Wolf, Tobias; Zilberberg, Oded; Blatter, Gianni; Lado, Jose

Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.126.056803

Published: 04/02/2021

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1103/PhysRevLett.126.056803
Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene

Tobias M. R. Wolf,1,* Oded Zilberberg,1 Gianni Blatter,1 and Jose L. Lado2

1Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
2Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland

(Received 21 August 2020; accepted 7 January 2021; published 4 February 2021)

Van der Waals heterostructures provide a rich platform for emergent physics due to their tunable hybridization of layers, orbitals, and spin. Here, we find that twisted bilayer graphene stacked between antialigned ferromagnetic insulators can feature flat electronic bands due to the interplay between twist, exchange proximity, and spin–orbit coupling. These flat bands are nearly degenerate in valley only and are effectively described by a triangular superlattice model. At half filling, we find that interactions induce spontaneous valley correlations that favor spiral order and derive a low-energy valley-Heisenberg model with symmetric and antisymmetric exchange couplings. We also show how electric interlayer bias broadens the bands and tunes these couplings. Our results put forward magnetic van der Waals heterostructures as a platform to explore valley-correlated states.

DOI: 10.1103/PhysRevLett.126.056803

Twisted graphene multilayers have risen as a versatile platform for engineering correlated states of matter. Their unique flexibility stems from a new tunable length scale, the moiré length, which generates electronic minibands with a controllable ratio between kinetic and interaction energies. As a result, a variety of strongly correlated states appear in these twisted van der Waals materials, such as intrinsic superconductivity [1–4], strange metal behavior [5], and correlated insulators [6]. Furthermore, this platform can realize correlated states that are rarely found in nature, such as ferromagnetic superconductivity [7] and interaction-driven quantum anomalous Hall effect [8].

Thus far, investigations into correlated states of twisted graphene multilayers mostly focus on spontaneous symmetry-breaking of the spin (±1/2) degree of freedom, i.e., of the symmetry group SU(2), [9]. Interestingly, low-energy charge carriers in graphene also have two valleys (K, K′) as orbital quantum number with U(1), symmetry or approximately SU(2) ≈ [10–13]. This offers additional possibilities for symmetry breaking due to interactions, e.g., spontaneous valley-polarized [8] or valley-coherent [14,15] states, which can become relevant in the context of superconductivity [16,17]. Here, we show that proximity-induced spin–orbit coupling can lock spin and valley in a way that promotes spontaneous symmetry breaking in the valley sector with spatial valley textures.

Spin–orbit coupling (SOC) in graphene engenders topological phenomena such as the quantum spin Hall effect [18] and the quantum anomalous Hall effect [19,20]. The negligible intrinsic SOC in graphene [21] can be strongly enhanced extrinsically [22–27], e.g., through proximity to other van der Waals materials. For example, transition metal dichalcogenides (TMDs) have been shown to induce Rashba SOC as large as 15 meV and spin–valley SOC of the order of 1.5 meV on a neighboring graphene layer [26]. Ferromagnetic insulators, such as CrI3, have been predicted to induce similar SOC enhancement, in addition to sizable magnetic exchange fields [19,28]. In twisted graphene bilayers, the energy scale of the spin–orbit coupling should be compared with a typical correlation gap that lies between 0.3 [6] and 8 meV [29]. Even though the Rashba SOC can compete with these correlated gaps, this interplay has thus far not received much attention in twisted van der Waals materials.

In this Letter, we focus on the valley degree of freedom, described as a two spinor and demonstrate correlations in the valley spinor of twisted bilayer graphene encapsulated within ferromagnetic insulators (FIs) with layer-antiferromagnetic alignment, see Fig. 1(a). We show that the combination of twist alongside proximity-induced magnetic exchange and Rashba spin–orbit coupling hybridizes the spins and leads to valley-degenerate flatbands. It is this valley degeneracy without spin degeneracy that provides a unique playground for symmetry-broken states solely in the valley sector. For the latter, we propose a phenomenological lattice model that captures the low-energy flatband valley physics. At half filling of the flatbands, we find that screened interactions favor valley-spiral order and derive an anisotropic valley-Heisenberg model with exchange couplings that are controllable through electric interlayer bias. We discuss potential experimental scenarios to detect this effect. Notably, the mechanism by which we induce nearly valley-degenerate flatbands through magnetic proximity readily extends to other twisted graphene multilayers with flatbands.

We consider twisted bilayer graphene encapsulated between ferromagnetic insulators, see Fig. 1(a). We describe the electronic properties of the system using an
The Hamiltonian is
\[H = H_0 + H_J + H_R, \]

\[\epsilon_m \]
to which the FI effectively contributes through virtual tunneling [20,30–35]. The Hamiltonian \(H_0 \) describes the bare twisted bilayer, \(H_J \) includes proximity-induced exchange fields, and \(H_R \) contains proximity-induced Rashba spin–orbit couplings [36–38], which strongly break inversion symmetry in each graphene layer. The bare bilayer Hamiltonian is
\[H_0 = \sum_{i,j,s} V_i c_{i,s}^\dagger c_{j,s} + \sum_{i,j,s} t_{i,j} c_{i,s}^\dagger c_{j,s} - \sum_{i,s} V_i c_{i,s}^\dagger c_{i,s}, \]

where \(c_{i,s}^\dagger \) destroys (creates) an electron with spin \(s \in \{ \pm 1/2 \} \) at position \(r_i = (x_i, y_i, z_i) \) in one of the layers located at \(z_i = \pm d/2 \). We consider nearest-neighbor hopping with amplitude \(t \approx -2.7 \) eV [39]. The interlayer hopping from site \(r_i \) to \(r_j \) is parametrized as \(t_{i,j} = t_{\perp} \,(z_i - z_j)^2/(r_i - r_j)^2 e^{-|r_i - r_j|/\ell} / \epsilon_i \), with \(t_{\perp} \approx 0.12t \) that describes the hybridization over the interlayer distance \(d \approx 2.35a_0 \), with \(a_0 \) the intralayer bond length and \(\ell \approx 0.3a_0 \) controlling the hopping range [40–42]. The potentials \(V_i = \mu + \text{sgn}(z_i) V \) describe the overall chemical potential \(\mu \) and electric interlayer bias \(V \).

We first discuss the system in the absence of interlayer bias, \(V = 0 \). Each isolated graphene layer \(l \in \{ 1, 2 \} \) features Dirac-like band touchings at valleys \(K, K' \) [39], which we label with the eigenvalues \(\nu \in \{ \pm 1/2 \} \) of the valley operator \(\nu \) [43–46]. The decoupled bilayer has eightfold degenerate bands characterized by valley \(\nu \), spin \(s \), and layer \(l \); the latter gets hybridized by interlayer coupling. A finite twist angle \(\alpha \) between the layers leads to a moiré structure with a characteristic length \(\ell_m \) and regions labeled AA and AB/BA in accord with the vertical alignment of the A and B sites between layers, see Fig. 1(b).

The resulting superlattice implies that the spectrum of \(H_0 \) consists of many minibands, resulting from backfolding the dispersion of each graphene layer and subsequent interlayer hybridization [47], see Fig. 1(c). For a large moiré length \(\ell_m \) and low energies, interlayer valleys scattering is negligible such that each miniband at Bloch momentum \(k \) (in valley \(K \)) is spin degenerate and has a valley partner at \(-k\) (in valley \(K' \)). Hence, each eigenvalue is fourfold degenerate [48–52] or higher along high-symmetry lines in the mini-BZ (BA). These low-energy minibands are typically dispersive, except for fine-tuned angles [46,49,51,53–56] or in the limit of tiny twist angles [44,52].

The encapsulation of TBG between ferromagnetic insulators with layer-antiferromagnetic alignment [cf. Fig. 1(a)] profoundly alters the low-energy spectrum. The FIs induce exchange fields with moments \(m_i = \text{sgn}(z_i)m_0 \) at each site \(r_i \) and generate Rashba spin–orbit couplings \(\lambda_{R,i} = \text{sgn}(z_i)\lambda_R \) in each graphene layer [57], see Supplemental Material [58] for a discussion of other SOCs. They are described by
\[H_J = \sum_{i,s,s'} \langle m_i \cdot \sigma \rangle_{s,s'} c_{i,s}^\dagger c_{i,s'}, \quad H_R = i \sum_{i,j,s,s'} \lambda_{R,i} \lambda_{R,j} \langle \sigma \times d_{ij} \rangle_{s,s'} c_{i,s}^\dagger c_{j,s'}, \]

respectively, where \(d_{ij} \) is the bond vector connecting intralayer sites \(i, j \) and the components of \(\sigma = (\sigma^\alpha, \sigma^\beta, \sigma^\gamma) \) are Pauli matrices for spin. Given the layer-antiferromagnetic alignment of our FIs, the exchange fields \(m_0 \) act as a (spin-dependent) magnetic interlayer bias [59]. Interestingly, while the exchange field breaks time-reversal symmetry, the eigenstates are degenerate between spin-\(\uparrow \) and spin-\(\downarrow \) bands of one valley (say \(K \)) and spin-\(-\uparrow \) and spin-\(-\downarrow \) of the other (say \(K' \)), see Fig. 1(d), which follows from symmetry under a layer-exchanging, twofold rotation and time reversal. The Rashba coupling \(\lambda_R \), however, mixes the two spin channels, introduces a sizable hybridization gap around charge neutrality and flattens the otherwise dispersive bands, see Fig. 1(e).

As a result, the FI-encapsulated twisted bilayer features a van Hove singularity adjacent to the energy gap at charge neutrality. This singularity is most pronounced for a fine-tuned angle \(\alpha/t_{\perp} \) between twist angle and the interlayer coupling, here corresponding to physical parameters \(\alpha \approx 2\pi, \, t_{\perp} = 0.12t \), when \(m = t_{\perp}/3, \, \lambda_R = t_{\perp}/3 \) [58]. The corresponding bands then become maximally flat, see Fig. 1(e), and their wave functions are concentrated within the AA region of the moiré unit cell, see Fig. 2(a).

Importantly, these bands are only degenerate in the valley–degree of freedom, whereas spin is fully hybridized—in contrast to other graphene multilayer systems, where spin degeneracies persist [50].
The presence of flatbands naturally raises the question of how interactions affect the corresponding electronic states near half filling. In our bilayer, this corresponds to doping with one electron or hole per moiré unit cell. When the screened Coulomb interactions between the atoms in the twisted bilayer are shorter ranged than the moiré length ℓ_m [58,60–63], the effective interaction between the moiré orbitals in (2) becomes

$$\mathcal{H}_U = \frac{U}{2} \sum_{I,\nu} n_{I,\nu} n_{I,-\nu},$$

where $n_{I,\nu} = d_{I,\nu}^\dagger d_{I,\nu}$ is the number operator for valley ν of moiré orbital I and $U \approx 0.15t_1$ [60] is the Hubbard interaction strength. Our effective model $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_U$ differs from the conventional Fermi-Hubbard model [64] in two respects: First, we have valley as pseudospin and, second, our hopping amplitudes are complex. In what follows, we consider half filling, such that the expected occupation number is $\langle n_I \rangle = 1$, and calculate the valley order of the ground state, which we characterize by the expectation value of the valley operator $v_I = \psi_I^\dagger \psi_I/2$ in each moiré cell I. We can interpret $\langle v_I^\gamma \rangle$ as the local valley imbalance and $\langle v_I^{\gamma \gamma} \rangle$ as local valley coherence. We will see that, similar to other spin-1/2 triangular lattice models [65–68], our model \mathcal{H}, cf. Eqs. (2) and (3), is prone to valley-spiral states [see Fig. 2(d)] and that valley–orbit coupling can promote anisotropic exchange [66].

We determine the ground state using a self-consistent mean-field approximation, i.e., $\mathcal{H}_U \approx \sum_I \psi_I^\dagger U(\rho^I) \psi_I - E_0(\rho^I)$, with the density matrix $\rho^I = (n_I)/2 + \langle v_I \rangle \cdot \tau$ and the mean-field interaction $U(\rho^I)$ and shift $E_0(\rho^I)$ [58]. Performing self-consistent relaxation of different initial states, we find that interactions and geometrical frustration in the triangular lattice favor a valley-spiral state on the length scale of the moiré structure, see Fig. 2(d). We find that (i) the length scale of the spiral varies slightly with the ratio γ_2/γ_1, and (ii) the spiral favors planar configurations with $\langle v_I^\gamma \rangle = 0$. Hence, the valleys seek a state with equal occupation $\langle n_{I,K} \rangle$, and mix coherently, $\langle v_I^{\gamma \gamma} \rangle \neq 0$. Interestingly, in the limit $\phi_2 \to 0$, stabilization of the in-plane spiral state is lost such that states with finite components $\langle v_I^\gamma \rangle > 0$ become degenerate with in-plane configurations; this suggests that the phases ϕ_1 and ϕ_2 in \mathcal{H}_0 [see Eq. (2) and Fig. 2(b)] play a crucial role in defining the valley order.

To better understand our mean-field results, we expand the Hamiltonian \mathcal{H} at half filling in the strong-interaction limit $U \gg \gamma_1, \gamma_2$ using a Schrieffer-Wolff transformation [58,69], resulting in a valley-Heisenberg model with anisotropic and (anti)symmetric exchange, i.e.,

$$\mathcal{H}_\nu = \sum_{I,J} J_{I,J} v_I \cdot v_J + \Delta_{I,J} v_J^\gamma v_I^\gamma + \nu_{I,J} D_{I,J}(v_I \times v_J).$$

These flatbands can be derived from a simple effective model describing hopping between Wannier moiré orbitals arranged in a triangular superlattice, see Fig. 2(b), i.e.,

$$\mathcal{H}_0 = \sum_{I,J} \gamma_1 \psi_I^\dagger e^{i\gamma \cdot \mathbf{r}_{I,J}} \psi_J + \sum_{I,J} \gamma_2 \psi_I^\dagger e^{i\gamma \cdot \mathbf{r}_{I,J}} \psi_J,$$

with Pauli matrices $\tau^{x,y,z}$ for valley, valley spinors $\psi_I^{(1)} = (d_{I,1/2}^{(1)}, d_{I,-1/2}^{(1)})$, and destruction (creation) operators $d_{I,\nu}^{(\dagger)}$ for electrons in moiré unit cells I, with valley index $\nu \in \{\pm 1/2\}$ taking the role of a pseudospin. The form of the hopping amplitudes follows from symmetry arguments [58], and we include first- and second-neighbor amplitudes $\gamma_{1,2} > 0$ with phases $\phi_{1,2}$ and signs $\nu_{I,J} = -\nu_{J,I} \in \{\pm 1\}$ that ensure symmetry under rotation by $2\pi/3$, see Fig. 2(b).

Similar complex-valued hopping amplitudes appear in the Kane-Mele model [18] due to spin–orbit coupling, such that we refer to $\phi_{1,2}$ as “valley–orbit phases” in our model by analogy. In the absence of interlayer bias, symmetry enforces real first-neighbor hopping ($\phi_1 = 0$) [58], whereas ϕ_2 is finite in general. The hopping parameters can then be chosen to qualitatively reproduce the flatband, see Fig. 2(c).

We will see how interlayer bias affects this low-energy model later.
Here, J_{ij}, Δ_{ij}, and D_{ij} denote the isotropic, anisotropic, and antisymmetric exchange couplings, respectively. These couplings are finite for first- and second-neighbor exchange only (indexed by $n = 1, 2$) and take the form

$$J_n = \frac{J'_n (\cos^2 \phi_n - \sin^2 \phi_n)}{2}, \quad \Delta_n = 2J'_n \sin \phi_n, \quad D_n = \frac{J'_n \sin(2\phi_n)}{2},$$

with $J'_n = 2\gamma_n^2/U$. In the absence of an interlayer bias ($V = 0$), we have $\phi_1 = 0$ such that the first-neighbor terms in \mathcal{H}_v are isotropic. Generally, the isotropic exchange couplings J_n can turn valley magnetic [70] ($\Delta_n < 0$) as ϕ_1 increases; however, for the regimes we consider here, we restrict ourselves to anti-valley-magnetic couplings ($J_n > 0$ for $n = 1, 2$), which favors valley spirals due to geometric frustration in the triangular lattice. The finite phase ϕ_2 in the second-neighbor coupling stabilizes in-plane valley configurations by inducing anisotropy $\Delta_2 > 0$ and favors second-neighbor valley misalignment (canting) due to the antisymmetric coupling $D_2 > 0$. Note that the alternating nature of the signs $\nu_{ij} \in \{\pm 1\}$ in our triangular lattice favors valley spirals as well, rather than chiral structures such as skyrmions [71]. Consequently, there are two distinct mechanisms driving valley spirals, such that the length scale of the valley spiral depends on the competition between anti-valley-magnetic geometric frustration (J_n, $n = 1, 2$) and the antisymmetric couplings (D_n, $n = 1, 2$). In the following, we investigate how the addition of a finite electric interlayer bias modifies the results discussed thus far.

Including a finite interlayer bias $V > 0$ in Eq. (1) induces effective valley-dependent fluxes $\nu\Phi(r, E)$ in real space that remove the valley degeneracy, see Fig. 3(b); within the low-energy model \mathcal{H}_0 (2), they modify the valley–orbit phases ϕ_1 and ϕ_2. This is formalized by defining the valley flux of low-energy states [46,72,73] near the energy E and at position r_i as

$$\Phi(r_i, E) = \int _{\text{BZ}} \frac{d^2 k}{(2\pi)^2} \frac{e_{\alpha \beta}}{2} \langle r_i | G(\partial_{\alpha} G^{-1})(\partial_{\beta} G) | r_i \rangle .$$

where $G = [E - H(k) + i0^+]^{-1}P$ is the valley Green’s function with valley-polarization operator $P = 2v^z$, and $e_{\alpha \beta}$ provides the Levi-Civita symbol. For our flatbands, we find that the interlayer bias induces a staggered valley flux, see Fig. 3(a). This flux enters the low-energy model \mathcal{H}_0 (2), through a Peierls substitution, i.e., $\gamma_n \rightarrow \gamma_n(V) e^{i\nu \phi_n(V)}$ for $n = 1, 2$, cf. Fig. 2(b). It contributes dominantly to ϕ_1 and provides a correction to ϕ_2 accounting for the tilt in the pattern. The bands of the effective model $\mathcal{H}_0(V)$ obtained in this way agree with the bands of the tight-binding Hamiltonian (1), see Fig. 3(b).

Consequently, the interlayer bias controls the effective valley-exchange couplings in model \mathcal{H}_v (4) through the induced valley–orbit couplings $\phi_1(V)$ and $\phi_2(V)$. In Figs. 3(c)–3(e), we see that the couplings J_1, Δ_2, and D_2 do not change significantly with increasing bias V, while the coupling J_2 decreases substantially and Δ_1 and D_1 both turn finite and increase appreciably. Thus, we find that the interlayer bias (i) increases the easy-plane exchange anisotropy (increasing Δ_n), (ii) decreases the overall tendency for anti-valley-magnetic order and geometric frustration (decreasing J_n), and (iii) increases canting (through D_n). Interestingly, this means that the interlayer bias switches between the two mechanisms responsible for valley spirals discussed above. Note that there is also a competition of canting between first- and second-neighbor orbital pairs that influences the length scale of the valley spiral, where in numerical mean-field calculations, we predominantly observed 120° nearest-neighbor or second-neighbor spiral structures (not shown here).

In contrast to spin, valley is an orbital degree of freedom, and thus provides an extra challenge when it comes to interpretation and experimental verification [52,74–83]. We propose to make use of the VHE, where band electrons from different valleys flow in opposite directions, leading to transverse charge-neutral valley currents [74,75,84]. These currents can be detected as they induce voltages in other regions of the material through the inverse VHE.
see Fig. 4(a). Such a four-terminal setup can detect valley-correlated states through their impact on valley Hall measurements, e.g., when embedding our system into a suitable device geometry, see Fig. 4(b). For example, a valley magnet \((\langle v_i \rangle \neq 0)\) acts as a valley filter and can be used to suppress the valley Hall signal for one valley but not the other. In our case, we expect the planar valley spiral \((\langle v_i \rangle = 0)\) to act as a “coherent valley mixer” \([85–87]\). This would strongly suppress the valley Hall signal when the chemical potential is swept to approach half filling of the flatband. Going beyond this work, opening up a pathway to explore valley-correlated states through their impact on valley Hall measurements, e.g., when embedding our system into a suitable device geometry, see Fig. 4(a). Such a four-terminal setup can detect valley-correlated states through their impact on valley Hall measurements, e.g., when embedding our system into a suitable device geometry, see Fig. 4(b). For example, a valley magnet \((\langle v_i \rangle \neq 0)\) acts as a valley filter and can be used to suppress the valley Hall signal for one valley but not the other. In our case, we expect the planar valley spiral \((\langle v_i \rangle = 0)\) to act as a “coherent valley mixer” \([85–87]\). This would strongly suppress the valley Hall signal when the chemical potential is swept to approach half filling of the flatband, thus providing an experimental signature for spontaneous valley mixing. Distinguishing noncollinear from collinear valley-coherent states is more involved, but could be achieved by studying valley decoherence, which is enhanced for noncollinear states.

To conclude, we put forward a minimal graphene-based heterostructure displaying spontaneous valley mixing, opening up a pathway to explore valley-correlated states in twisted graphene multilayers. Going beyond this work, we observe that our FI-encapsulated TBG and twisted double-bilayer graphene (TDBG) have analogous electronic band structures, except that spin in the former replaces the additional graphene layers in the latter. This remarkable similarity suggests that our system is a candidate for valley-analogous realizations of recent proposals and observations \([88–90]\) for TDBG, including correlated insulators \([7,91]\), magnetic superconductors \([89]\), fractional quantum Hall states \([92–95]\), and valley liquids \([13,96–98]\).

We acknowledge funding from the Swiss National Science Foundation (SNSF) through division II, the careers committee, and through NCCR QSIT. J. L. L. acknowledges the computational resources provided by the Aalto Science-IT project and funding from the Academy of Finland.

*Corresponding author.
wolff@phys.ethz.ch

[70] We introduce the nomenclature (anti)valley magnetic for the valley sector in distinction to (anti)ferromagnetism in the spin sector.

