
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kathania, Hemant; Kumar, Avinash; Kurimo, Mikko
Vowel non-vowel based spectral warping and time scale modification for improvement in
children’s ASR

Published in:
IEEE International Conference on Acoustics, Speech and Signal Processing

DOI:
10.1109/ICASSP39728.2021.9414116

Published: 01/01/2021

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
GNU LGPL

Please cite the original version:
Kathania, H., Kumar, A., & Kurimo, M. (2021). Vowel non-vowel based spectral warping and time scale
modification for improvement in children’s ASR. In IEEE International Conference on Acoustics, Speech and
Signal Processing (Vol. 2021-June, pp. 6983-6987). (Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing). IEEE. https://doi.org/10.1109/ICASSP39728.2021.9414116

https://doi.org/10.1109/ICASSP39728.2021.9414116
https://doi.org/10.1109/ICASSP39728.2021.9414116


VOWEL NON-VOWEL BASED SPECTRAL WARPING AND TIME SCALE MODIFICATION
FOR IMPROVEMENT IN CHILDREN’S ASR

Hemant Kathania1, Avinash Kumar2, and Mikko Kurimo1

1Department of Signal Processing and Acoustics, Aalto University, Finland
2Department of Electronics and Communication, National Institute of Technology Sikkim

hemant.kathania@aalto.fi, avinash ece@nitsikkim.ac.in, mikko.kurimo@aalto.fi

ABSTRACT

Acoustic differences between children’s and adults’ speech
causes the degradation in the automatic speech recognition
system performance when system trained on adults’ speech
and tested on children’s speech. The key acoustic mismatch
factors are formant, speaking rate, and pitch. In this paper, we
proposed a linear prediction based spectral warping method
by using the knowledge of vowel and non-vowel regions in
speech signals to mitigate the formant frequencies differences
between child and adult speakers. The proposed method gives
31% relative improvement over the baseline system. We have
also investigated time scale modification using RTISILA and
SOLAFS algorithms and found that our proposed method per-
forms better. Combining the proposed method with RTISILA
and SOLAFS results in a further error rate reduction. The
final combined system gives 49% relative improvement com-
pared to the baseline system.

Index Terms— Spectral warping, vowel, non-vowel,
TSM, children speech recognition.

1. INTRODUCTION

Recent years have seen significant rise in qualitative research
in academy and business to use automatic speech recognition
(ASR) for the learning of children’s language [1, 2]. The effi-
ciency of an ASR system is effected by the many reason such
as speaker, context, and environmental variability in real-life
applications. The variability of the speaker might cause a mis-
match between the trained acoustic models and the recogni-
tion of the actual speech, which can lead to severe degradation
of performance of recognition. It is referred to as the mis-
matched ASR when the ASR systems trained on the speech
data from the adult speakers are used to test the speech of the
children speakers. Several studies have been explored to ad-
dress the acoustic mismatch in children’s ASR [3, 4, 5, 6, 7].

It is well known that, for adult and child speakers, the
form of the vocal organs, pitch and speaking rates are sub-
stantially different. In compared to adults, major variations
in the spectral characteristics of children’s voices include
higher fundamental and formant frequencies and spectral

variability [8, 9]. Formant frequency normalization studied
to transforming children speakers vowel formant frequency
to adult speaker space in [9]. In fact, the formant frequen-
cies F1, F2, and F3 were found to be highest in children and
decreased with increasing age [9]. Motivated by this, we ex-
plored vowel, non-vowel region-based formant modification
for children’s ASR.

The speaker-dependent variations are classified into inter-
speaker and the intra-speaker variabilities. The speaking-rate
variation among the speakers is a common factor contribut-
ing to inter-speaker variability [9, 10]. The earlier works sug-
gested that the average phoneme duration is longer in the case
of children [9, 11]. The speaking rate of children is slower
than that of adults [12]. The mean speaking rates were re-
ported to be 2.03 syllables/sec and 1.79 syllables/sec for the
speech of adults and children, respectively in [13]. The inter-
speaker variabilities is the differences in the geometry of vo-
cal organs. The Vocal-tract length variations lead to the scal-
ing of formant frequencies [8]. A few earlier works studied
formant, explicit pitch and speaking-rate adjustment for im-
proving the children’s ASR [6, 13].

In this paper, a linear prediction (LP) based spectral warp-
ing method is proposed to overcome the difference between
children’s and adults’ speech. To optimize the warping pa-
rameter for the proposed algorithm we applied a non-local
means (NLM) based vowel and non-vowel marking algo-
rithm. Our study shows that the proposed method improved
the performance compared to time-scale modification (TSM)
based RTISILA and SOLAFS algorithm in recognition of
children speech under mismatched condition. We combined
the spectral warping with TSM and found that combined
system gives further reduction in word error rate (WER).

2. PROPOSED METHODS

The proposed method block diagram is given in Figure 1 (a).
The steps involved in the proposed scheme are as follows:
I) First, the vowel and non-vowel regions are identified in
speech signals by using a recently reported method [14] .
II) The LP-based spectral warping is performed based on the
knowledge of vowel and non-vowel regions in speech signal
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Fig. 1. The block diagram representing:- (a) The proposed
spectral warping and speaking rate method based on vowel
and non-vowel. (b) A non-uniform LPC based spectral warp-
ing.

as shown in figure 1 (b). The pole-zero value of the first-order
filter in the equation 4 is selected as the vowel and non-vowel
regions (αV , αNV ).
III) The signal is reconstructed after spectral warping and then
TSM applied to normalize the speaking rate. Finally the mod-
ified speech signal given to ASR.

2.1. Vowel non-vowel detection

In a given speech signal, vowels are the most prominent re-
gions due to their three attributes: larger amplitude, periodic-
ity and longer duration [15, 16, 17]. The prevailing attributes
of the excitation source as well as that of the vocal-tract filter
response are reflected at those instants. In various speech-
based applications, accurate identification of vowels has been
successfully used. Motivated by the importance of vowel non-
vowel segmentation, we explored a recently reported method
for vowel detection for the task of children’s ASR [14]. In
this method, an approximation of the speech signal at each
sample is obtained using non-local means (NLM) estimation.
Then the cumulative sum of the magnitude spectrum is used
as the front-end feature. Next, the feature is smoothed by pro-
cessing through a moving average filter over a 50ms window.
The vowel evidence is obtained from the feature by convolv-
ing it with a first-order Gaussian differentiator (FOGD) hav-
ing a window length of 100ms and standard deviation one-
sixth of the window.

2.2. Spectral warping

The spectral structure of children’s speech is modified by
warping the LP spectrum. The warped LP spectrum (denoted
by Sα(f)) is obtained by modifying the original LP spectrum
(denoted by S(f)) computed from children’s speech using
warping function wα(f), where α is the warping factor:

Sα(f) = S(wα(f)). (1)

An estimate of the present speech sample s(n) is obtained
in the LP analysis as a linear combination of the past P speech
sample values as follows:

ŝ(n) =

P∑
k=1

aks(n− k). (2)

By Z-transforming Eqn. (2), the following equation is ob-
tained

Ŝ(z) =

(
P∑
k=1

akz
−k

)
S(z), (3)

Where Ŝ(z), S(z) and z−1 represents the Z-transforms of
the prediction, speech signal and unit delay filter respectively,
and ak are the LP coefficients. The unit delay filters are re-
placed by an all-pass filter D(z) to warp the LP spectrum. The
frequency scale warping is carried out using a first order filter
[18, 19] given by

D(z) =
z−1 − α

1− αz−1
. (4)

Here α is the warping factor, whose value is in the range
of −1 < α < 1. The warped frequency scale matches the
psychoacoustic frequency scale with a proper selection of α
[20]. By using of the warping function D(z), the spectral res-
onances (formants) of the LP spectrum can be shifted sys-
tematically. The positive values of α, help the spectra to
shift towards adult spectra. The warped LP coefficients (a

′
ks)

can be used with the residual (s(n) - ŝ(n)) to synthesize the
speech signal [6, 21]. Using the knowledge of vowel and non-
vowel regions, the formants corresponding to each frame is
processed through a first-order filter having different zero and
pole values for the vowel and non-vowel regions.

The effectiveness of the spectral warping method is illus-
trated in Figure 2 by showing LP spectra computed from ”EI”
vowel utterance spoken by a child and adult speaker (blue
dot-dashed and red dashed lines) together with the modified
LP spectra of the child’s vowel (magenta solid line) computed
by the proposed method. The four different zero and pole val-
ues used to derive the formant modification are = 0.2, 0.06,
0.1, and 0.14, and the correspondingly modified child spectra
are shown in Figure 2 (a), (b),(c) and (d).

The figures demonstrate that the formants of the child
speaker are higher compared to those of the adult speaker.
Most importantly, the spectra show that the proposed LP-
based warping method has moved the spectra (formant) of the
child speaker to be closer to those of the adult speaker. Hence,
it is expected that the features derived from the speech signals
synthesised using the modified LP spectrum reduce the acous-
tic mismatch between adult and children speech.
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Fig. 2. LP spectra computed from frames of the vowels /EI/ showing variation in spectral frequencies. The red dahsed and
blue dot-dashed curves were computed from speech utterances of an adult and child speaker, respectively. The magenta solid
curves show spectra after applying the spectral warping method for the utterances of the child speaker when (a) αV = 0.02, (b)
αV = 0.06, (c) αV = 0.1 and (d) αV = 0.14.

2.3. Time-scale modification

Speaking rate is a major mismatch factor between the chil-
dren’s and adults’ speech. Because children’s speech has a
lower speaking rate, ASR becomes difficult specifically under
mismatched condition. To resolve this issue we investigated
two types of time-scale modification techniques. The real-
time iterative spectrogram inversion with look-ahead (RTISI-
LA) algorithm [22, 23, 24] constructs a high-quality time-
domain signal from its short-time magnitude spectrum with
varying parameter s from scale 0.65 to 1.85 with step size
0.10. We also investigated synchronized overlap-add fixed
synthesis (SOLAFS) [25] based time scale modification. The
main idea is that with fixed synthesis rate the windows are
overlap-added into the output. In order to maximize the sim-
ilarly between the output and the new window in the overlap
region, the starting positions of the windows xm[n] are ad-
justed during analysis. The speaking rate modified varying
parameter k varied from 0.6 to 1.8 with step size of 0.10.

3. SPEECH CORPUS AND BASELINE SYSTEM

Adult speech data used in this work was obtained from WSJ-
CAM0 [26]. Children’s speech data was obtained from the
PF-STAR corpus [27] to simulate a mismatched ASR task.
Both the WSJCAM0 and PF-STAR corpora are British En-
glish speech databases. The train set of WSJCAM0 has a
total 15.5 hours of speech data with 92 adult (male and fe-
male) speakers. The total duration of children speech data
for testing is 1.1 hours. The age of the child speakers in this
corpus varies between 4-13 years from 60 different speakers.
Development children set consist 2.5 hours of data from 62
different speakers with age range of 6-14 years. The analyses
were performed using wideband speech (sampled at 16 kHz).

A Kaldi toolkit recipe was used to train the system [28].
This utilizes conventional MFCC features using 40 channel
Mel-filterbank with a frame size of 25ms and frame shift of
10ms to train GMM and DNN-based acoustic models [29].
For normalization, cepstral feature-space maximum likeli-
hood linear regression (fMLLR) was used. The fMLLR
transformations for the training and test data were generated
using the speaker adaptive training [30]. LDA-MLLT+SAT
based GMM alignment labels were used to train DNN acous-
tic models. To decode the children speech test set, a domain-
specific bigram language model (LM) was used. This bigram
LM was trained on the transcripts of the speech data of PF-
STAR excluding the test set. The baseline for DNN-based
acoustic models are given in Table 1.

4. RESULT AND DISCUSSION

The performance of the baseline ASR system (i.e., the system
trained with adults’ speech and tested with children’s speech)
is reported in Table 1. From Table 1 it can be noted that the
reported WER values for baseline system are quite poor. This
is due to the acoustic differences between training adult and
testing children data. So to alleviate the formant frequency
differences and to improve the system performance, the pro-
posed spectral warping method is applied. The spectral warp-
ing algorithm has a tunable parameter α that was varied from
0.05 to 0.25 in order to modify spectra to change the formant
frequencies, and the best performance at = 0.1 is reported in
the Table 1.

From Table 1, it can be noted that the proposed method
gives a relative reduction of 30% in the WER compared to
baseline system. In Table 1, we have also compared our pro-
posed method with time scale modification based speaking
rate adaptation (SRA) using RTISILA and SOLAFS algo-



Table 1. Results on proposed method and comparison with
TSM algorithms RTISILA and SOLAFS.

Acoustic WER (in %)

model TSM

Baseline RTISILA SOLAFS SW

DNN 19.76 16.96 15.00 14.37

Table 2. Effect of combining the proposed method with TSM
methods.

Acoustic WER (in %)

model SW SW +RTISILA SW + SOLAFS

DNN 14.37 13.39 10.58

rithm and found that the proposed method outperforms these
two methods. For RTISILA and SOLAFS algorithms the pa-
rameter is optimized using the development set and observed
that the best value is 1.35 and 1.65 respectively.

Further to enhance the system performance we combined
proposed method with TSM algorithms. The combinations
are proposed +RTISILA and proposed + SOLAFS and their
results are reported in Table 2. The combined system gives
improvement as compared to proposed method, it seems com-
binations are giving complimentary information to ASR. The
best combination is proposed + SOLAFS and it gives 49%
relative improvement compared to baseline system.

4.1. Selection of the tunable parameters

To optimize the proposed spectral warping based formant
modification algorithm parameter α, we used vowel and non-
vowel region of speech signal as discussed in Section 2.1. The
WERs of development set of children speech on adult data
trained DNN based ASR system on α for vowel (αV ) and α
for non-vowel (αNV ) is given in Table 3. Best combination
of α is decided by lower WER as highlighted in the table. The
best values for αV is 1.2 and for αNV is 0.8 chosen using the
results given Table 3. The optimized vowel non-vowel based
α parameter was applied to our best combination as given in
Table 4. We found that vowel non-vowel based algorithm to
select the α values gives further improvement in the system
performance.

To further validate the effectiveness of the proposed spec-
tral warping method, another DNN-based ASR system was
trained by pooling speech data from both the adults and chil-
dren train sets. Such an ASR system reduces the degree of
acoustic and linguistic mismatch by utilizing also children
speech in the training. The baseline WER of the pooled sys-
tem is given in Table 5. From Table 5, it can be seen that the
proposed method and the combinations with the other tech-
niques also reduce WER in the pooled system. A relative
reduction of 30% in WER is noted compared to the baseline.

Table 3. WERs on DNN-based ASR for children’s devel-
opment set. The WERs show the effects of varying αV and
αNV .

αNV

αV WER (in %)

0.4 0.6 0.8 1.0 1.2 1.4

0.4 21.24 20.86 20.52 20.13 20.42 20.73
0.6 21.09 20.72 20.27 19.90 19. 76 20.22
0.8 20.66 20.39 19.89 18.73 18.53 18.96
1.0 21.03 20.62 20.14 19.82 19.66 20.19
1.2 21.37 21.15 20.77 20.33 20.18 22.12

Baseline 21.83

Table 4. Results on combined proposed method with
RTISILA and SLOAFS and effect of vowel and non-vowel
based parameter selection.

Acoustic WER (in %)

model without VNV With VNV

SW + SW+ SW SW + SW+

SW RTISILA SOLAFS SW RTISILA SOLAFS

DNN 14.37 13.39 10.58 13.66 13.04 10.08

Table 5. Results on proposed method on pooled adults and
children speech on system training. Effect of vowel and non-
vowel based parameter selection.

Acoustic WER (in %)

model without VNV With VNV

Baseline SW SW + SW+ SW SW + SW+

RTISILA SOLAFS RTISILA SOLAFS

DNN 12.26 11.25 11.14 8.89 10.86 10.57 8.51

5. CONCLUSION

In this paper, we have proposed and studied a spectral warp-
ing method based on vowel and non-vowel region to demon-
strate its effectiveness in the context of children speech recog-
nition using acoustic models trained on adults speech. The
proposed method gives a relative improvement of 31% over
a baseline with DNN acoustic model using MFCC acoustic
features. We have also compared the proposed method with
TSM algorithms RTISILA and SOLAFS and found that the
proposed method performs better. By combining the pro-
posed method with RTISILA and SOLAFS, showed a further
reduction in WER. Proposed + SOLAFS combined system
gives a relative improvement of 49% as compared to baseline
system. A pooled system is also developed by pooling to-
gether speech data from both adult and children speakers and
even in this case the proposed system manages to improve the
performance.
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