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Abstract

For the design of nanostructured semiconductor solar cells and photodetectors, optics modelling can
be a useful tool that reduces the need of time-consuming and costly prototyping. We compare the
performance of three of the most popular numerical simulation methods for nanostructure arrays: the
Fourier modal method (FMM), the finite element method (FEM) and the finite-difference time-
domain (FDTD) method. The difference between the methods in computational time can be three
orders of magnitude or more for a given system. The preferential method depends on the geometry of
the nanostructures, the accuracy needed from the simulations, whether we are interested in the total,
volume-integrated absorption or spatially resolved absorption, and whether we are interested in
broadband or narrowband response. Based on our benchmarking results, we provide guidance on
how to choose the method.

Introduction

Nanostructures enable new functionality for photodetectors and solar cells by inducing, for example, light
trapping to increase the absorption of incident light [ 1-3]. However, the optical response of such nanostructures
can be complicated and strongly dependent on the geometry of the design [4-7]. Therefore, when optimizing
nanostructures for maximized absorption, optics modelling is a powerful tool allowing to reduce the need of
time-consuming prototyping. In the optics modelling, the diffraction, scattering, and absorption of incident
light are described by Maxwell’s equations. The materials of the nanostructure are taken into account through
wavelength-dependent refractive indexes of the materials. Here, we focus on nanostructure arrays in which we
aim to absorb the incident light [ 1-3]. Thus, in our case of interest, the nanostructure array is not just an anti-
reflection coating [8], but contains the photodetector or solar cell region [1-3].

To the best of our knowledge, a detailed comparison of different simulation methods for analysis of
absorption in periodic semiconductor nanostructure arrays has not been performed. In contrast, for example
for simulating diffraction gratings [9], anti-reflection coatings [10], plasmonic nanoparticles [11-16], metallic
slit-groove systems [17], photonic crystals [ 18], photonic crystal line cavities [19], and photonic crystal fibers
[20], numerical methods have been compared. However, due to the difference in materials, geometry, and type
of optics problem, those results are not directly transferable to the case of absorption in periodic arrays of
semiconductor nanostructures.

© 2020 The Author(s). Published by IOP Publishing Ltd
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(a) Incident light (b) Incident light

Figure 1. Schematics of (a) a nanowire array and (b) a nanocone array. The coordinate system is chosen such that z = 01is at the
substrate surface and z = L at the top of the nanowire or nanocone array.

We compare three of the most popular optics simulation methods for large-area nanostructure arrays [21]:
the Fourier modal method (FMM), the finite element method (FEM), and the finite-difference time-domain
(FDTD) method. Each of these methods solves the Maxwell equations numerically in a rather different manner.
We show that the difference between two simulation methods can exceed a factor of 1000 in terms of
computational time for a given system, depending on the geometry of the nanostructure, the accuracy needed
from the simulation process, whether we are interested in the total, volume-integrated absorption or spatially
resolved absorption, and whether we are interested in broadband or narrowband response. In addition to
computational time, random access memory (RAM) requirement can be a limiting factor in simulation-aided
design. Therefore, we additionally benchmark the methods with regard to RAM usage. Importantly, a single
simulation method is not optimum for all cases. In the end, we give a summary on how to decide which method
is expected to be preferential for different types of studies.

Geometry and materials

As test systems, we consider GaAs nanowire and nanocone arrays of circular cross-section on top of a GaAs
substrate (see figure 1 for geometry and supporting information section 1.4, which is available online at stacks.
iop.org/NANOX/1,/030034/mmedia, for discussion of the possible effect of the cross-sectional shape on the
simulation performance). GaAs is a direct bandgap semiconductor whose band gap corresponds to 872 nm in
wavelength at room temperature [22]. In general, we expect our results to be relevant for a wide range of direct
bandgap semiconductors of interest for nanostructured solar cells and photodetectors. The nanowires and
nanocones are characterised by a (base) diameter D and length L, and they are placed in a square array of period
P. Throughout the study, we consider a normally incident plane wave, which maximizes the incident power per
unit area of nanostructure array. A detailed study of the modelling at non-normal incidence [23] is left for
future work.

Methods

For the light scattering, we assume a model with linear, local, isotropic, non-magnetic, and time-harmonic
Maxwell equations of the form V x E(r, A) = i(2mwc/A) iy H(r, A)and

V x H(r, \) = —i@nrc/Negn(r, N)?E(r, \)[24]. Here, n(r, \)is the refractive index of the material at
position rand wavelength A, ¢ the speed of light in vacuum, ¢, the permittivity of vacuum, and 4, the
permeability of vacuum. From these two equations, V - gon(r, A\)?E(r, A) = 0and V - H(r, \) = 0, thetwo
remaining Maxwell equations, follow. In these equations, Im(n(r, A\)) > 0 induces absorption in the material.
Below, we describe in some detail the three simulation methods used in this study, with more technical details
given in supporting information section 1.
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Fourier modal method (FMM)

For FMM [24-26], also known as the scattering matrix method or the rigorous coupled-wave analysis (RCWA),
we use an in-house implementation in Fortran, where the numerically heavy vector and matrix operations are
performed through the Intel MKL package [24]. This FMM implementation includes the N-vector field
formulation [27] to describe the discontinuity of the refractive index in the x-y plane (see supporting
information figure S9 for the drastic increase in the convergence rate when this N-field formulation is used). In
FMM, we solve the scattering problem in the frequency domain, that s, at a pre-chosen A in each modelling run.

For the normally incident light, we use an underlying Fourier basis of the from exp(ik, ,x)exp(iky,,y) where
k. = 2ma/P and ky;, = 27b/P,. Here, aand b are integers, and P, and P, are the period of the unit cell in the x
and the y direction. Throughout this work, we use P, = P, = P.In the numerical implementation, we need to
truncate the Fourier basis. Here, we truncate the basis througha = —m,—m + 1,...m — 1,mandb = —m,
—m + 1,...m — 1, m. Thus, there are 2m + 1 basis components in both the x and the y direction, that is,

(2m + 1)*basis components in total. In FMM, we project the Maxwell equations to this Fourier basis and work
with the two in-plane electric field components E, and E, [24]. This projection gives matrices of the size

[22m + 1)°] x [2(2m + 1)*] where the additional factor of 2 originates from the two in-plane components. A
larger m is expected to give more converged results, at the cost of a longer simulation time and a larger RAM
requirement.

From the projected matrices, we can solve for optical eigenmodes in each z-invariant geometrical region of
the system (see equation (9) in [24]). Next, we solve for the expansion coefficients of the eigenmodes in each such
region, as induced by the incident plane wave. From these expansion coefficients, we can readily calculate the
power flow through the x-y plane at any z position by performing the integration in the underlying Fourier basis
functions [5]. Such a power flow can be used for example for calculating the reflectance R of the system and the
transmittance T'into the substrate atz = 0, which in turn give the absorptance of the nanostructure array
through A = 1—R-T. To study the fields in the real-space, we need to perform a Fourier transform from the
underlying Fourier basis to the real space [28] (see also supporting information section 1.1.4).

Finite element method (FEM)

For FEM, we use the Wave Optics Module in Comsol Multiphysics [29]. Also here, we solve the scattering
problem in the frequency domain. In FEM, the volume of the system is discretized into a mesh of finite elements
(see supporting information figure S8). The Maxwell equations are projected onto the finite elements, and we
end up with a problem of the type Axz = b where A contains information about the system, xg information of
the electromagnetic field in the elements, and b the boundary conditions as set for example by the incident light.
Thus, in FEM, we need to solve large equation systems.

The numerical accuracy of the solution depends on the choice for the size of the elements and the spatial
distribution of the elements, which affects the number of elements and hence the number of degrees of freedom
(NDOFs) in our equation set. A larger number of elements is expected to give more converged results, at the cost
of alarger NDOFs, alonger computational time, and a larger RAM requirement. For further details on how the
meshing was chosen, how the regions in the unit cell were defined, and how the computational speed and RAM
usage of the linear equation solvers were tested, the reader is referred to section 1.2 of the supporting
information document.

In FEM, we obtain as solution the electric field E(r,\), from which spatially resolved absorption can be
calculated, in a post-processing step, by integrating over the volume of interest. Here, A is obtained by
integrating the spatially resolved absorption over the full nanostructure volume, thatis, for 0 < z < L.

Finite-difference time-domain (FDTD) method

For the FDTD method, we use the Lumerical FDTD Solutions software [30]. The spatial domain is discretized
into a grid (see supporting information figure S8), and the spatial derivatives in the Maxwell equations are
approximated by finite differences. Here, we use a uniform discretization with Ax = Ay = Az.In contrast to
FMM and FEM, FDTD performs the simulation in the time-domain. In FDTD, an incident pulse is sent toward
the nanostructure array and forward-propagated with a time step of At through the system. Importantly, n()\)
cannot be used directly for the materials since FDTD works in the time-domain. Instead, a fitting of n(\) to an
oscillator form must be performed to represent the frequency dispersion in the time-domain (see supporting
information figures S1 and S3 and supporting information section 1.3.1).

In the solution we need to keep track of the fields at each discretization point, but in contrast to FEM, no
linear equation system needs to be solved. In FDTD, the convergence is dependent on the discretization step Ax,
and more converged results are expected with decreasing Ax, at the cost of increased computational time and
RAM usage.




10P Publishing

Nano Express 1(2020) 030034 N Anttuetal

In FDTD, to obtain the response of the system as a function of wavelength, we need to perform a Fourier
transform from the time-domain to the frequency domain. For this purpose, we place spatial monitors at
locations where the electromagnetic fields are recorded at each time step, and after the simulation, these fields
are Fourier transformed. For example, to obtain information about T, we place a monitor spanning the x—y
planeatz = 0. After the simulation, the z-component of the Poynting vector at that surface is Fourier
transformed and, for each wavelength of interest, integrated over the surface. Similarly, we can obtain R from a
monitor placed above the nanostructure array, which in turn allows to calculate the absorptance with A = 1
—R-T.

Symmetry reduction

The arrays shown in figure 1, with a single nanowire or nanocone located atx = 0 and y = 0 in the unit cell,
show mirror symmetry about the x and the y direction, which is respected also by the normally incident plane
wave. To speed up the calculations and to save RAM, we can then use symmetry reduction [21]. Due to the
symmetry of x and y polarized light, we consider x polarized light without loss of generality.

In FMM, such a reduction is performed by using basis functions that respect the symmetry. In practice, we
use a cos(ky ,x)cos(ky ,y) basis for E, and a sin(k ,x)sin(ky,py) basis for E,. This reduces the matrix size from
[2@2m + 1)°] x [22m + 1)*]to[(m + 1)* + m*] x [(m + 1)* 4+ m?], which for large m corresponds to a
reduction by a factor of 4 in the number of both rows and columns.

In FEM and FDTD, with symmetry reduction, we model % of the full unit cell, with0 < x < P/2and
0 < y < P/2[21]. For the x-polarized incident light, we use perfect electric-conductor (PEC) boundary
conditions alongx = 0and x = P/2 and perfect magnetic-conductor (PMC) boundary conditions alongy = 0
andy = P/2. Thus, in FEM and FDTD, with the symmetry reduction, we reduce the volume of the simulation
domain by a factor of 4.

Computational resources

Our focus is on simulations that can be performed on desktop workstations. The run times we report are
benchmarked on a system with 64 GB of RAM and an Intel” Xeon” E3-1230 v5 central processing unit (CPU)
with 4 physical cores, using Ubuntu 16.04.6 LTS with Linux 4.4.0 —174-generic kernel. The run times are
reported when using all four CPU cores for the calculations. For FEM and FDTD, we use all four CPU cores for a
single instance of the software. In contrast, the FMM implementation is a single-core implementation, and we
run four FMM implementation in parallel in a wavelength study, requiring four times the RAM of a single
instance. See supporting information sections 1.1.3, 1.2.5, and 1.3.8 for additional details of the computational
performance of FMM, FEM, and FDTD on the workstation used. Some of the computationally time-demanding
simulation sweeps were performed at the Triton computational cluster available through the Aalto Science-IT
project, with computational time and RAM usage extracted from the desktop workstation by considering
selected test runs within the large sweeps.

Convergence metrics

Note that the nanostructure arrays considered in this study do not allow for analytical, exact solutions. In lack of
exact reference values, we must approximate the convergence of the results. When presenting the convergence of
the results below, we use the most converged results from any of the three methods as reference value.

Results

Below, we highlight the most important aspects that we found when comparing the three simulation methods.
The supporting information document contains a large range of additional technical details in order to support
the general conclusions here.

Validation of simulation methods
We start by considering a GaAs nanowire array of period P = 400 nm. For the nanowires, we choose a diameter
of D = 160 nm and alength of L = 2000 nm, which gives rather optimized absorption [5]. For the refractive
index of GaAs, we used tabulated values [31] (see supporting information figure S1 for the wavelength dispersion
of the refractive index). We show results also for a nanocone array with D = 400 nm, P = 400 nm, and L = 960,
which thus contains the same volume of GaAs as the considered nanowire array (for the reflectance and
transmittance of the nanowire array and the nanocone array, see supporting information figure S2).

First, we validate that all three methods yield equivalent solutions for the light-scattering problem (figure 2).
With regard to both the electric field distribution and the absorption spectrum, FMM, FEM, and FDTD give
results that agree well. It is of note, however, that there are some visible discrepancies in the absorption spectrum

4
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Figure 2. Electric field distribution for y = 0in nanowires of D = 160 nm, L = 2000 nm, and P = 400 nm at A = 500 nm with (a)
FMM, (b) FEM), and (c) FDTD. For the electric field profiles with FMM, we paid attention to respect the Fourier factorization rules
[28,32]. For FEM, we show a plane cutaty = 0 of the solution E(r,\). For FDTD, we placed for the electric field an x-z monitor at

y = 0. (d) Highly converged absorption spectra (left axis) for nanowires of D = 160 nm, L = 2000 nm, and P = 400 and nanocones
of D = 400 nm, L = 960 nm, and P = 400, together with the AM1.5G spectrum in terms of incident photons (right axis).

modelled with FDTD compared to the spectrum modelled with FMM and FEM, especially at A ~ 850 nm
(figure 2(d)). This discrepancy originates from the oscillator fitting for the refractive index in the FDTD
simulations. We used a large number of oscillators (nineteen) in this FDTD simulation, but, some discrepancy
still remains in the refractive index and in the resulting A(\) (see supporting information figures S1 and S3).
Thus, the FDTD results are highly converged, but not to the same exact value as the FMM and FEM results.
Therefore, any of these three methods works for calculating spectral and spatial properties for the nanostructure
array. Then, the practical question that we aim to answer below becomes: at what computational cost do we
obtain the results?

Convergence of absorptance in nanowires and nanocones

To obtain broadband information about the absorption in the nanowires or nanocones, we use the AM1.5G
solar spectrum (see supporting information figure S6 for wavelength-dependent convergence of A())). Asa
measure, we use the short-circuit current given by [33]

. )\g mc(A)A(A)
Jse = L/(; —————dA

27hic/ A @

2mhe

where gis the elementary charge, \; = ~ 872 nm with /i denoting the reduced Planck constant, and

L, (M) the incident AM1.5G solar spectrurgn shownin figure 2. Here, E; = 1.4225 eV [22] is the bandgap energy
of GaAs at room temperature, and in equation (1), we assume that photons with energy below it give negligible
contribution to the short-circuit current [33]. In practice, the lower limit on the integration in equation (1) is

A & 300 nm since the AM1.5G solar spectrum shows negligible intensity below that wavelength (see the light
grey line in figure 2(d)). Throughout, the simulations are carried out for A > 270 nm. In equation (1), we assume
that each absorbed photon gives rise to one charge carrier to the short-circuit current. The maximum value for
jse from equation (1), obtained with A(\) = 1,is31.4 mA cm ™ ~.

For the nanowires and the nanocones in figure 2, we obtain j. = 27.1 mA cm “andj, = 23.4mA cm . In
figure 3, we show the relative error in j,. as a function of run time. This relative error is defined as |joc—jsc.refl /Jsc.ref
where js. re¢is a highly converged reference value.

For FDTD, we perform a single run that covers all wavelengths. For FMM and FEM, we perform runs with a

wavelength step of A\ = 10 nm (see supporting information figure S4 for effect of A\). For this simulation, we
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Figure 3. Relative error in j,. for (a) nanowires of D = 160 nm, L = 2000 nm, and P = 400 nm and (b) nanocones of D = 400 nm,
L = 960, and P = 400 nm. The run times are given for simultaneous use of all four CPU cores of the workstation.

performed in FEM 64 such wavelength steps to cover the 270 to 900 nm wavelength range. For FMM, we
modelled one wavelength per CPU core, that is, we run four FMM implementations in parallel to cover four
wavelength steps in parallel, and 16 such batches to cover the 64 wavelengths.

For the nanowires, we used a highly converged result from FMM as a reference, and for the nanocones, we
used a highly converged result from FEM as a reference (these two methods gave, respectively, the most
converged results with our computational resources, as seen in figure 3). For FMM and FEM, we used the
tabulated refractive index of GaAs. For more details about the convergence of each method, see supporting
information figure S7 for convergence with increasing r in FMM, increasing NDOFs in FEM, and decreasing
Axin FDTD. Note that for FDTD, we calculated a second reference with FMM for nanowires and with FEM for
nanocones with the refractive index resulting from the oscillator fitting in FDTD (see supporting information
figure S3 for the difference in j;. when using tabulated and fitted refractive index).

For the nanowires, FMM appears to converge 2 orders of magnitude faster than FEM and 4 orders of
magnitude faster than FDTD (figure 3(a)). Here, FEM shows better than 1073 convergence even at the coarsest
mesh used, and the run time did not decrease by trying to make the mesh coarser since the run time per
wavelength point settled at approximately 4 s with the coarsest mesh used (see supporting information figure
$12). Thus, if we require 10 convergence, FEM appears to perform 2 orders of magnitude faster than FDTD, as
estimated from linear extrapolation of the FDTD results toward 102 relative error. However, if 102 relative
error is sufficient, FDTD performs an order of magnitude faster than FEM.

When moving to consider nanocones, FMM shows a drastic slowing down when trying to reach better than
1072 convergence (figure 3(a)). This slowing down is associated with the staircase approximation [34], which we
use to take into account the slanted sidewalls of the nanocone (see supporting information figure S5 for more
details about the effect of the staircase approximation). In contrast, FEM and FDTD appear to perform slightly
faster for the nanocones than for the nanowires. For nanocones, FMM appears as the method of choice for 102
convergence, FDTD or FEM for 1077 convergence, and FEM for 1074 convergence.

Convergence of absorption in core—shell structure

A high bandgap semiconductor shell is common for passivating the surface of GaAs nanowires [35, 36]. To
investigate the optics simulation of such systems, we consider a 20 nm thick AlGaAs shell around GaAs
nanowires (figure 4(a)). For the considered 80% Al content, with refractive index from [37], the shell starts
absorbing noticeably at A = 500 nm (figure 4(b)). Here, in equation (1) we use the absorptance in the core and
the shell to give the corresponding j.. in each material, separately. The resulting values are

Jsecore = 25.1 mA cm™ > and jy gher = 1.2 mA cm 2. Compared to the calculation of Jsc = Jse,core T Jsc.shell>
which can be obtained in FMM and FDTD from A = 1-R-T, for js. core a0d jsc shen We need to solve for spatially
resolved absorption (see supporting information sections 1.1.4, 1.2.4, and 1.3.9 for technical details for such
absorption calculation).

First, we notice that for all three methods, the relative error in . snen is, at a given run time, approximately an
order of magnitude worse than for j core (figure 4(c)). This slower convergence of j. sheps Originates from the
approximately one order of magnitude lower absolute value of js. ¢n- Thus, the absolute convergence of i shen
and jic core 18 rather similar. Similarly as for j;. in the bare nanowires in figure 3, the convergence is the slowest in
FDTD for all three of js, jsc core» a0d jsc shen- Also for these core—shell nanowires, FMM appears as the method of

6
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Figure 4. (a) GaAs nanowires as in figure 1(a) but here with an additional AlGaAs shell of diameter Dy (b) Absorptance in GaAs core
and Al sGag ,As shell for L = 2000 nm, P = 400 nm, D = 160 nmand Dy, = 200 nm, that is, a 20 nm thick shell. (c) Convergence
of the absorption in the core, absorption in the shell, and total absorption, in terms of j,. from equation (1). Here, the total absorption
in FMM and FDTD are calculated from A = 1-R-T.

choice if we need only the total absorption, expressed through j.. However, if ji. snen is needed with better than
10~ relative error or Jsc.core With better than 107 relative error, FEM appears as the method of choice.

Convergence of absorption in quasi-random array

To test the performance of the simulation methods for larger systems, we consider quasi-random nanowire
arrays that show disorder in the x-y plane [38, 39] (see figure 5(a)). To create the quasi-random array, we started
from the highly symmetric square array of nanowires used in figure 2 and increased the number of nanowires by
an integer N in both the x and the y direction in the simulation domain. That s, for N, we consider N? nanowires
ina supercell of size N x Pinboth the x and the y direction. Then, we moved each of the N> nanowires by a
random distance in the range —0.25P to 0.25P in both the x and the y direction from their original position.
Next, we gave to each nanowire a random diameter in the range from 60 to 260 nm. Finally, we scaled the
diameter of all the nanowires in the supercell by the same factor in such a way that the volume of GaAs in the
nanowires is equal to thatin the N = 1 square array of D = 160 nm. See figure 5(a) for the resulting supercells
forthe N = 1,2, 3,4, 5, and 6 that we consider here. Due to the broken symmetry for N > 2, we average the
absorption of x and y polarized incident light. Here, in FEM and FDTD, we perform separate simulation for x
and y polarized incident light. In FMM, a single simulation run yields separately the response for x and y
polarized incident light.

We investigated the run time (figure 5(b)) and RAM usage (figure 5(c)) to reach lower than 1% relative error
in ji.. The reader is referred to supporting information table S1 for the 1, NDOFs, and Ax used in the FMM,
FEM, and FDTD, respectively, for the varying N, as well as for discussion of possible variation in their values for
varying realizations of the random array configuration for given N. Note that since we run four parallel FMM
implementations, one on each CPU core, the reported RAM usage for FMM is a factor of four higher than for a
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Figure 5. (a) Modelled quasi-random arrays with N* nanowires in the supercell. Note that N = 1 corresponds to the square array in
figure 3(a). (b) Run time and (c) RAM usage for a quasi-random array with N> nanowires in a supercell to reach less than 1% relative
error in j,.. The period of each supercell is N x Pwith P = 400 nm. Here, for N > 1, that s, for the supercells that break the mirror
symmetries alongx = 0andy = 0, we use periodic boundary conditions in all three methods.

single instance of the FMM implementation. As reference for ji. to assess the convergence, we used a highly
converged value from FMM with m = 35.

For all the considered values for N, FEM was slower than FDTD and required more RAM. For N = 1, FMM
is an order of magnitude faster than FDTD and almost three orders of magnitude faster than FEM. When
moving from N = 1to N = 2, all methods slow down considerably since (i) the unit cell area increases by a
factor of 4 and (ii) the mirror symmetry breaks around x = 0 and y = 0 making the simulation volume
effectively an additional factor of 4 larger in FEM and FDTD and the basis size in FMM a factor of approximately
4larger. At N > 3, FDTD becomes the method of choice for run time, and at N > 5, FDTD becomes the
method of choice also for RAM usage. It appears that if we would to increase N beyond 6, also FEM will
eventually become faster and less RAM requiring than FMM.

Discussion of additional dependencies

Size of the simulation domain in the x-y plane

In figure 5, we increased the lateral size by considering unit cells of area NP x NP. From supporting information
table S1, we see that the m required for FMM scales as N. Thus, with increasing unit cell area, which is
proportional to N%, the computational time scales as N>® (see figure S10(a)) and the memory requirement scales
as N*. For FDTD, as expected, the required Ax stays rather constant with increasing N (supporting information
table S1). Thus, with increasing N, the number of grid points in the FDTD solution increases as N?, and the run
time and RAM usage scale proportionally with the number of grid points, that is, proportional to N* (see
supporting information table S1). For FEM, the NDOFs used scales as N” due to the increase in the volume of the
simulation domain by a factor of N” (see supporting information table S1). With the iterative solvers, we expect
that run time and RAM usage increase proportionally to NDOFs and hence N” (see supporting information
figure S12). However, since we had to use the direct solver due to the periodic boundary conditions in figure 5,
the FEM run time is slightly superlinear in NDOFs (see supporting information figure S12(a) and supporting
information table S1).
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Size of the simulation domain in the z-direction

If we wish to consider the effect of varying nanowire length, FMM tends to stand out in its own class as a method,
especially for the square array in figure 3. For FEM and FDTD, the simulation effort scales linearly with the
number of lengths studied: for each length, a separate, new simulation is needed, and for simplicity, we assume
that the computational effort for each individual simulation stays constant with varying length. In contrast, with
FMM, since only the length of the nanowires is changed, we can re-use much of the previous calculations for a
given length when changing the length. In our implementation, for the nanowires in figure 3, once we have
calculated the results for a given length, we could reuse partial calculation results to such a high degree that the
costin run time to calculate the response for 30 additional lengths, at i = 5, was equal to the cost of one
simulation starting from scratch.

In reality, with increasing length, a larger simulation effort is expected in FEM and FDTD since the physical
size of the simulation domain increases. For a large L, the nanowire domain dominates the extent of the
simulation domain in the z direction. Based on the scaling with NDOFs in FEM and grid points in FDTD, we
expect then the simulation time to scale linearly with L. In contrast, in FMM, the simulation time stays constant
with increasing L at given basis size, which is typically set by the size of the simulation domain in the x-y plane.

Random length for nanowires

In figure 5, we considered a random nanowire array with N> nanowires where each nanowire is of length L. If we
consider a case where each of the N* nanowires is of a random length, we expect FEM and FDTD to perform at
approximately the same speed as when all the nanowires were of the same length L. In contrast, in FMM, we need
to divide the system into N slices in the z-direction to be able to consider z-invariant regions, as required by the
method. Thus, FMM simulations are expected to slow down by a factor of N? relative to the case of constant
length for all nanowires. We expect a similar slowing down of FMM if we consider nanocones instead of
nanowires in the quasi-random array (since the nanocones require the staircase approximation in the z-
direction in FMM). In contrast, we expect for FEM and FDTD a similar computational performance for a quasi-
random nanocone array as for the quasi-random nanowire array in figure 5.

TCO contact layer

In many nanostructured solar cells and photodetectors, the electrical top contact layer is realized with a
transparent conductive oxide (TCO) [1-3]. If such a TCO layer is of thickness #,., and planarized to cover the
regionL < z < L + t,,above the nanostructure array (see figure 1(b) in [40] for a schematic), FMM, FEM, and
FDTD are expected to handle the simulations well.

In FDTD, we can use three power monitors instead of the two for R and T. The additional monitor is placed
atz = Lto allow a separate study of the absorption in the TCO and the nanostructures. Since we expect that
trco < L,theincrease in the calculation time due to the increase in the volume of the simulation domain is a
minor effect. In FMM, we can monitor the power flow atz = Lat just a 25% increase in run time compared to a
calculation of only R and T (see supporting information section 2). However, for a nanowire array that originally
consists of a single z-invariant region, we would now include an additional layer to the system, which thus
increases the run time approximately by 100%. In FEM, we can separately integrate the spatially resolved
absorption in the TCO and the nanostructures, as done for absorption in the core and the shell in figure 4.
Similarly as for FDTD, also for FEM, due to the minor increase in the volume of the simulation domain, we
expect only a minor increase in the calculation time.

However, if we consider a conformal TCO layer that wraps around a nanowire in the radial direction, with a
dome-shaped TCO top (see figure 1(b) in [1]), the differences between the methods become apparent. With
FEM, we can include the dome shape directly and with appropriate volume integration study the absorption in
the nanowire and the TCO separately. For FDTD, we expect the calculation of the spatially resolved absorption
in the TCO and the nanowire to be the largest numerical hurdle, as for the core—shell structure in figure 4. For
FMM, we expect the dome-like top shape to be the largest numerical hurdle since it requires the staircase
approximation, as for the nanocone-shape in figure 3(b).

Photogeneration rate

The js. in equation (1) is the upper limit for the short-circuit current. It is reached when each photogenerated
charge carrier contributes to the short-circuit current. In an actual device, there is typically noticeable spatial
dependence in the probability for photogenerated carriers to contribute to the short-circuit current [40, 41].
Therefore, for device simulations, we are often interested in G(x,y,z), the spatially resolved photogeneration rate
[40,41]. Then, by performing for example drift-diffusion modelling of electron-hole transport with G(x, y, z) as
a generation term for charge carriers, we can obtain an estimate for the short-circuit current, including varying
extraction and recombination losses [40, 41].
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The G(x, y, z) can be obtained from any of FMM, FEM, or FDTD from the spatially resolved absorption (see
equation (7) in the supporting material of [ 1]). In this case, the discussion for the choice of method is similar as
for the core—shell structure: FEM yields readily the spatial profiles since the E(r, A) required for the calculation of
G(x, y, z) is obtained as a solution at each modelled wavelength. Aslong as no slanting regions in the z-direction
exist, which would require the staircase approximation, FMM could also be a suitable choice, similarly as it was
for resolving the absorption in the core and the shell in figure 4. FDTD will on the other hand need a memory
heavy three-dimensional monitor and appears to give slower convergence than FEM.

Absorption along the axial direction

In figures 2—5, we considered the absorptance integrated over the full nanostructure region. However, in some
cases, we are interested in how the absorption varies along the axial direction [23]. Such information can be
obtained by integrating the above G(x,y,z) over the x-y plane. However, for FMM and FDTD, we can perform the
analysis numerically much less heavily. In FMM, we can integrate the power flow over the x-y plane at a given z
position. From the variation of this power flow in the axial direction, we can obtain the axially resolved
absorption. For FDTD, we can place additional power monitors at varying position in the axial direction. In our
testing with nanowires of L = 2000 nm and a resolution of 10 nm for the absorption in the axial direction (see
supporting information section 2 for technical details), the axial absorption profile can be calculated in FMM
with approximately 45% increase in calculation time without noticeable increase in RAM usage, in FDTD with
an increase in calculation time on the order of 50% and increase of 1000% in RAM usage, and in FEM with a
1500% to 7000% increase in calculation time without increase in RAM usage (in FEM we used actually a volume
integration to speed up the convergence, see supporting information section 2).

Broadband versus narrowband response

Above, we focused on the case of absorption of sunlight. For the GaAs considered, the broad spectral range from
270 to 900 nm was thus of interest. However, in some applications, we are interested in absorption over a narrow
spectral range, for example in a photodetector designed for a single communication wavelength. Then, some
additional differences between FMM and FEM compared to FDTD show up. In FMM and FEM, we modelled
one wavelength at a time. Therefore, compared to the broadband simulations in figures 3—5 with 64 wavelength
points, we could perform the computation at 1/64 of that cost when optimizing the geometry for a single
wavelength with FMM or FEM. In FDTD, we obtain the full spectral response in a single run. However,
compared to the broadband response, by considering a single wavelength, we can use a constant refractive index
for GaAs, which saves approximately a factor of four in calculation time (see supporting information section
1.3.1). Thus, when moving from simulating a broadband response to simulating a narrowband response, FDTD
is expected to slow down by approximately an order of magnitude relative to FMM and FEM.

Comparison to previous studies of simulation methods

As mentioned in the introduction, the type of optics problem affects strongly the preferred choice for the
simulation method. Below, to highlight this aspect, we compare our present results with the general trends in
some of the previous studies.

Finite ensembles of metallic nanoparticles have attracted interest lately, and methods for simulating their
optical properties have been compared [11-16]. There, FEM has been often proposed as the method of choice
due to its ability to adaptively resolve the strong electric field enhancement in the vicinity of the nanoparticles or
in the gap between two nanoparticles [11, 15]. For metallic nanoparticles, FMM is typically not considered, even
if a finite ensemble of nanoparticles could be modelled with the aperiodic FMM, which is an extension of FMM
to finite-sized scattering systems [42]. Thus, for metallic nanoparticles, FMM, which was highlighted as the
method of choice in the present study for many of the semiconductor nanostructure arrays, is typically not even
considered. Indeed, also for the case of simulating a finite-sized photonic crystal slab with a line defect, the
aperiodic FMM underperformed computationally compared to FEM and FDTD [19].

Regarding other simulation methods not covered in the present work: Surface integral or boundary element
methods have been proposed as a method of choice for simulating nanoparticles [ 13]. To the best of our
knowledge, such methods have not been studied to a large degree for simulating periodic arrays like those in the
present study. The discrete dipole approximation is another popular method for simulating the optical response
of nanoparticles [13, 15, 43]. The method worked well for simulating the optical response of single
semiconductor nanowires [43]. However, when we explored the use of the discrete dipole approximation for
simulating the semiconductor nanowire arrays in the present study, the computational performance appeared
considerably lower compared to FMM, FEM, and FDTD (results not shown).
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The geometry of the nanostructure arrays in the present study has some similarities with those considered in
areview on the simulation of sub-wavelength anti-reflective structures for solar module applications [10].
However, in the present study we focus on absorption in the nanostructure array itself whereas the focus on that
review is on minimizing reflections, with the active, absorbing layer possibly further down into the structure.
Also in that review [10], FMM, FEM, and FDTD are highlighted for modelling periodic nanostructures, but no
quantitative comparison of their computational performance is included.

Conclusions

We showed how FMM, FEM, and FDTD can give highly converged results for optics simulations in
semiconductor structures based on nanowire and nanocone arrays (figure 2). In FMM, for the nanowires in
figure 3(a), only the number of Fourier basis functions, as controlled by the single parameter 1, determines the
convergence. In contrast, in FEM and FDTD, various parameters in the configuration of the simulation deck and
solver settings affect the convergence (see supporting information sections 1.2 and 1.3). Thus, in both FEM and
FDTD, it takes more effort to try to optimize the numerical performance, and this optimization could be
dependent on the problem at hand. At the same time, for the GaAs nanowires in figure 3(a), FMM appears as the
numerically most efficiently performing method for simulating the absorption of sun light. However, when we
consider the nanocone geometry with slanted sidewalls that requires the staircase approximation in FMM, the
choice of the method becomes more complicated as we saw in figure 3(b). Ifa 10~ relative error is sufficient,
FMM still appears as the method of choice. However, for below 102 relative error, FEM becomes the method of
choice. Similarly, for the core—shell structures in figure 4, FMM is the method of choice ifa 102 relative error for
absorption in the shell or 10 relative error in the core is sufficient, and for lower relative error FEM becomes
the method of choice. For the overall absorption in both the core and the shell, FMM appears as the method of
choice no matter which relative error is tolerated. FDTD shows its strength for the quasi-random arrays in

figure 5. There, with increasing number of nanowires in the supercell, FDTD becomes more and more
preferable for simulations. In our test system, for more than 16 nanowires in the supercell, FDTD required the
least of computational time as well as RAM, as compared to FMM and FEM. Compared to the above results for
the broadband sun light, if we move to consider narrowband response, we expect FDTD to slow down by a factor
of approximately 10 relative to FMM and FEM.

Importantly, the results are obtained for our test workstation with four CPU cores. The FMM code runs on a
single CPU core, and to utilize the available CPU cores, we run multiple FMM codes in parallel for different
wavelengths or geometries under study. Thus for FMM, the RAM usage scales with the number of available CPU
cores. In a system with much more CPU cores available, a benchmarking of parallel computation performance
should be performed. For example, it might turn out that it is beneficial to allocate only a limited number of CPU
cores to a given FEM or FDTD instance and run multiple such instances in parallel. For FEM, we can split the
runs in either wavelength or geometry and in FDTD in geometry. Then, the RAM usage scales as the number of
parallel FEM or FDTD simulations. We note that the FMM, FEM, and FDTD implementations tested here did
not support calculations on graphical processing units (GPUs). A benchmarking of GPU accelerated optics
simulations [44] of nanostructure arrays would be a useful future study.
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