Jasiūnas, Justinas; Lund, Peter D.; Mikkola, Jani; Koskela, Liinu

Linking socio-economic aspects to power system disruption models

Published in:
Energy

DOI:
10.1016/j.energy.2021.119928

Published: 01/05/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Published under the following license:
CC BY-NC-ND

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Linking socio-economic aspects to power system disruption models

Supplementary Information

Justinas Jasiūnas*, Peter D. Lund, Jani Mikkola, Liinu Koskela
Aalto University School of Science, New Energy Technologies Group
P.O.Box 15100, FI-00076 Aalto, Espoo, Finland

*Corresponding author: justinas.jasiunas@aalto.fi

Modeling power flow in a looped network

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Power flow</td>
<td>MW</td>
</tr>
<tr>
<td>l, l'</td>
<td>Transmission line</td>
<td></td>
</tr>
<tr>
<td>L, L'</td>
<td>Number of transmission lines</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td>Ω</td>
</tr>
<tr>
<td>P</td>
<td>Power production/consumption</td>
<td>MW</td>
</tr>
</tbody>
</table>

The calculation method used to model power flows in a looped transmission grid lines is based on calculation of the power flow in a so-called loop-forming line [1,2]. A loop-forming line represents a line that connects the other two lines to form a loop as illustrated in Fig. S1. The steps of derivation for power flow through such a loop-forming line are as follows.

First, voltage levels for all points are computed for both branches formed when loop-forming line is taken out of the loop:

\[U_1 = U_0 - \Delta U_1 = U_0 - R_1 I_{01} = U_0 - R_1 \frac{F_1}{U} \]
\[U = \frac{U_0 + U_1}{2} \]
\[U_1 = U_0 - \frac{2F_1 R_1}{U_0 + U_1} \]
\[U_1 = \sqrt{U_0^2 - 2F_1 R_1} \]
\[U_2 = \sqrt{U_1^2 - 2F_2 R_2} = \sqrt{U_0^2 - 2F_1 R_1 - 2F_2 R_2} \]
\[U_L = \sqrt{U_0^2 - 2 \sum_{l=1}^{L} F_l R_l} \]

Fig. S1. Power line loop. Red line is a loop-forming line.
\[U'_{L'} = \sqrt{U_0^2 - 2 \sum_{l=1}^{L'} F'_l R'_l} \]

(S7)

Since exclusion of loop-forming line is just imaginary for calculation purposes, power flow through that line has to be included:

\[
\begin{align*}
F_l &\Rightarrow F_l + F_{lf}, \ l \in [1, L] \\
F'_l &\Rightarrow F'_l - F_{lf}, \ l' \in [1, L']
\end{align*}
\]

(S8)

\[
\begin{align*}
U_L &= \sqrt{U_0^2 - 2 \sum_{l=1}^{L} (F_l + F_{lf}) R_l} \\
U'_L &= \sqrt{U_0^2 - 2 \sum_{l'=1}^{L'} (F'_l - F_{lf}) R'_l}
\end{align*}
\]

(S9)

Then, calculation for one branch is extended though the loop-forming line:

\[U_{L+1} = \sqrt{U_0^2 - 2 \sum_{l=1}^{L} (F_l + F_{lf}) R_l - 2F_{lf} R_{lf}} \]

(S10)

\[U_{L+1} \] and \[U'_L \] describes voltage at the same point, therefore they must be equal:

\[U_{L+1} = U'_L \]

(S11)

\[\sum_{l=1}^{L} (F_l + F_{lf}) R_l + F_{lf} R_{lf} = \sum_{l'=1}^{L'} (F'_l - F_{lf}) R'_l \]

(S12)

\[\sum_{l=1}^{L} F_l R_l + \sum_{l=1}^{L} F_{lf} R_l + F_{lf} R_{lf} = \sum_{l'=1}^{L'} F'_l R'_l - \sum_{l'=1}^{L'} F_{lf} R_{lf}' \]

(S13)

\[F_{lf} \left(\sum_{l=1}^{L} R_l + \sum_{l'=1}^{L'} R'_l + R_{lf} \right) = - \sum_{l=1}^{L} F_l R_l + \sum_{l'=1}^{L'} F'_l R'_l \]

(S14)

\[F_{lf} = \frac{\sum_{l=1}^{L} F_l R_l - \sum_{l'=1}^{L'} F'_l R'_l}{\sum_{l=1}^{L} R_l + \sum_{l'=1}^{L'} R'_l + R_{lf}} \]

(S15)

References
