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Likelihood-Free Inference by Ratio Estimation

Owen Thomas∗, Ritabrata Dutta†, Jukka Corander‡,
Samuel Kaski§, and Michael U. Gutmann¶,‖

Abstract. We consider the problem of parametric statistical inference when like-
lihood computations are prohibitively expensive but sampling from the model is
possible. Several so-called likelihood-free methods have been developed to perform
inference in the absence of a likelihood function. The popular synthetic likelihood
approach infers the parameters by modelling summary statistics of the data by
a Gaussian probability distribution. In another popular approach called approxi-
mate Bayesian computation, the inference is performed by identifying parameter
values for which the summary statistics of the simulated data are close to those
of the observed data. Synthetic likelihood is easier to use as no measure of “close-
ness” is required but the Gaussianity assumption is often limiting. Moreover, both
approaches require judiciously chosen summary statistics. We here present an al-
ternative inference approach that is as easy to use as synthetic likelihood but not
as restricted in its assumptions, and that, in a natural way, enables automatic se-
lection of relevant summary statistic from a large set of candidates. The basic idea
is to frame the problem of estimating the posterior as a problem of estimating the
ratio between the data generating distribution and the marginal distribution. This
problem can be solved by logistic regression, and including regularising penalty
terms enables automatic selection of the summary statistics relevant to the infer-
ence task. We illustrate the general theory on canonical examples and employ it
to perform inference for challenging stochastic nonlinear dynamical systems and
high-dimensional summary statistics.

Keywords: approximate Bayesian computation, density-ratio estimation,
likelihood-free inference, logistic regression, probabilistic classification, stochastic
dynamical systems, summary statistics selection, synthetic likelihood.

1 Introduction

We consider the problem of estimating the posterior probability density function (pdf)
of some model parameters θ ∈ R

d given observed data x0 ∈ X when computation of the
likelihood function is too costly but data can be sampled from the model. In particular,
we assume that the model specifies the data generating pdf p(x|θ) not explicitly, e.g.
in closed form, but only implicitly in terms of a stochastic simulator that generates
samples x from the model p(x|θ) for any value of the parameter θ. The simulator
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2 LFIRE

can be arbitrarily complex so that we do not impose any particular conditions on the
data space X . Such simulator-based (generative) models are used in a wide range of
scientific disciplines to simulate different aspects of nature on the computer, for example
in genetics (Pritchard et al., 1999; Arnold et al., 2018), ecology (Wood, 2010; Sirén et al.,
2018), or epidemiology of infectious diseases (Tanaka et al., 2006; Corander et al., 2017).

Denoting the prior pdf of the parameters by p(θ), the posterior pdf p(θ|x0) can be
obtained from Bayes’ formula,

p(θ|x) = p(θ)p(x|θ)
p(x)

, p(x) =

∫
p(θ)p(x|θ) dθ, (1)

for x = x0. Exact computation of the posterior pdf is, however, impossible if the like-
lihood function L(θ) ∝ p(x0|θ) is too costly to compute. Several approximate infer-
ence methods have appeared for simulator-based models. They are collectively known
as likelihood-free inference methods, and include approximate Bayesian computation
(Tavaré et al., 1997; Pritchard et al., 1999; Beaumont et al., 2002) and the synthetic
likelihood approach (Wood, 2010). For a comprehensive introduction to the field, we
refer the reader to the review papers by Beaumont (2010); Hartig et al. (2011); Marin
et al. (2012); Lintusaari et al. (2017); Sisson et al. (2018).

Approximate Bayesian computation (ABC) relies on finding parameter values for
which the simulator produces data that are similar to the observed data. Similarity is
typically assessed by reducing the simulated and observed data to summary statistics
and comparing their distance. While the summary statistics are classically determined
by expert knowledge about the problem at hand, there have been recent pursuits in
choosing them in an automated manner (Aeschbacher et al., 2012; Fearnhead and Pran-
gle, 2012; Blum et al., 2013; Gutmann et al., 2014, 2018). While ABC can be considered
to implicitly construct a nonparametric approximation of p(x|θ) (e.g. Hartig et al., 2011;
Lintusaari et al., 2017), a wide range of parametric surrogate models are being used to
accelerate the inference or improve its accuracy. The models employed include regression
models and neural networks, Gaussian processes as well as normalising flows (Beaumont
et al., 2002; Blum, 2010; Wilkinson, 2014; Gutmann and Corander, 2016; Papamakarios
and Murray, 2016; Papamakarios et al., 2017, 2019; Chen and Gutmann, 2019). Syn-
thetic likelihood, on the other hand, assumes that the summary statistics for a given
parameter value follow a Gaussian distribution (Wood, 2010). The synthetic likelihood
approach is applicable to a diverse set of problems (Meeds and Welling, 2014; Price
et al., 2017), but the Gaussianity assumption may not always hold and the original
method does not include a mechanism for choosing summary statistics automatically.

In this paper, we propose (1) a framework, “LFIRE”, and (2) a practical method,
“linear LFIRE”, to directly approximate the posterior distribution in the absence of
a tractable likelihood function.1 As we will see, the proposed approach includes the

1The ideas in this paper were first communicated on arXiv in 2016 (Thomas et al., 2016). The
reader may wonder about the several years difference between the arXiv paper and this paper. This is
largely due to three review periods that took 8, 9, and 7 months, respectively, and the introduction of
a new first author. The core content has stayed the same. We thus would like to ask you to please also
acknowledge (Thomas et al., 2016) when citing this paper.
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synthetic likelihood as a special case and further enables automatic selection of summary
statistics in a natural way.

The basic idea is to frame the original problem of estimating the posterior as a
problem of estimating the ratio r(x, θ) between the data generating pdf p(x|θ) and the
marginal distribution p(x), in the context of a Bayesian belief update

r(x, θ) =
p(x|θ)
p(x)

. (2)

By definition of the posterior distribution, an estimate r̂(x, θ) for the ratio implies an
estimate p̂(θ|x0) for the posterior,

p̂(θ|x0) = p(θ)r̂(x0, θ). (3)

In addition, the estimated ratio also yields an estimate L̂(θ) of the likelihood function,

L̂(θ) ∝ r̂(x0, θ), (4)

as the denominator p(x) in the ratio does not depend on θ. We can thus perform
likelihood-free inference by ratio estimation, and we call this framework in short
“LFIRE”.

In the LFIRE framework, other distributions than the marginal p(x) can also be
used in the denominator, in particular if approximating the likelihood function or iden-
tifying its maximiser is the goal. While we do not further address the question of what
distributions can be chosen for estimation of the posterior, initially it seems reasonable
to prefer distributions that have heavier tails than p(x|θ) in the numerator because of
stability reasons.

Closely related work was done by Pham et al. (2014) and Cranmer et al. (2015)
who estimated likelihood ratios. Pham et al. (2014) estimated the ratio between the
likelihoods of two parameters appearing in the acceptance probability of the Metropolis-
Hastings MCMC sampling scheme. If we used the approximate posterior distribution in
(3) to estimate the acceptance probability, we would also end up with a density ratio
that can be used for MCMC sampling. A key difference is that our approach results in
estimates of the posterior and not in a single accepted, or rejected, parameter value.
Cranmer et al. (2015) estimated the ratio between the likelihood at a freely varying
parameter value and a fixed reference value in the context of frequentist inference. The
goals are thus somewhat different, which, as we will see, account well for the differences
in the results in our empirical comparison in Section 5.3.

Since we have first communicated the LFIRE framework as an arXiv paper (Thomas
et al., 2016), there have been a number of developments within this framework. For
instance, Dinev and Gutmann (2018) tailored the approach to the special case of time-
series models, Rogers-Smith et al. (2018) adapted the framework to a sequential popu-
lation Monte Carlo scheme with adaptive proposals, and Hermans et al. (2020) perform
(sequential) LFIRE for amortised likelihood-free MCMC sampling. Durkan et al. (2020)
discuss how inference methods in the LFIRE framework relate to conditional density
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estimation methods, in particular drawing connections between the work by Hermans
et al. (2020) and Greenberg et al. (2019).

There are several methods in the literature available for the estimation of density
ratios (e.g. Gutmann and Hirayama, 2011; Sugiyama et al., 2012; Izbicki et al., 2014),
of which estimation through logistic regression is widely used and has some favourable
asymptotic properties (Geyer, 1994; Qin, 1998; Cheng and Chu, 2004; Bickel et al.,
2007). Logistic regression is very closely related to probabilistic classification and we
use it in the paper to estimate the ratio r(x, θ).

Logistic regression and probabilistic classification have been employed before to ad-
dress other computational problems in statistics. Gutmann and Hyvärinen (2012) used
this kind of “contrastive learning” to estimate unnormalised models and Goodfellow
et al. (2014) employed it for training neural networks to generate samples similar to
given reference data. More general methods for ratio estimation are also used for train-
ing such neural networks (see e.g. the review by Mohamed and Lakshminarayanan,
2016), and they were used before to estimate unnormalised models (Pihlaja et al., 2010;
Gutmann and Hirayama, 2011). Classification has been shown to yield a natural dis-
tance function in terms of the classifiability between simulated and observed data, which
can be used for ABC (Gutmann et al., 2014, 2018). While this earlier approach is very
general, the classification problem is difficult to set up when the observed data consist
of very few data points only. The related work by Pham et al. (2014) and Cranmer et al.
(2015) and the method proposed in this paper do not have this shortcoming.

The rest of the paper is organised as follows: Section 2 presents the details on how
to generally estimate the ratio r(x, θ) and hence the posterior by logistic regression. In
Section 3, we model the ratio as a linear superposition of summary statistics, yielding the
“linear LFIRE” method, and show that this assumption corresponds to an exponential
family approximation of the intractable model pdf. As Gaussian distributions are part
of the exponential family, our approach thus includes the synthetic likelihood approach
as a special case. We then show in Section 4 that including a penalty term in the logistic
regression enables automatic selection of relevant summary statistics. In Section 5, we
validate the resulting method on canonical examples, and in Sections 6 and 7, we apply it
to challenging inference problems in ecology, weather forecasting, and cell proliferation
modelling. All simulation studies include a comparison with the synthetic likelihood
approach, with their relative computational costs analysed in Section 8. We find that
the new method yielded consistently more accurate inference results than synthetic
likelihood.

2 Posterior estimation by logistic regression

We here show that the ratio r(x, θ) in (2) can be estimated by logistic regression, which
yields estimates for the posterior and the likelihood function together with (3) and (4).
Figure 1 provides an overview.

As we assumed working with a simulator-based model, we can generate data from
the pdf p(x|θ) in the numerator of the ratio r(x, θ); let Xθ = {xθ

i }nθ
i=1 be such a set
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Figure 1: A schematic view of likelihood-free inference by ratio estimation (LFIRE) by
means of logistic regression, as explained in (5) to (11).

with nθ independent samples generated with a fixed value of θ. Additionally we can
also generate data from the marginal pdf p(x) in the denominator of the ratio; let
Xm = {xm

i }nm
i=1 be such a set with nm independent samples. As the marginal p(x) is

obtained by integrating out θ, see (1), the samples can be obtained by first sampling
from the joint distribution of (x, θ) and then ignoring the sampled parameters,

θi ∼ p(θ), xm
i ∼ p(x|θi). (5)

We now formulate a classification problem where we aim to determine whether some
data x were sampled from p(x|θ) or from p(x). This classification problem can be solved
via (nonlinear) logistic regression (e.g. Hastie et al., 2001), where the probability for x
to belong to Xθ, for instance, is parametrised by some nonlinear function h(x),

P(x ∈ Xθ;h) =
1

1 + ν exp(−h(x))
, (6)

with ν = nm/nθ compensating for unequal class sizes. A larger value of h at x indicates
a larger probability for x to originate from Xθ. A suitable function h is typically found
by minimising the loss function J on the training data Xθ and Xm,

J (h, θ) =
1

nθ + nm

{
nθ∑
i=1

log
[
1 + ν exp(−h(xθ

i ))
]
+

nm∑
i=1

log

[
1 +

1

ν
exp(h(xm

i ))

]}
. (7)

The dependency of the loss function on θ is due to the dependency of the training data
Xθ on θ.
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We prove in Supplementary Material A (Thomas et al., 2020) that for large nm and
nθ, the minimising function h∗ is given by the log-ratio between p(x|θ) and p(x), that
is

h∗(x, θ) = log r(x, θ). (8)

The proof shows that this holds for all θ for which we provide data in the classification.
This means that we can average the loss function with respect to some distribution f(θ)
defined on a domain where we would like to evaluate the ratio, which corresponds to
performing the classification in the joint x, θ space. Choosing for f(θ) the prior p(θ), we
would classify between data from p(x|θ)p(θ) and p(x)p(θ), as recently done by Hermans
et al. (2020), which enables amortisation of the computations with respect to θ.

For finite sample sizes nm and nθ, the minimising function ĥ,

ĥ = argmin
h

J (h, θ), (9)

thus provides an estimate r̂(x, θ) of the ratio r(x, θ),

r̂(x, θ) = exp(ĥ(x, θ)), (10)

and (3) and (4) yield the corresponding estimates for the posterior and likelihood func-
tion, respectively,

p̂(θ|x0) = p(θ) exp(ĥ(x0, θ)), L̂(θ) ∝ exp(ĥ(x0, θ)). (11)

In case samples from the posterior are needed, we can use standard sampling schemes
with p̂(θ|x0) as the target pdf (Andrieu and Roberts, 2009), for instance MCMC (Her-
mans et al., 2020). The estimates can also be used together with Bayesian optimisation
(Gutmann and Corander, 2016) or history matching (Wilkinson, 2014) to accelerate the
inference. When estimating the posterior or likelihood function as outlined above, the
sample sizes nm and nθ are entirely under our control. Their values reflect the trade-off
between computational and statistical efficiency. We note that both Xθ and Xm can be
constructed in a perfectly parallel manner. Moreover, while Xθ needs to be constructed
for each value of θ, Xm is independent of θ and needs to be generated only once.

Different models can be used for probabilistic classification; equivalently, different
assumptions can be made on the family of functions to which the log-ratio h belongs.
While non-parametric families or deep architectures can be used (Dinev and Gutmann,
2018), we next consider a simple parametric family that is spanned by a set of summary
statistics, yielding a particular inference method of the more general LFIRE framework.

3 Exponential family approximation

We here restrict the search in (9) to functions h that are members of the family spanned
by b summary statistics ψi(x), each mapping data x ∈ X to R,

h(x) =
b∑

i=1

βiψi(x) = β�ψ(x), (12)
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with βi ∈ R, β = (β1, . . . , βb), and ψ(x) = (ψ1(x), . . . , ψb(x)). This corresponds to
performing logistic regression with a linear basis expansion (Hastie et al., 2001). The
observed data x0 may be used in the definition of the summary statistics, as for example
with the Ricker model in Section 6, and thus influence the logistic regression part of the
likelihood-free inference pipeline in Figure 1 (not shown in the figure). Given the linear
nature of the model in (12), we may call this instance of the LFIRE inference principle
“linear LFIRE”.

When we assume that h(x) takes the functional form in (12), estimation of the ratio
r(x, θ) boils down to the estimation of the coefficients βi. This is done by minimising
J(β, θ) = J (β�ψ, θ) with respect to β,

β̂(θ) = argmin
β∈Rb

J(β, θ), (13)

J(β, θ) =
1

nθ + nm

{
nθ∑
i=1

log
[
1 + ν exp(−β�ψθ

i )
]
+

nm∑
i=1

log

[
1 +

1

ν
exp(β�ψm

i )

]}
.

(14)

The terms ψθ
i = ψ(xθ

i ) and ψm
i = ψ(xm

i ) denote the summary statistics of the simulated

data sets xθ
i ∈ Xθ and xm

i ∈ Xm, respectively. The estimated coefficients β̂ depend on
θ because the training data xθ

i ∈ Xθ depend on θ. With the model assumption in (12),
the estimate for the ratio in (10) thus becomes

r̂(x, θ) = exp(β̂(θ)�ψ(x)) (15)

and the estimates for the posterior and likelihood function in (11) are

p̂(θ|x0) = p(θ) exp(β̂(θ)�ψ(x0)), L̂(θ) ∝ exp(β̂(θ)�ψ(x0)), (16)

respectively.

As r(x, θ) is the ratio between p(x|θ) and p(x), we can consider the estimate r̂(x, θ)
in (15) to provide an implicit estimate p̂(x|θ) of the intractable model pdf p(x|θ),

p(x|θ) ≈ p̂(x|θ), p̂(x|θ) = p̂(x) exp(β̂(θ)�ψ(x)). (17)

The estimate is implicit because we have not explicitly estimated the marginal pdf p(x).
Importantly, the equation shows that p̂(x|θ) belongs to the exponential family with ψ(x)

being the sufficient statistics for the family, and β̂(θ) the vector of natural parameters.

In previous work, Wood (2010) in the synthetic likelihood approach, as well as
Leuenberger and Wegmann (2010), approximated the model pdf by a member from the
Gaussian family. As the Gaussian family belongs to the exponential family, the approx-
imation in (17) includes this previous work as a special case. Specifically, a synthetic
likelihood approximation with summary statistics φ corresponds to an exponential fam-
ily approximation where the summary statistics ψ are the individual φk, all pairwise
combinations φkφk′ , k ≥ k′, and a constant. While in the synthetic likelihood approach,
the weights of the summary statistics are determined by the mean and covariance matrix
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of φ, in our approach, they are determined by the solution of the optimisation problem
in (14). Hence, even if equivalent summary statistics are used, the two approaches can
yield different approximations if the summary statistics are actually not Gaussian. We
will see that for equivalent summary statistics, relaxing the Gaussianity assumption
typically leads to better inference results.

4 Data-driven selection of summary statistics

The estimated coefficients β̂(θ) are weights that determine to which extent a summary
statistic ψi(x) contributes to the approximation of the posterior. As the number of

simulated data sets nm and nθ increases, the error in the estimates β̂(θ) decreases and
the importance of each summary statistic can be determined more accurately. Increasing
the number of simulated data sets, however, increases the computational cost too. As an
alternative to increasing the number of simulated data sets, we here use an additional
penalty term in the logistic regression to determine the importance of each summary
statistic.

This approach enables us to work with a large list of candidate summary statistics
and automatically select the relevant ones in a data-driven manner. This makes the pos-
terior inference more robust and less dependent on subjective user input. Moreover, the
selection of summary statistics through regularisation can substantially increase the in-
terpretability of the inference: the number of data summaries identified as relevant may
be small enough to be examined by statisticians and model experts individually, provid-
ing evidence-based insight into which summary statistics are relevant to the scientific
question.

Algorithm 1 Linear LFIRE by penalised logistic regression.

1: Consider b-dimensional summary statistics ψ : x ∈ R �→ R
b.

2: Simulate nm samples {xm
i }nm

i=1 from the marginal density p(x).
3: To estimate the posterior pdf at parameter value θ do:

a. Simulate nθ samples {xθ
i }

nθ
i=1 from the model pdf p(x|θ)

b. Estimate β̂reg(θ, λ) by solving the optimisation problem in (18) for λ ∈ [10−4λ0, λ0] where λ0 is

the smallest λ value for which β̂reg = 0.
c. Find the minimiser λmin of the prediction risk R(λ) in (19) as estimated by ten-fold cross-

validation, and set β̂(θ) = β̂reg(θ, λmin).
d. Compute the value of the estimated posterior pdf p̂(θ|x0) according to (16).

For the results in this paper, we always used nθ = nm. To implement steps b and c we used the R
package ‘glmnet’ (Friedman et al., 2010).

While many choices are possible, we use the L1 norm of the coefficients as penalty
term, like in lasso regression (Tibshirani, 1994). The coefficients β in the basis expan-
sion in (12) are thus determined as the solution of a L1-regularised logistic regression
problem,

β̂reg(θ, λ) = argmin
β∈Rb

J(β, θ) + λ

b∑
i=1

|βi|. (18)
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The value of λ determines the degree of the regularisation. Sufficiently large values
cause some of the coefficients to be exactly zero. Different schemes to choose λ have
been proposed that aim at minimising the prediction risk (Zou et al., 2007; Wang and
Leng, 2007; Tibshirani and Taylor, 2012; Dutta et al., 2012). Following common practice
and recommendations (e.g. Tibshirani, 1994; Hastie et al., 2001), we here choose λ by
minimising the prediction risk R(λ),

R(λ) =
1

nθ + nm

{
nθ∑
i=1

1Πλ(xθ
i )<0.5 +

nm∑
i=1

1Πλ(xm
i )>0.5

}
, (19)

estimated by ten-fold cross-validation, where Πλ(x)=P(x∈Xθ;h(x)= β̂reg(θ, λ)
�ψ(x)).

The minimising value λmin determines the coefficient β̂(θ),

β̂(θ) = β̂reg(θ, λmin), (20)

which is used in the estimate of the density ratio in (15), and thus the posterior and
likelihood in (17). Algorithm 1 presents pseudo-code that summarises the linear LFIRE
procedure for joint summary statistics selection and posterior estimation. Algorithm 1
is a special case of the scheme described in Figure 1 when h(x) is a linear combination
of the summary statistics ψ(x) as described in (12).

The cross-validation adds computational cost and the dependency of λmin on θ can
make more detailed theoretical investigations more difficult. In order to reduce the cost
or to facilitate theoretical analyses, working with a fixed value of λ as, for example, An
et al. (2019) for synthetic likelihood with the graphical lasso may be appropriate.

5 Validation on canonical low-dimensional problems

We here validate and illustrate the presented theory on a set of canonical inference
problems widely considered in the likelihood-free inference literature and empirically
compare the proposed approach to an approach based on likelihood ratios.

5.1 Gaussian distribution

We illustrate the proposed inference method on the simple example of estimating the
posterior pdf of the mean of a Gaussian distribution with known variance. The observed
data x0 is a single observation that was sampled from a univariate Gaussian with mean
μo = 2.3 and standard deviation σo = 3. Assuming a uniform prior U(−20, 20) on the
unknown mean μ, the log posterior density of μ given x0 is

log p(μ|x0) = α0(μ) + α1(μ)x0 + α2(μ)x
2
0 (21)

if μ ∈ (−20, 20), and zero otherwise. The model is thus within the family of models
specified in (16). Coefficient α0(μ) equals

α0(μ) = − μ2

2σ2
0

− log (
√

2πσ2
0)− log

(
Φ

(
20− x0

σ0

)
− Φ

(
−20− x0

σ0

))
, (22)
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where Φ is the cumulative distribution function of the standard normal distribution,
and the coefficients α1(μ) and α2(μ) are

α1(μ) =
μ

σ2
0

, α2(μ) = − 1

2σ2
0

. (23)

For Algorithm 1, we used a ten-dimensional summary statistic ψ(x) = (1, x, . . . ,
xb−1), with b = 10, and fixed nm = nθ = 1000. As an illustration of step c of Algorithm 1,
we show the prediction error R(λ) in Figure 2a as a function of λ for a fixed value of μ.
The chosen λmin minimises the prediction error. Repeating step 3 in the algorithm for
different values of μ on a grid over the interval [−5, 5], we estimated the ten-dimensional

coefficient vector β̂(μ) as a function of μ, which corresponds to an estimate α̂(μ) of α(μ),
and hence of the posterior, by (16).

In Figure 2b, we plot α̂(μ) and α0(μ), α1(μ), α2(μ) from (21) for μ ∈ [−5, 5]. We
notice that the estimated coefficients αk are exactly zero for k > 2 while for k ≤ 2, they
match the true coefficients up to random fluctuations. This shows that our inference
procedure can select the summary statistics that are relevant for the estimation of the
posterior distribution from a larger set of candidates.

In Figure 2c, we compare the estimated posterior pdf (yellow) with the true poste-
rior pdf (blue). We can see that the estimate matches the true posterior up to random
fluctuations. The figure further depicts the posterior obtained by the synthetic likeli-
hood approach of Wood (2010) (red) where the summary statistics φ(x) are equal to
x. Here, working with Gaussian data, the performance of linear LFIRE by penalised
logistic regression and the performance of the existing synthetic likelihood approach are
practically equivalent.

5.2 Autoregressive model with conditional heteroskedasticity

In this example, the observed data are a time-series x0 =
(
y(t), t = 1, . . . , T

)
produced

by a lag-one autoregressive model with conditional heteroskedasticity (ARCH(1)),

y(t) = θ1y
(t−1) + e(t), e(t) = ξ(t)

√
0.2 + θ2(e(t−1))2, t = 1, . . . , T, y(0) = 0, (24)

where T = 100, and ξ(t) and e(0) are independent standard normal random variables.
The parameters in the model, θ1 and θ2, are correspondingly the mean and variance
process coefficients. The observed data were generated with θ0 = (θo1, θ

o
2) = (0.3, 0.7)

and we assume uniform priors U(−1, 1) and U(0, 1) on the unknown parameters θ1
and θ2, respectively. The true posterior distribution of θ = (θ1, θ2) can be computed
numerically (e.g. Gutmann et al., 2018, Appendix 1.2.4). This enables us to compare
the estimated posterior with the true posterior using the symmetrised Kullback-Leibler
divergence (sKL), where sKL between two continuous distributions with densities p and
q is defined as

sKL(p||q) = 1

2

∫
p(θ) log

p(θ)

q(θ)
dθ +

1

2

∫
q(θ) log

q(θ)

p(θ)
dθ. (25)
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Figure 2: Steps for estimating the posterior distribution of the mean of a Gaussian. (a)
For any fixed value of μ, λmin minimises the estimated prediction error R(λ) (vertical
line). (b) The figure shows the true coefficients from (21) in black and the coefficients
estimated by Algorithm 1 in colour. The algorithm sets the coefficients of unnecessary
summary statistics automatically to zero. (c) Comparison of the estimated posterior
with the posterior by the synthetic likelihood approach and the true posterior.

Instead of comparing to the true posterior, one could compare to an approximate pos-
terior computed by conditioning on the observed value of the summary statistics rather
than the full data. We here focus on the comparison to the true posterior in order to
assess the overall accuracy. The effect of the employed summary statistics is analysed
in Supplementary Material B, and for intractable models considered later in the paper,
we construct reference posteriors via expensive rejection ABC runs.

For estimating the posterior distribution with Algorithm 1, we used summary statis-
tics ψ that measure the (nonlinear) temporal correlation between the time-points,
namely the auto-correlations with lag one up to five, all pairwise combinations of them,
and a constant. For checking the robustness of the approach, we also considered the case
where almost 50% of the summary statistics are irrelevant by augmenting the above set
of summary statistics by 15 white-noise random variables. For synthetic likelihood, we
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Figure 3: ARCH(1): Contour plots of the posterior p̂(θ|x0) estimated by (a) synthetic
likelihood, (b) the linear LFIRE method in Algorithm 1, and (c) linear LFIRE subject
to 50% irrelevant summary statistics. The range of the axes indicates the domain of
the uniform prior. We used nθ = nm = 1000 for all results. The proposed linear LFIRE
approach yields a better approximation than the synthetic likelihood approach and
remains stable in the presence of irrelevant summary statistics.

used the auto-correlations as the summary statistics without any additional irrelevant
variables, as the synthetic likelihood approach is typically not adapted to selecting
among relevant and irrelevant summary statistics. As explained in Section 4, synthetic
likelihood always uses the pairwise combinations of the summary statistics due to its
underlying Gaussianity assumption.

We estimated the posterior distribution on a 100 by 100 mesh-grid over the parame-
ter space [−1, 1]× [0, 1] both for the proposed linear LFIRE and the synthetic likelihood
method. A comparison between two estimates is shown in Figure 3. The figure shows
that the proposed approach yields a better approximation than the synthetic likelihood
approach. Moreover, the posterior estimated with our method remains stable in the
presence of the irrelevant summary statistics. Our approximate posterior provides a
reasonable approximation to the exact posterior but we note that it has a larger dis-
persion. The results in Supplementary Material B suggest that this difference is due to
the summary statistics and not the inference method.

In order to assess the performance more systematically, we next performed posterior
inference for 100 observed time-series that were each generated from (24) with θ0 =
(θo1, θ

o
2) = (0.3, 0.7). Table 1 in Supplementary Material C shows the average value of the

symmetrised Kullback-Leibler divergence for nθ = nm ∈ {100, 500, 1000}. The average
divergence decreases as the number of simulated data sets increases for our method, in
contrast to the synthetic likelihood approach. We can attribute the better performance
of our method to its ability to better handle non-Gaussian summary statistics and its
ability to select the summary statistics that are relevant.

We further compared the performance of linear LFIRE and synthetic likelihood
case-by-case for the 100 different observed data sets. For this pairwise performance com-
parison, we computed the difference ΔsKL between the symmetrised Kullback-Leibler
divergences sKL(p̂(θ|x0)||p(θ|x0)) when p̂(θ|x0) is estimated by the proposed method
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and by synthetic likelihood. A value of ΔsKL < 0 indicates a better performance of the
proposed method while a value ΔsKL > 0 indicates that synthetic likelihood is perform-
ing better. As ΔsKL depends on x0, it is a random variable and we can compute its
empirical distribution on the 100 different inference problems corresponding to different
observed data sets.

Figure 1 in Supplementary Material D shows the distribution of ΔsKL when the
irrelevant variables are absent (blue) and present (red) for the proposed method. The
area under the curve on the negative-side of the x-axis is 82% (irrelevant summaries
absent) and 83% (irrelevant summaries present), which indicates a superior performance
of the proposed method over synthetic likelihood and robustness to the perturbing
irrelevant summary statistics. The p-values associated with a Wilcoxon signed-rank
test (< 10−10) demonstrate very strong evidence in favour of the LFIRE method.

Figure 2 in Supplementary Material D shows a scatter plot of the symmetrised
Kullback-Leibler divergence for the LFIRE method and for the synthetic likelihood.
We see that the substantial majority of simulations fall above the diagonal, indicating
better performance of linear LFIRE compared to synthetic likelihood, in line with the
above findings.

5.3 Comparison with a frequentist likelihood-ratio based method

Here we compare the LFIRE method with a method based on approximating likelihood
ratios with calibrated discriminative classifiers (“carl”, Cranmer et al., 2015), which
provides an approximate maximum likelihood estimator for a parameter θ by max-
imising approximations of the ratio p(x|θ)/p(x|θr), the ratio of the freely parametrised
likelihood p(x|θ) and the likelihood evaluated at a reference value θr, p(x|θr). This is
done by using a classifier to generate an approximation to the ratio, followed by further
calibration by use of kernel density estimation. This corrective calibration step allows
one to use a wider range of loss function to train the classifier (see the original paper
for details).

The carl method relies on the choice of a reference θr to construct the likelihood ratio.
It is possible that a choice of θr far from the true maximum likelihood estimate (MLE)
will provide a very large value of the likelihood ratio with correspondingly high variance,
making optimisation very challenging. Even in a frequentist framework, we expect the
LFIRE methodology to be more robust to the choice of reference distribution, since
samples from the marginal distribution p(x) will be generally drawn from all regions
covered by the prior p(θ). Consequently, with the exception of the unlikely situation of
very narrow and mis-specified priors, the estimation of the ratio p(x|θ)/p(x) should be
more stable.

We explore the behaviour of the two methods by estimating the mean of a uni-
variate Gaussian with known variance. Fifty data observations are drawn from the
true generative model with mean and variance equal to one. The LFIRE method with
nθ = nm = 100 was run with different Gaussian prior distributions on the mean param-
eter, with prior expectation varying between −10 and 10, and prior standard deviations
taking values [0.1, 1., 3., 5., 10.]. The carl algorithm of Cranmer et al. (2015) was run
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Figure 4: Estimation of the mean of a univariate Gaussian, comparison of the root mean
squared error (RMSE) of the approximate MLEs for LFIRE with different priors and
carl with different reference points (bottom right).

using the associated software “carl: a likelihood free inference toolbox”, with reference
parameter values taking integer values from −10 to 10. A multi-layer perceptron global
classifier was used for the carl algorithm, trained on 10000 simulation samples and pa-
rameter values drawn from the entire parameter space. We found that increasing the
number of simulations did not improve performance of the carl algorithm. Both the
LFIRE and the carl simulations were repeated 50 times per setup. Approximate MLEs
were obtained for both methods: for carl, we used the associated software package, for
LFIRE, they were computed by maximising the approximate likelihood in (11).

Figure 4 shows the root mean squared errors (RMSE) of the obtained approximate
MLEs, with the medians, 25th and 75th quantiles over the 50 repetitions plotted. The
carl method (bottom right) led to small RMSEs when the reference point θr is well-
chosen. When the reference point is further way from the true parameter value, however,
the RMSE becomes larger and when too far away, the carl software failed and returned
an uninformative default value. LFIRE with a mis-specified overly confident prior (top
left, small standard deviation, prior mean far from the true value) produced large RM-
SEs. For broader and more reasonable priors, LFIRE yielded small RMSEs for a wide
range of prior means, and was fairly robust to the exact choice of the prior.

Figure 5 assesses the performance in posterior density estimation in terms of the
symmetrised Kullback-Leibler divergence sKL between the approximate and true pos-
terior. The figure shows that LFIRE produced reasonable approximations unless the
prior was overly narrow and mis-specified. The carl method did not provide computa-
tionally stable responses for the likelihood and hence posterior for the entire parameter
range considered, so it is not included in the figure.
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Figure 5: Setup as in Figure 4 but assessing the posterior density estimates in terms
of the symmetrised Kullback-Leibler (sKL) distance to the true posteriors. The carl
method did not lead to stable results and could not be included in the comparison.

These empirical results are in line with the conceptual considerations above. In
particular, the use of the marginal p(x) as a normalising distribution in LFIRE leads
to stable estimates across a broad range of prior settings, which would be appropriate
for a Bayesian approach. By contrast, using a denominator likelihood conditioned on a
specific parameter value was found to be only accurate if the reference value θr is close
to the (unknown) true parameter, but is unstable across an extended parameter range.

6 Bayesian inference for nonlinear dynamical systems

We here apply linear LFIRE in Algorithm 1 to two realistic models with intractable
likelihood functions and compare the inference results with the results for the synthetic
likelihood approach by Wood (2010). The first one is the ecological model of Ricker
(1954) that was also previously used by Wood (2010). The second one is the widely used
weather prediction model of Lorenz (1995) with a stochastic reparametrisation (Wilks,
2005), which we simply call “Lorenz model”. Both are time series models, and the
inference is difficult due to unobserved variables and their strongly nonlinear dynamics.

6.1 Models

Ricker model. This is a model from ecology that describes the size of some animal
population over time. The observed population size at time t, y(t), is assumed to be a
stochastic observation of the actual but unobservable population size N (t). Conditional
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on N (t), the observable y(t) is assumed Poisson distributed,

y(t)|N (t), φ ∼ Poisson(φN (t)), (26)

where φ is a scaling parameter. The dynamics of the unobservable population size N (t)

is described by a stochastic version of the Ricker map (Ricker, 1954),

logN (t) = log r + logN (t−1) −N (t−1) + σe(t), t = 1, . . . , T, N (0) = 0, (27)

where T = 50, e(t) are independent standard normal random variables, log r is related
to the log population growth rate, and σ is the standard deviation of the innovations.
The model has in total three parameters θ = (log r, σ, φ). The observed data x0 are the
time-series (y(t), t = 1, . . . , T ), generated using θ0 = (log r0, σ0, φ0) = (3.8, 0.3, 10). We
have assumed a uniform prior for all parameters: U(3, 5) for log r, U(0, 0.6) for σ, and
U(5, 15) for φ.

For our method, we use the set of 13 summary statistics φ suggested by Wood
(2010) as well as all their pairwise combinations and a constant in order to make the
comparison with synthetic likelihood fair – as pointed out in Section 4, synthetic like-
lihood implicitly uses the pairwise combinations of the summary statistics due to its
underlying Gaussianity assumption. The set of 13 summary statistics φ are: the mean
observation ȳ, the number of zero observations, auto-covariances with lag one up to
five, the coefficients of a cubic regression of the ordered differences y(t)−y(t−1) on those
of the observed data, and the least squares estimates of the coefficients for the model
(y(t+1))0.3 = b1(y

(t))0.3 + b2(y
(t))0.6 + ε(t), see Wood (2010) for details.

Lorenz model. This model is a modification of the original weather prediction
model of Lorenz (1995) when fast weather variables are unobserved (Wilks, 2005). The
model assumes that weather stations measure a high-dimensional time-series of slow

weather variables (y
(t)
k , k = 1, . . . , 40), which follow a coupled stochastic differential

equation (SDE), called the forecast model (Wilks, 2005),

dy
(t)
k

dt
= −y

(t)
k−1(y

(t)
k−2 − y

(t)
k+1)− y

(t)
k + F − g(y

(t)
k , θ) + η

(t)
k (28)

g(y
(t)
k , θ) = θ1 + θ2y

(t)
k , (29)

where η
(t)
k is stochastic and represents the uncertainty due to the forcing of the unob-

served fast weather variables. The function g(y
(t)
k , θ) represents the deterministic net

effect of the unobserved fast variables on the observable y
(t)
k , k = 1, . . . , 40, and F = 10.

The model is cyclic in the variables y
(t)
k , e.g. in (28) for k = 1 we have k − 1 = 40 and

k − 2 = 39. We assume that the initial values y
(0)
k , k = 1, . . . , 40 are known, and that

the model is such that the time interval [0, 4] corresponds to 20 days.

The above set of coupled SDEs does not have an analytical solution. We discretised
the 20 days time-interval [0, 4] into T = 160 equal steps of Δt = 0.025, equivalent to
3 hours, and solved the SDEs by using a 4th order Runge-Kutta solver at these time-
points (Carnahan et al., 1969, Section 6.5). In the discretised SDEs, following Wilks
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(2005), the stochastic forcing term is updated for an interval of Δt as

η
(t+Δt)
k = φη

(t)
k +

√
1− φ2e(t), t ∈ {0,Δt, 2Δt, . . . , 160Δt},

where the e(t) are independent standard normal random variables and η(0)=
√
1− φ2e(0).

The inference problem that we solve here is the estimation of the posterior distri-

bution of the parameters θ = (θ1, θ2), called closure parameters in weather modelling,

from the 40 slow weather variables y
(t)
k , recorded over twenty days. We simulated such

observed data x0 from the model by solving the SDEs numerically as described above

with θ0 = (θo1, θ
o
2) = (2.0, 0.1) over a period of twenty days. The uniform priors assumed

for the parameters were U(0.5, 3.5) for θ1 and U(0, 0.3) for θ2.

For the inference of the closure parameters θ of the Lorenz model, Hakkarainen et al.

(2012) suggested six summary statistics: (1) the mean of y
(t)
k , (2) the variance of y

(t)
k ,

(3) the auto-co-variance of y
(t)
k with time lag one, (4) the co-variance of y

(t)
k with its

neighbour y
(t)
k+1, and (5, 6) the cross-co-variance of y

(t)
k with its two neighbours y

(t)
k−1

and y
(t)
k+1 for time lag one. These values were computed and averaged over all k due to

the symmetry in the model. We used the six summary statistics for synthetic likelihood,

and, to make the comparison fair, for the proposed method, we also used their pairwise

combinations as well as a constant as in the previous sections.

6.2 Results

We used an importance sampling scheme (Ripley, 1987, IS) by sampling 10,000 samples

from the prior distribution and computed their weights using Algorithm 1, which is

equivalent to one generation of the SMC algorithm (Cappé et al., 2004; Del Moral et al.,

2006, SMC). As suggested by Wood (2010, see the method section in his paper), for the

synthetic likelihood approach we used a robust variance-covariance matrix estimation

scheme for a better estimation of the likelihood function. A simple approach is to add

some scaled diagonal “jitter” to the covariance matrix to ensure numerical stability

when computing the inverse.

Figure 6 shows example results for the Ricker model, and Figure 7 example results

for the Lorenz model. While the results look reasonable, assessing their accuracy rig-

orously is difficult due to the intractability of the likelihood functions and the lack of

ground truth posterior distributions. We thus used the results from expensive rejection

ABC runs for reference (threshold set to achieve approximately 2% acceptance). We as-

sessed the results in terms of the accuracy of the posterior mean and posterior standard

deviations.

The posterior mean Ex[θ̂(x)] for linear LFIRE and Ex[θ̂SL(x)] for the synthetic

likelihood approach were computed from the posterior samples. The relative errors of

the proposed approach and the synthetic likelihood were computed relative to the ABC
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Figure 6: Ricker model: Example marginal posterior distribution of (a) log r, (b) σ and
(c) φ, estimated with linear LFIRE in Algorithm 1 using nθ = nm = 100. The blue
vertical lines show the true parameter values (log r0, σ0, φ0) that we used to simulate
the observed data and the black-dashed vertical lines show the corresponding estimated
posterior means. The densities in (a–c) were estimated from posterior samples using a
Gaussian kernel density estimator with bandwidths 0.1, 0.04, and 0.3, respectively.

results for each element of the parameter vector θ,

RE(x)=
√

(Ex[θ̂(x)]− Ex[θ̂ABC(x)])2

Ex[θ̂ABC(x)]2
, RESL(x)=

√
(Ex[θ̂SL(x)]− Ex[θ̂ABC(x)])2

Ex[θ̂ABC(x)]2
.

(30)

The squaring and division should be understood as element-wise operations. As the
relative error depends on the observed data, we computed the error for 250 different
observed datasets x0. We performed a point-wise comparison between the proposed
method and synthetic likelihood by computing the difference Δrel−error between the
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Figure 7: Lorenz model: Example posterior distribution of the closure parameters (θ1, θ2)
estimated with linear LFIRE in Algorithm 1 using nθ = nm = 100. The blue and
green asterisk indicate the true parameter values (θ01, θ

0
2) that were used to simulate

the observed data and the estimated posterior mean of the parameters, respectively.
The contour plot was generated from posterior samples by a weighted Gaussian kernel
density estimator with bandwidth 0.5.

relative errors for all elements in the parameter vector θ,

Δrel−error = RE(x0)−RESL(x0). (31)

Exactly the same procedure was used to assess the accuracy of the standard deviations.

For both the posterior means and standard deviations, a value of Δrel−error < 0
means that the relative error for the proposed method is smaller than the relative error
for the synthetic likelihood approach. A value of Δrel−error > 0, on the other hand,
indicates that the synthetic likelihood is performing better. As Δrel−error is a function
of x0, we report the empirical distribution of Δrel−error computed from the 250 different
observed data sets x0.

Figures 3 to 6 in Supplementary Material D show the empirical distribution of
Δrel−error for the posterior means and standard deviations for the Ricker and the Lorenz
model. All distributions are tilted toward negative values of Δrel−error for all the pa-
rameters, which indicates that the proposed method is generally performing better in
both applications. As the proposed and the synthetic likelihood method use exactly the
same summary statistics, we did not expect large improvements in the performance.
Nevertheless, the figures show that linear LFIRE achieves better accuracy in the poste-
rior mean for all but one parameter where the performance is roughly equal, and better
accuracy in the posterior standard deviations in all cases. These results correlate well
with the findings for the ARCH model (note e.g. the more accurate characterisation
of the posterior uncertainty in Figure 3) and generally highlight the benefits of LFIRE
taking non-Gaussian properties of the summary statistics into account.

We next analysed the impact of the improved inference on weather prediction, which
is the main area of application of the Lorenz model. Having observed weather variables
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for t ∈ [0, 4], or 20 days, we would like to predict the weather of the next days. We here
consider prediction over a horizon of ten days, which corresponds to t ∈ [4, 6].

Given x0, we first estimated the posterior mean of the parameters using the pro-
posed and the synthetic likelihood approach. Taking the final values of the observed

data (y
(4)
k , k = 1, . . . , 40) as initial values, we then simulated the future weather devel-

opment using the SDE in (28) for both the true parameter value θ0, as well as for the
two competing sets of estimates. Let us denote the 40-dimensional time series corre-

sponding to θ0, Ex[θ̂(x)] and Ex[θ̂SL(x)] at time t by y(t), ŷ(t), and ŷ
(t)
SL, respectively.

We then compared the proposed and the synthetic likelihood method by comparing
their prediction error. Denoting the Euclidean norm of a vector by ||.||, we computed

ζ(t)(x0) =
||y(t) − ŷ

(t)
SL|| − ||y(t) − ŷ(t)||
||y(t) − ŷ

(t)
SL||

, t ∈ (4, 6], (32)

which measures the relative decrease in the prediction error achieved by the proposed
method over synthetic likelihood. As the estimates depend on the observed data x0,
ζ(t)(x0) depends on x0. We assessed its distribution by computing its values for 250
different x0.

Figure 7 in Supplementary Material D shows the median, the 1/4 and the 3/4
quantile of ζ(t)(x0) for t ∈ [4, 6] corresponding to one to ten days in the future. We
achieve on average a clear improvement in prediction performance for the first days; for
longer-term forecasts, the improvement becomes smaller, which is due to the inherent
difficulty to make long-term predictions for chaotic time series.

7 Inference with high-dimensional summary statistics

Here we present the results of the LFIRE method applied to the stochastic cell spreading
model described in Price et al. (2017). This model is notable for its use of a large number
of summary statistics to determine the model parameters describing motility and prolif-
eration, Pm and Pp. The summary statistics are the total number of cells at the end of
the experiment and the Hamming distances between the image grids of cell populations
evaluated at each time point in the simulation, providing 145 summary statistics. This
vector was then combined with its own element-wise square and a constant, resulting
in a final total of 291 summary statistics.

The linear LFIRE method using a lasso-type regularisation is well-positioned to
perform efficient inference for such a model, as it can select the summary statistics that
are most informative for the characterisation of the posterior distribution. We performed
inference with true values of Pm = 0.35 and Pp = 0.001, and varied the amount of
simulated data used to train the classifier, with values of nθ = nm ∈ {50, 100, 150}.
Given the prior knowledge that the Pp would take small values, we asserted uniform
priors over each model parameter between [0, 1] and [0, 0.01], respectively.

The results are presented in Figure 8. It is seen that the posterior becomes more sta-
bly characterised as nθ = nm increases from 50 to 150, with the MAP estimates clearly
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Figure 8: Cell spreading model: Contour plots of the approximate posterior computed
by linear LFIRE in Algorithm 1 for the parameters Pm and Pp. Each panel corresponds
to different numbers of simulated data points nθ = nm to train the classifier. The true
values and MAP estimates of the parameters are also displayed in the plots.

improving with the extra training data. The results are in line with those presented by
Price et al. (2017) who used synthetic likelihood, but employing a much larger number
of simulations (namely nθ ∈ {2500, 5000, 10000}). We were not able to make synthetic
likelihood work with the low numbers of nθ used in LFIRE but recent work on synthetic
likelihood (Ong et al., 2018) shows that shrinkage estimation methods enable values of
nθ ∈ {500, 1000}.

We further compared the number of non-zero summary statistic weights that linear
LFIRE uses for each value of nθ = nm. As the classifier is exposed to more training
data, we would expect it to select more summary statistics as more evidence becomes
available. This phenomenon is observed in our simulations, with the nθ = nm = 50,
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100 and 150 simulations selecting an average of 17.3, 23.9 and 30.5 summary statistics,
respectively, from a total number of size 291. This demonstrates that the method is
able to both select from a large pool of summary statistics and form a more complex
classification model when more computational resources are made available.

8 Computational aspects

In this section we discuss the computational cost of LFIRE and compare it with the
existing synthetic likelihood approach.

Both methods require generating the data set Xθ, which most often will dominate
the computational cost. Linear LFIRE has the additional cost of constructing the set
Xm once, and the cost of performing penalised logistic regression for each θ, includ-
ing potentially computationally intensive cross-validation to establish the regularisation
strength. Synthetic likelihood, on the other hand, requires inversion of the covariance
matrix of the summary statistics for each θ. Cross-validation can also be used for regular-
isation of the synthetic likelihood with a graphical lasso for robust inference in situations
with a large or poorly-conditioned covariance matrix (An et al., 2019). When the co-
variance matrix is well-conditioned, penalised logistic regression with cross-validation is
more expensive than standard inversion of the covariance matrix, and the difference in
computational cost can be seen as the price that needs to be paid for the relaxation of
the Gaussianity assumption, and for feature selection through regularised inference. If,
however, simulating data from the model is in the computational bottleneck, the extra
cost of regularised logistic regression causes comparably little overhead.

We support these considerations with timing data that were collected for the ARCH
and the cell spreading (“scratch”) model. Since the absolute computational times are
platform-specific, we consider the relative amount of time spent performing simulations
and posterior estimation. Simulation times were averaged for robustness over one million
simulations, with parameters drawn from the uniform priors used in the experiments
described in Sections 5.2 and 7. Similarly, posterior estimation times were averaged over
100 evaluations of posterior proxies, including performing penalised logistic regression
through cross-validation, defined over a grid across the uniform prior. The relative
balance of computational times between simulations and posterior estimation considered
100 evaluations of the posterior proxies, with nθ simulated data sets used for each
evaluation. Parallel computational resources were not considered in the analysis: they
could definitely affect the relative computational times, but with a heavy dependence
on the local computing platform and specific inference procedure.

Since both of the ARCH and cell spreading model are computationally inexpensive,
we also consider a hypothetical model for which simulations take one second, which is
still rather cheap. Likelihood proxy evaluation times were assumed to be 0.09 seconds
for the synthetic likelihood and 10 seconds for LFIRE as approximate midpoints of
those observed for the other models.

Table 1 presents the proportion of computational time spent performing simulations
for different simulator models, posterior approximation methods and values of nθ. We see
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ARCH Scratch Hypothetical 1s simulator

nθ LFIRE SL nθ LFIRE SL nθ LFIRE SL

100 0.0295 0.4234 50 0.1623 0.3177 50 0.8347 0.9982
500 0.0171 0.7859 100 0.1738 0.4822 100 0.9099 0.9991

150 0.1231 0.5828 150 0.9381 0.9994

Table 1: Proportion of total compute time dedicated to simulation.

that for the very cheap ARCH simulations, the LFIRE method spends a majority of its
time performing posterior estimation. For the moderately more expensive cell spreading
(“scratch”) simulations, posterior estimation computations are still dominant, but the
relative costs become more balanced. For the hypothetical (but not unrealistic) one
second simulator, we see that a comfortable majority of computational time is now
spent performing simulations for both linear LFIRE and synthetic likelihood (SL).

In summary, we see that while the LFIRE method requires more time than synthetic
likelihood for each posterior estimate, for simulators with non-trivial computational
demands the proportion of time spent on generating data is dominant for both methods.

9 Discussion

We considered the problem of estimating the posterior density when the likelihood
function is intractable but generating data from the model is possible. We framed the
posterior density estimation problem as a density ratio estimation problem. The latter
problem can be solved by (nonlinear) logistic regression and is thus related to classifi-
cation and contrastive learning.

This approach for posterior estimation with generative models mirrors the approach
of Gutmann and Hyvärinen (2012) for the estimation of unnormalised models. The
main difference is that here, as well as in the related work by Pham et al. (2014);
Cranmer et al. (2015), we classify between two simulated data sets while Gutmann and
Hyvärinen (2012) classified between the observed data and simulated reference data.
This difference reflects the fact that generating samples is relatively easy for generative
models while typically difficult for unnormalised models. As we are guaranteed to have
enough data to train the classifier, the main advantage of working with two simulated
data sets is that it supports posterior inference given a single observed datum only.

Our approach requires that several samples from the model are generated for the
estimation of the posterior, like for synthetic likelihood (Wood, 2010). While the sam-
pling can be performed perfectly in parallel, it constitutes the main computational cost
unless the model is very cheap to simulate. There are several ways to reduce the in-
ference cost: First, Bayesian optimisation can be used to intelligently decide where to
evaluate the posterior as previously done for the synthetic likelihood, thus reducing un-
necessary computations (Gutmann and Corander, 2016; Järvenpää et al., 2018). Second,
rather than pointwise estimation, the inference can be amortised with respect to the
parameters (Hermans et al., 2020) or one can learn the relation between the parameters
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and the log-ratio from already computed parameter-ratio pairs. An initial estimate of
the posterior can thereby be obtained without any new sampling from the model, and
additional computations may only be spent on fine-tuning that estimate. Third, for
prior distributions much broader than the posterior, performing logistic regression with
samples from the marginal distribution is not very efficient. Iteratively constructing a
proposal distribution that is closer to the posterior, will likely lead to computational
gains. Finally, most computations can be performed offline before the observed data are
seen, so that computations can be cached and recycled for newly observed data sets,
which reduces the effective cost and enables amortised inference and “crowd-sourcing”
of computations. This kind of (shared) pre-computations can be particularly advanta-
geous when the posterior needs to be estimated as part of a decision making process
that is subject to time constraints.

A key feature of the proposed method is the automated selection and combination
of summary statistics from a large pool of candidates. While there are several works
on summary statistics selection in the framework of approximate Bayesian computation
(Aeschbacher et al., 2012; Fearnhead and Prangle, 2012; Blum et al., 2013; Gutmann
et al., 2014; Marin et al., 2016; Gutmann et al., 2018; Jiang et al., 2018), there is
comparably little corresponding work on synthetic likelihood (Wood, 2010) with the
exception of the recent work by An et al. (2019) and Ong et al. (2018) whose robust
estimation techniques of the (inverse) covariance matrix are broadly related to summary
statistics selection. We have shown that synthetic likelihood is a special case of the
proposed approach so that our techniques for summary statistics selection could also be
used there.

While the cited methods for summary statistics selection in ABC might be adapt-
able for use with synthetic likelihood, the summary statistics generally have to be
transformed before use, in order to match the multivariate Gaussianity assumption of
synthetic likelihood. Finding such a joint transformation of summaries to fulfil the mul-
tivariate Gaussianity criterion is generally challenging, as it is very difficult to constrain
the resulting multivariate distribution’s higher-order moments, e.g. the co-skewness and
co-kurtosis, without losing information. However, it is always possible to average across
multiple evaluations of summary statistics and use a central limit theorem to asymptot-
ically approach a multivariate Gaussian distribution. This is in contrast to our approach
that automatically adapts to non-Gaussianity of the summary statistics.

Our results showed that the proposed method can effectively select relevant summary
statistics. We used the method to remove completely irrelevant ones but also to adap-
tively include more relevant ones when more computational resources become available.
Moreover, the ability to automatically select data summaries substantially contributes
to the interpretability of the inference procedure, and the selected summary statistics
may provide additional insights into the fundamental scientific question at hand. While
automated selection of summary statistics from a large pool of candidates alleviates the
burden on the user to provide carefully engineered summary statistics it assumes that
some of the candidates are suitable in the first place. The intrinsic connection of the
proposed approach to classification facilitates the learning of summaries from raw data
(Dinev and Gutmann, 2018) thereby partly addressing this point.
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We have seen that the proposed approach can well handle high-dimensional sum-
mary statistics. The separate problem of likelihood-free inference for high-dimensional
parameter spaces is a highly relevant question. This is a very challenging problem with-
out a generally accepted solution: the LFIRE methodology might perform well in this
context, because it does not involve the choice of an acceptance threshold or other kernel
as in typical ABC, which is often a problem when inferring high-dimensional parame-
ters. However, it was not developed with such problems specifically in mind, and such
an investigation does not fall within the scope of this paper.

We have used a linear basis expansion and logistic regression to implement the
proposed framework of likelihood-free inference by ratio estimation. While more general
regression models and other loss functions such as Bregman divergences (Gutmann and
Hirayama, 2011; Sugiyama et al., 2012) can be used, we found that already this simple
instance of the framework provided a generalisation of the synthetic likelihood approach
with typically more accurate estimation results.

Our findings suggest that likelihood-free inference by ratio estimation is a useful
technique, and the proposed rich framework opens up several directions to new inference
methods based on logistic regression or other density ratio estimation schemes that can
be used whenever the likelihood function is not available but sampling from the model
is possible.

Supplementary Material

Likelihood-free inference by ratio estimation —Supplementary Material—
(DOI: 10.1214/20-BA1238SUPP; .pdf). Supplementary Material A contains the proof
of Equation (8), Supplementary Material B an analysis of the effect of the summary
statistics for the ARCH model, Supplementary Material C an additional table and D
additional figures.
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