heat transfer to a coolant) and the entire idea of
intermediate-to-deep wells is based on a geothermal temperature gradient. Furthermore, in
analysing the performance of well lattices, the principle of superposition is often applied,
although it is incorrect—the single borehole solution does not satisfy the global boundary
condition of the entire lattice installation. It is no surprise then that some recent studies
mix analytical theory with numerical methods [15] or rely on numerical solutions alone in
addressing intermediate-to-deep wells [16]. In our analysis, only in the case of a constant
mass flow we do find a good agreement with a simplified analytical theory that we have
developed in Appendix, and are thus able to accurately explain the characteristics of the
more nuanced numerical solution. Notably, we find that in analysing the performance and
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longevity of intermediate-to-deep geothermal wells, the ratio of interest ought to be L2/P ,
with L being the well depth and P the requested power. This parameter differs significantly
from the L/P-ratio typically used in analysing shallow wells.

We begin in Sect. 2 by describing the multi-physics model for the heat-transfer problem that
couples the bedrock and the geothermal well. The simulation results are presented in Sect. 3,
first illustrating the generic behaviour of the water outlet temperature under constant-mass-
flow and constant-power-extraction scenarios, with good support from a simplified analytical
model derived in Appendix. Then, we specify our definition for the longevity, which generally
depends on the requested power, the size of the domain reserved for an individual well, and
the depth of the well, before proceeding to performing scans with respect to these parameters
to obtain accurate and easily accessible charts. Discussion and instructions for policy making,
with regards to the use of intermediate-to-deep geothermal wells in district heating purposes,
is provided in Sect. 4 using the parameter scans as a guiding principle and enabling quick
assessments. We use the city of Helsinki and its district heating needs as an illustration.
Finally, a summary of our results is provided in Sect. 5.

2 Model description

We consider a hexagonal lattice of intermediate-to-deep geothermal wells covering the sur-
face area of a city or a fraction of it. We focus on the multi-physics problem of heat transfer
from the bedrock to the circulating water in a single well by approximating the relevant
domain to be in the shape of a hollow cylinder with an inner radius of r1 ∼ 0.05 − 0.2 [m],
a large outer radius of r2 ∼ 10 − 200 [m], and an arbitrary depth of z2 ∼ 1 − 10 [km]. The
distance between consecutive wells is effectively 2r2. The city surface is taken at z1 = 0.

The circular shape of the top section of a cylinder is a reasonable approximation of a
hexagon, and greatly simplifies the computation by allowing the temperature profile to be
axially symmetric. The periodicity of the hexagonal well lattice has the effect that the heat flux
approximately vanishes at the cylinder outer radius. Consequently, the temperature profile
in the rock will be the three-variable function uR(r, z, t) with r ∈ [r1, r2], z ∈ [0, z2], and t
referring to time. Heat transfer in the rock occurs only via conduction, and, as there are no
volumetric heat sources, the rock temperature will obey the equation

ρRcR
∂uR

∂t
+ ∇ · q = 0, (1)

where cR [J kg−1 K−1] is the specific heat coefficient of the rock and ρR [kg m−3] the mass
density. The heat flux inside the cylindrical chunk of rock is assumed to obey Fourier’s law

q = −kR∇uR, (2)

with kR [Wm−1K−1] being the heat conductivity of the rock.
We assume the borehole to form an effectively open-concept coaxial pipe with two separate

flow channels: the outer one down and the inner one up. The water will be assumed to enter
the outer channel with r ∈ [r0, r1] at the some inlet temperature uW (0, t) [◦C], and to be
pumped down the cylinder (increasing z) to a predetermined depth of L [m] with a mass flow
of G(t) [kg s−1]. The downward-flowing water temperature is assumed to depend only on
the depth so that it is given by the two-variable function uW (z, t). Assuming slow timescale
for the heat transfer in the rock, a large aspect ratio r2/r1 � 1, and advection-dominated heat
transfer in the downward-flowing water, the corresponding energy equation can be greatly
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simplified. In terms of the mass flow G, the differential equation describing the bulk water
temperature is given by

cWG(t)

2πr1

∂uW (z, t)

∂z
= hW (uW ,G)[uR(r1, z, t) − uW (z, t)], z ∈ [0, L] (3)

where hW [WK−1m−2] is the rock–water heat-transfer coefficient and cW is the specific
heat of the water. The upward-flowing water is assumed to be at a constant temperature of
uW (L , t)—a hollow vacuum pipe is a good thermal insulator.

For computing the rock–water heat-transfer coefficient hW = Nu kW /dh , we use the
Gnielinski correlation for the Nusselt number [17,18]

Nu = ( f/8)(Re − 1000)Pr

1 + 12.7( f/8)1/2(Pr2/3 − 1)
(4)

with the friction correlation developed by Pethukov [19]

f = (0.79 ln Re − 1.64)−2. (5)

The dynamic viscosity νW and the heat conductivity kW , which are needed for determining
the Reynolds Re = Gdh/(AνW ) and Prandtl number Pr = cW kW /νW , are given by the
Vogel–Fulcher–Tammann relation

νW = 0.02939 × 10−3 exp

(
507.88

uW + 123.85

)
(6)

and by the correlation [20]

kW = 0.6065(−1.48445 + 4.12292x − 1.63866x2), x = 273.15 + uW
298.15

, (7)

where the water temperature uW in both formulae is in the units of Celsius. Here A =
π(r2

1 − r2
0 ) is the cross sectional area of the downward flow channel and dh = 2(r1 − r0) the

corresponding hydraulic diameter. Note that hW has a dependency on the water temperature
and flow speed, requiring careful evaluation at different depths and mass flows.

The rock and water temperatures are coupled also via the boundary condition at the bore-
hole wall surface r1. Mathematically this condition is of a Robin type and can be expressed
as

kR∇uR · r̂
∣∣∣
r=r1

=
{
hW (uW ,G)[uR(r1, z, t) − uW (z, t)], z ∈ [0, L]
0, z ∈ [L , z2] (8)

with r̂ denoting the radial unit vector of the cylindrical coordinate system. The boundary
condition for the rock temperature at the outer radius, originating from the periodicity of the
well lattice, is of the Neumann type

∇uR · r̂
∣∣∣
r=r2

= 0, z ∈ [0, z2] (9)

The boundary condition at z = 0 for the rock is also of the Robin type

kR∇uR(r, 0, t) · ẑ
∣∣∣
z=0

= hA[uR(r, 0, t) − uA], r ∈ [r1, r2], (10)

where uA is the average ambient air temperature at the surface and hA the corresponding
heat-transfer coefficient. The boundary condition at z = z2 is dictated by the Earth’s very
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low heat flux

kR∇uR · ẑ
∣∣∣
z=z2

= qearth (11)

which is the reason for the pre-existing rock temperature gradient, and initial temperature
profile given by

uR(r, z, 0) = usur + qearth

kR
z, (12)

where usur is the unperturbed surface temperature of the rock. The ambient heat-transfer
coefficient can be determined from the equilibrium condition

hA = qearth

usur − uA
, (13)

by measuring the rock surface temperature and the ambient air temperature.
Finally, the thermal power output from the system is the rate of change in the heat content

of the flowing water and given by

PW (t) = cWG(t)[uW (L , t) − uW (0, t)]. (14)

The coupled system of partial differential Eqs. (1–3) with the boundary conditions (8–11)
and the initial condition (12) is then solved numerically.

3 Results

In order to address the question of longevity, we need to establish a definition for it to
begin with. For this purpose, we investigate the overall performance of the geothermal wells
over a prolonged period of time by solving the multi-physics problem described in Sect. 2
with a finite-element approach. The program has been implemented in Python, uses linear
quadrilateral elements with the mesh packed polynomially near the borehole to resolve steep
gradients, and is available upon request from the Authors. The programming paradigm has
been to implement a Python class for the solver, which is flexible enough to be used in
separate applications to investigate several different scenarios.

For all of the numerical studies in this section we shall assume initial surface and ambient
temperatures of usur = 6.0◦C and uA = 5.9◦C, respectively, a geothermal gradient of 15
◦C/km (kR = 3.0 and qearth = 0.05), corresponding approximately to the conditions in
the Helsinki region in Finland—a city that we shall later use as an example in assessing
the potential of the geothermal wells for district heating purposes. We will also set the
downward borehole channel dimensions to be r1 = 0.1 m and r0 = 0.05 m, and the water
inlet temperature to be uW (0, t) = 6.0◦C corresponding to the rock surface temperature.
Once the longevity has been established, we perform several simulations varying the key
parameters to obtain useful charts for assessment different instalments.

3.1 Evolution under constant flow and power

To gain a feeling for the behaviour of the water outlet temperature—and consequently that of
the power—we first run a few simulations using a fixed mass flow adjusted to reach a desired
initial power P0 and then repeat them by adjusting the mass flow to reach a constant power
output. Figure 1 illustrates the temporal evolution of the water outlet temperature for both
cases, with solid lines corresponding to the case of constant mass flow and the dashed lines to
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Fig. 1 Temporal characteristics
of water outlet temperature under
constant mass flow (solid lines)
and constant power extraction
(dashed lines) for several well
configurations (see Table 1)

constant extracted power. In all cases considered, the water temperature at the bottom of the
well initially undergoes a fairly rapid exponential drop over a period of 2–5 years. We refer
to this as the initial transient phase. After this, the water temperature continues to decrease
but at a slower rate, linearly in time. We refer to this as the linear phase.

The detailed parameters for the cases are listed in Table 1, including the inferred values
for the depth, duration of the initial transient temperature drop and the rate of the subsequent,
mostly linear decay of temperature for the constant mass flow case. From the listed values,
we observe that, in the case of constant mass flow, (i) the transient drop depends linearly on
the power and is inversely proportional to the well depth, (ii) the duration of the transient is
not affected by the desired power or the well depth, and (iii) the rate of decay in the linear
phase is directly proportional to the power density and inversely proportional to the well
depth.

This behaviour is in line with the results from the simplified analytical model we have
described in Appendix A and B, as summarized in the following approximate expressions

Δt = 0.142
ρRcR
kR

r2
2 , (15)

ΔuW (L ,Δt) = − P0

2πkRL

[
ln

(
r2

r1

)
− 3

4

]
, (16)

∂t uW (L , t ≥ Δt) = − P0

ρRcRπr2
2 L

. (17)

In fact, the agreement is quite good, with effectively all of the above analytical estimates
falling within 10% of the values inferred from the numerical simulations. It is safe to claim
that we have a good understanding of the temporal evolution of the wall outlet temperature
under constant mass flow.

The scenarios with constant power have been implemented because, in real applications,
operation of the geothermal well would more likely be based on constant power extraction
rather than applying a constant mass flow. In such cases, the temporal behaviour of the outlet
temperature deviates somewhat from the cases with constant flow as illustrated by the dashed
lines in Fig. 1. It is also apparent that the deviations become more pronounced with increasing

123



Eur. Phys. J. Plus         (2021) 136:137 Page 7 of 15   137 

Table 1 Numerical results for the transient size, duration, and the subsequent linear rate of decay correspond-
ing to the solid curves #1–#6 in Fig. 1 (the constant mass flow case). The corresponding analytical estimates
are given in parentheses

Constant flow #1 #2 #3 #4 #5 #6

P0 [kW] 20 40 40 80 80 160

r2 [m] 40 40 40 40 40 40

L [km] 2.0 2.0 3.0 3.0 4.0 4.0

Δt [years] 5.5(5.4) 5.5(5.4) 5.5(5.4) 5.5(5.4) 5.5(5.4) 5.5(5.4)

−ΔuW (L , Δt) [K] 3.0(2.8) 6.0(5.6) 4.2(3.7) 7.6(7.4) 5.7(5.6) 11.4(11.1)

−∂t uW (L , t ≥ Δt) [K/ 100 years] 2.8(2.8) 5.8(5.6) 3.9(3.7) 7.6(7.5) 5.8(5.6) 11.3(11.2)

extracted power. This partly happens because the mass flow adjustments naturally have to be
larger for higher requested power, thus leading to more visually evident relative changes.

Unfortunately, we have not been able to find reasonable analytical estimates for the charac-
teristics of constant power extraction as we have for the constant mass flow case. Essentially,
one has to resort to numerical simulations. The only exception to this rule occurs if the
transient depth and the rate of linear decay in the constant mass flow case are small enough
so that implementing constant power extraction does not lead to an immediate significant
increase in the original mass flow. In such cases, the analytical estimates provide a reasonable
description of the early temperature evolution as is evident from the cases #1, #3, and #5 in
Fig. 1.

3.2 Definition of longevity

To gain a feeling for the longevity of an instalment, we simulate a modified, dynamically
evolving scenario. We adjust the mass flow to extract constant power but, if the difference
in water inlet and outlet temperatures drops below 3 ◦C, the power extraction is halted for
5 years and resumed thereafter. The purpose of this simulation is to demonstrate that, even
if the well temperature is allowed to recover for some time, the length of each subsequent
period of power extraction drops and severely affects the overall performance of the well.
A plausible reason behind this behaviour is the low conductivity of the rock, which drives
fast transient-like temperature changes and steep temperature gradients in the rock near the
borehole. Over a longer period, the transients of both decay and recovery average out and
the overall performance drops.

Figure 2 illustrates such temporal behaviour of the rock and water outlet temperature
and the evolution of the instant and cumulative average power together with the necessary
mass flow to retain the power at the desired level. The example case is for a 2 km deep well
with a target power extraction of 80 kW and the domain radius of r2 = 30 m. Although the
temperature at the borehole wall and water recover quickly once the power extraction is halted,
they drop even faster once the extraction is resumed, as anticipated. Since each subsequent
cycle brings the average temperature lower, the average cumulative power extraction drops
over time, as indicated by the black dashed line in the right panel of Fig. 2.

Since a geothermal system providing district heating presumably should perform reliably
with approximately constant power extraction on a year-to-year basis, we shall define our
concept of the well longevity as the first time it takes for the system to reach the water inlet–
outlet temperature difference of 3 ◦C. This should guarantee an appropriate safety margin.
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Fig. 2 Temporal evolution of water and rock temperatures and of instant and average cumulative power for
a 2 km deep well with r2 = 30 m together with the required mass flow

Fig. 3 Level sets of longevity [years] (black solid curves) and power density [Wm−2] (dashed red curves) for
2 km (left panel) and 3 km (right panel) deep geothermal wells from the numerical simulations. The domain
in lower right corner would contain level sets with longevity values beyond 450 years and is thus omitted

The specific value for the trigger condition is of course a free parameter, and moreover,
the inlet temperature could be lower than the 6.0 ◦C we have used. It should nevertheless
remain somewhat above zero to prevent the water from freezing when it comes back from
the evaporator at the heat pump.

3.3 Parametric dependency of longevity under constant power extraction

With the definition for longevity as the time to reach a 3◦C inlet–outlet temperature difference,
we are finally in the position to perform the parameter scans with respect to the domain size
reserved for individual wells and to the power extracted from the well under a constant
load. The results for 2 km and 3 km deep wells are recorded in Fig. 3. The black solid
level sets represent the longevity in years and the dashed red level sets the power density
any configuration would provide. Parameters are chosen to cover a wide range of plausible
operation scenarios with longevities ranging from 10 to 450 years and beyond.

The behaviour in Fig. 3 is largely in line with our previous analysis and the analytical
formulae. The longevity is improved by (i) increasing the domain reserved for a single well,
(ii) lowering the extraction power, (iii) increasing the depth of the bore. The scaling with
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r2 arises because the approximate linear decay rate is linearly proportional to the power
density. There is however a limit to this trend, especially at higher extraction powers where
the longevity improves only little with increasing r2. In such case, the initial transient, with
a weak logarithmic dependency on the domain size, dominates.

The parametric scans also make it apparent that, at a given power density level, longevity
is increased by drilling more holes closer to each other and reducing the power extracted
from an individual well. From an economic perspective one would, of course, opt for the
minimum number of boreholes that is able to meet both the requisite longevity and power
density.

A useful observation can be made after interpreting the formulae (16) and (17) slightly
differently. If expressed in terms of the relative changes in power, the formulae transform
into the dimensionless expressions

ΔP(Δt)

P0
= − P0

2πqearthL2

[
ln

(
r2

r1

)
− 3

4

]
, (18)

Δt
∂t P(t ≥ Δt)

P0
= −0.284

P0

2πqearthL2 . (19)

One can further deduce the time tF it would take for the power to drop to a fraction F of the
initial power P0:

tF = Δt

[
1 + 3.52

(
2πqearthL2

P0
F + ln

r1

r2
+ 3

4

)]
, (20)

This formula naturally requires the initial transient power drop to be less than 100% and
assumes a constant mass flow.

The analytical expression for tF predicts that, in the case of constant mass flow, the
longevity would remain constant if the ratio L2/P0 remains constant and other parameters
are fixed. Moreover, setting F = 1 would provide the maximum expected lifetime. In the case
of constant power extraction, though, we know from Fig. 1 that this relation is not exactly
true but instead should provide an upper limit of sorts for the longevity. In particular, we
could expect the formula to be reasonably accurate in predicting the longevity timescale if
we set F just right. Additionally, if we have existing data available, for example the longevity
level sets from Fig. 3, the analytical expression tells us that we can scale the data by keeping
the ratio L2/P0 constant to get an estimate of the lower limit of longevity for deeper wells.

We can demonstrate this behaviour by “lifting” the longevity level sets of the 2 km deep
well from Fig. 3 to a depth of 3 km via using the scaling L2/P and by comparing the result
with the analytical estimate. This is illustrated in Fig. 4 where, for every lifted level set of the
2 km deep well longevity, we observe that the 3 km deep well would last somewhat longer
(left panel), as expected, whereas almost all of the analytically estimated longevity values
are somewhat above the numerically calculated ones (right panel). In particular for power
values for which the initial transient is not too severe, Fig. 4 demonstrates a reasonably good
agreement between all the three options. Furthermore, since the red, dashed level sets in the
left panel are consistently below the numerically computed level sets, the scaling L2/P can
be used for a quick and safe estimation of the lower limit performance of deeper wells based
on available data.

Finally, in comparisons of the performance of shallow geothermal wells, we note that
the parameter of interest is often the so-called line power P/L . In the case of intermediate-
to-deep geothermal wells, the correct parameter of interest ought to be P/L2 instead. This
observation is duly supported by both analytical theory and numerical simulations.
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Fig. 4 Comparison of the longevity level sets for the 3 km well (solid, black) with those of a “lifted” 2 km
well with respect to keeping the ratio L2/P constant (dashed, red, left panel) and those from the formula (20)
with F = 1/2 (dashed, blue, right panel)

4 Discussion and instructions for policy makers

The final aspect regarding the applicability of intermediate-to-deep geothermal wells for
district heating purposes is, of course, the question of whether it can meet the demand from
the standpoint of district heating. In Finland, the annual heat consumption per person is
approximately 10 MWh [21] and in the city of Helsinki, with an average population density
of 3060/km2 [22], the annual average heat requirement would correspond to 3.5 W/m2.
Excluding the green areas, the population density in Helsinki, however, easily climbs to the
range of 6000–9000/km2 and peaks at around 15000/km2 [22], corresponding to a typical
annual power density demand of 7–10 W/m2 and with local peaks of up to 17 W/m2.

As can be seen from Fig. 3, both the 2 and 3 km wells could match the minimum power
density requirement of 3.5 W/m2 as there are several configurations up and left of the red
dashed curve of 4 W/m2. In Table 2 we list some combinations that all meet the power density
requirement of 4 W/m2 and may hence theoretically provide the necessary level of district
heating for Helsinki.

Rather than seeking to meet the minimum power requirement, the challenge lies in opti-
mizing the number of necessary boreholes, the total area reserved for the wells and the surface
infrastructure, and the longevity of the entire system. For example, settling for the power den-
sity of 4 W/m2 would mean covering the entire city area with the wells placed equidistantly
from each other. In such a case, it might be challenging to organize the supportive piping and
other infrastructure needed on the surface to deliver the heat to apartments that are located
at denser clusters and potentially far away, especially if small unit sizes are used to improve
the longevity.

One of the most important things to keep in mind is that, once the well has been depleted,
its rather modest ability to recover leads effectively to a single-use solution unless additional
charging is provided. This, however, would merely convert the well from a heat source into
a heat storage, incurring additional, perhaps significant electricity costs. Hence, in sizing the
well, one should consider choosing a configuration which guarantees a sustainable level of
longevity and does not require re-drilling of the bore holes every few years.

Finally, if technology and financing permits, one should always consider drilling as deep
as possible, all the way to depths of 4+ km. According to the parameter of interest, L2/P , the
approximate lower limit for longevity decreases linearly with increasing power but increases
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Table 2 Examples of wells from Fig. 3 that meet a minimum power density requirement of 4 W/m2. The #
of units and the percentage of land use are based on the requirements for covering the requirements of district
heating in Helsinki

2 km #1 #2 #3 #4

Power [kW] 20 80 20 80

Radius [m] 40 80 20 40

Power density [W/m2] 4 4 16 16

Longevity [years] 450+ 120 120 50

# of units 40,000 10,000 40,000 10,000

Land use [%] 100 100 24 24

3 km #5 #6 #7 #8

Power [kW] 60 200 100 80

Radius [m] 50 120 33 20

Power density [W/m2] 7.6 4.4 29 60

Longevity [years] 450+ 120 120 70

# of units 13,300 4,000 8,000 10,000

Land use [%] 52 100 13.7 6.7

quadratically with increasing well depth. For example, as is evident in Fig. 3, a 40 kW and 2
km deep well with a radius of r2 = 40 m has a longevity of 200 years, whereas a 3 km deep
well with the same domain radius and longevity can extract approximately (3/2)2 = 2.25
times more power, namely 90 kW. Thus using 3 km deep wells, the total length of boreholes
drilled in this case could be reduced down to 3/(2 × 2.25) = 0.667 times the total length
required from 2 km deep wells. While it is conventional to think of the gain from shallow
geothermal wells and surface heat applications as scaling with respect to the so-called linear
power P/L , in the case of intermediate-to-deep wells, the approximate scaling is a far more
favourable P/L2.

5 Summary

In this paper, we have analysed the longevity and power density of intermediate-to-deep
geothermal wells for district heating purposes. We have provided numerical simulations for
the parametric dependency of longevity on the well specifications and also derived useful ana-
lytical formulae to facilitate quick assessment of the associated temporal characteristics. The
simulations and analytical formulae confirm that the key parameter of interest in analysing the
longevity and performance of intermediate-to-deep geothermal wells is the ratio L2/P , with
L being the well depth and P the requisite power. This scaling is far more favourable than the
linear L/P rubric typically used in analysing shallow wells. This is because drilling twice
as deep allows one to draw not twice but at least four times more power without reducing
the longevity of the well. These results have been subsequently used to identify a variety of
intermediate–deep geothermal well configurations, which would theoretically comply with
the district heating needs of the city of Helsinki.

Since large urban areas cannot be easily moved from one location to another, a thorough
understanding of the longevity of the planned heat sources is of paramount importance: ineffi-
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ciently chosen parameters could result in quick decay of the heat source, after which it would
take an unacceptably long timescale to recover. Aiming for an overly high power density
via shallow wells may quickly drain and render them useless only in a few decades while
moderating the power density and drilling deeper gives rise to installations that potentially
last for several hundred years.
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Appendix A

Analysis of the water temperature

The initial temperature profile in the rock is linear in z, expressed for convenience as

uR(r, z, 0) = usur + z

L
(ubot − usur), (21)

where usur is the surface temperature and ubot = usur + qearthL/kR is the temperature
at the depth z = L . Adopting an average value for the heat-transfer coefficient hW , it is
straightforward to solve the differential equation for the water temperature (3) using the
initial profile for the rock temperature. The result can be expressed as

uW (z, 0) = uR(r1, z, 0) − (ubot − usur)
1 − e−βz/L

β
(22)

where β = (hW2πr1L)/(cWG) serves as the characteristic dimensionless parameter of the
water problem.

A key requirement to reach as high water temperatures as possible over prolonged
timescales is that the water temperature at the bottom of the well z = L remains close
to the surrounding rock temperature. This means that the parameters defining β should be
chosen to satisfy β � 1. In other words, one should choose r1, L and G so that the water
will heat up close to the rock temperature at the bottom. The fact that β � 1 then implies
that the exponential factor plays a role only very close to the surface. Deeper into the well
it becomes negligible and the asymptotic behaviour takes over so that the difference in the
initial rock wall and water temperatures is approximately constant, and given by

uR(r1, z, 0) − uW (z, 0) ≈ (ubot − usur)
1

β
. (23)

This observation is crucial for understanding the overall behaviour of the system. First of
all, because the initial temperature difference between the water and the rock remains constant
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over most of the depth of the well, the Robin boundary condition for the rock temperature
equation (8) has, apart from the small region close to the surface, the same heat flux value at
practically all depths, i.e.

kR
∂uR(r1, z, 0)

∂r
= hW [uR(r1, z, 0) − uW (z, 0)] ≈ P0

2πr1L
, (24)

where P0 := cWG(ubot − usur) ≈ PW (0).
Next, the system begins to evolve. Since the system is initially in thermal equilibrium with

respect to the z direction, and the extracted radial heat flux is constant at practically every
depth, this thermal balance in the z direction tends to be retained and the temperature gradient
in the z direction remains approximately constant, apart from: (i) the proceeding front near
the surface where the temperature in the z direction has flattened out and the water and rock
wall temperatures are both equal to the surface temperature, (ii) and the domain just below
the bottom of the well, where a deeper gradient in the z direction forms over a small area.
Effectively, there is a proceeding front of a flattened temperature profile in the water and the
rock wall, but deeper into the well the temperature difference between the water and the rock
wall remains constant due to the asymptotic behaviour of the differential equation describing
the water temperature. Finally, this process contributes to the radial heat flux surging in from
the rock to the water to be approximately constant along the course from the proceeding front
to the bottom of the well. In particular, we would have

kR
∂uR(r1, L , t)

∂r
≈ P0

2πr1L
, (25)

and this condition will hold practically until the water temperature—and roughly also the
rock wall temperature—at the depth L has collapsed to the surface temperature.

Appendix B

Analysis of the rock wall temperature

By drawing upon the analysis presented in Appendix A, we are to solve the partial differential
equation

ρRcR
∂uR

∂t
= kR

r

∂

∂r

(
r
∂uR

∂r

)
, (26)

at z = L , subject to the boundary conditions

kR
∂uR

∂r
(r1, L , t) = P0

2πr1L
,

∂uR

∂r
(r2, L , t) = 0, (27)

and the initial condition

uR(r, L , 0) = ubot. (28)

Applying the principle of separation of variables and Sturm–Liouville theory, the solution
to the above system in the limit of r1/r2 	 1 at the bottom of the well can be expressed as

uR(r1, L , t) − ubot = Γ

[
− ln

(
r2

r1

)
+ 3

4
− 2

t

τ
+ 2

∞∑
n=1

e−λn t/τ

λn

J0(
√

λnr1/r2)

J 2
0 (

√
λn)

]
, (29)
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Table 3 A list of the first few λn at the limit r1/r2 → 0

n: 1 2 3 4 5

λn : 14.682 49.219 103.50 177.52 271.28

where the coefficients Γ and τ are defined according to

Γ = P0

2πkRL
, τ = ρRcRr2

2

kR
, (30)

where J0 is the zeroth Bessel function of the first kind,
√

λn are the roots of J1, the first Bessel
function of the first kind. The first few values of λn are listed in Table 3 and demonstrate that
all of the exponential terms will decay in a fraction of the timescale τ .

Because the exponential terms decay quickly, the solution will display very distinct fea-
tures, essentially a) an exponential, transient phase and b) a slow, linear phase. The approxi-
mate time scale within which the linear behaviour overtakes the slowest exponential transient
by a factor e can be estimated from the equation

λ1t

τe
= e−λ1t/τ

J 2
0 (

√
λ1)

, (31)

and the solution is expressible as

Δt = W0

(
e

J 2
0 (

√
λ1)

)
τ

λ1
≈ 0.142 τ, (32)

where W0 is the positive branch of the Lambert W -function. The initial transient drop in the
rock wall temperature is then given approximately by the expression

ΔuR(r1, L ,Δt) ≈ − P0

2πkRL

[
ln

(
r2

r1

)
− 3

4

]
, (33)

and, after the transient, the system shifts to a linear phase, during which the rate of change
in the wall temperature is constant and given by the formula

∂uR

∂t
(r1, L , t ≥ Δt) = −2γ

τ
= − P0

ρRcRπr2
2 L

, t ≥ 0. (34)
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