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Individual thermal comfort prediction using classification tree model 

based on physiological parameters and thermal history in winter 

ABSTRACT 

Individual thermal comfort models based on physiological parameters could improve the 

efficiency of the personal thermal comfort control system. However, the effect of thermal history has 

not been fully addressed in these models. In this study, climate chamber experiments were conducted 

in winter using 32 subjects who have different indoor and outdoor thermal histories. Two kinds of 

thermal conditions were investigated: the temperature dropping (24-16°C) and severe cold (12°C) 

conditions. A simplified method using historical air temperature to quantify the thermal history was 

proposed and used to predict thermal comfort and thermal demand from physical or physiological 

parameters. Results show the accuracies of individual thermal sensation prediction was low to about 

30% by using the PMV index in cold environments of this study. Base on the sensitivity and reliability 

of physiological responses, five local skin temperatures (at hand, calf, head, arm and thigh) and the 

heart rate are optimal input parameters for the individual thermal comfort model. With the proposed 

historical air temperature as an additional input, the general accuracies using classification tree model 

C5.0 were increased up to 15.5% for thermal comfort prediction and up to 29.8% for thermal demand 

prediction. Thus, when predicting thermal demands in winter, the factor of thermal history should be 

considered. 

 

Keywords: Thermal comfort; cold adaptation; thermal sensation; skin temperature; heart rate.  
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Abbreviations and Symbols 

BPmin minimum blood pressure, i.e. diastolic blood pressure (mmHg) 

BPmax. maximum blood pressure, i.e. systolic blood pressure (mmHg) 

HR heart rate (bpm)  

HSCW hot summer and cold winter 

Icl clothing insulation (clo) 

TSV thermal sensation vote 

TPV thermal pleasure vote 

TC thermal comfort 

TD thermal demand  

RH relative humidity (%) 

SET standard effective temperature (℃) 

TH historical air temperature (℃) 

Ta air temperature (°C) 

Thead local skin temperature at head (°C) 

Tchest local skin temperature at chest (°C) 
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Tarm local skin temperature at arm (°C) 

Thand local skin temperature at hand (°C) 

Tthigh local skin temperature at thigh (°C) 

Tcalf local skin temperature at calf (°C) 

d effect size 

R2 determination coefficient 

RA relative accuracy 

P significant level 

rs coefficient of Spearman’s rank 

 

 

 

1 Introduction 

Due to the vast territory, many areas in China have significantly different indoor and outdoor 

climates (Li et al., 2018a). According to the basic theory of adaptive thermal comfort, people living in 

one area should have already adapted to the local thermal environment (Yao et al., 2009), and their 

thermal history may result in different thermal comfort requirements (Kong et al., 2019; Yan et al., 

2019). With the fast expansion of immigration both nationally and internationally, better consideration 
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of people’s thermal history on their thermal comfort requirements will help to give a more accurate 

comfort modeling to help design and operate building thermal systems (Li and Yao, 2012; Yuan et al., 

2020).  

It is noticed that the conventional methods, such as the PMV model (Fanger, 1970), the extension 

of PMV (ePMV) model (Fanger and Toftum, 2002), and the adaptive model (Yau and Chew, 2014) 

which are originally developed for predicting the average thermal requirements of a group of people 

in the building, were not applicable for individual thermal comfort predictions. With the fast 

development of wearable and non-invasive technologies in recent years (Revel et al., 2012), many 

studies have tried to predict occupants’ thermal comfort based on their physiological responses, such 

as heart rate (Choi et al., 2012), blood pressure (Gilani et al., 2016) and skin temperature (Choi and 

Loftness, 2012). These new prediction methods target to occupants’ personal thermal requirement and 

provide an opportunity of improving personal thermal satisfaction and reducing energy consumption 

simultaneously (Aguilera et al., 2019; Antoniadou and Papadopoulos, 2017; Kim et al., 2018; Yang et 

al., 2020). Using these new methods, the average prediction accuracies in personal thermal comfort 

predictions are between 70% and 90%.  

A study (Liu et al., 2019) has developed personal thermal comfort models using lab-grade 

wearable devices and proposed that ankle skin temperature had a better prediction performance than 

wrist skin temperature. Another study (Li et al., 2018b) has used wrist skin temperature and heart rate 

to predict people’s thermal sensation at different activity levels. Chaudhuri et al. (Chaudhuri et al., 

2018a) have used wearable devices to explore the gender difference in people’s physiological 

responses to the surrounding thermal environment. Using hand skin temperature, pulse rate, and air 

temperature, they (Chaudhuri et al., 2020) also proposed an improved thermal comfort prediction 
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method than the method using skin temperature alone as the physiological parameter (Chaudhuri et al., 

2018b). Some scholars have developed models to predict people’s overall thermal sensation based on 

the skin temperatures of localized body parts., and argued that to control the complexity of the 

prediction model the measured skin locations should not be more than three (Dai et al., 2017). Salehi 

et.al. (Salehi et al., 2020) have suggested that the forehead, cheek, nose, and hand were more closely 

related to people’s instant thermal sensation, than other parts of our body. A study (Choi and Yeom, 

2017) has revealed that to predict personal thermal sensation the skin temperatures at the arm, back 

and wrist were the best predictors. Between the skin temperature at the ankle and at the wrist, a study 

(Liu et al., 2019) has suggested the former one be more predictive. In these studies, however, the factor 

of thermal history has not been included in these thermal comfort models. 

Although thermal history has not been considered in prediction models of thermal comfort, its 

impact on people’s thermal sensation and physiology responses has been justified in many existing 

studies. Studies showed that the differences of long-term indoor thermal histories significantly affected 

the physiological adaptation (Luo et al., 2016b) and thermal expectations of occupants in cold 

environments (Luo et al., 2016a; Luo et al., 2018). Ning et al. revealed that the cold adaptability of 

occupants who had a long-term thermal history in warm indoor climate was undermined (Ning et al., 

2016b) and their neutral temperature was about 2°C higher than the occupants with long-term thermal 

history in cooler conditions (Ning et al., 2016a), which was also proved in another study (Jowkar et 

al., 2020). Although tracked field studies (Liu et al., 2020; Liu et al., 2017b) showed the difference in 

thermal sensation between migrations and locals was decreased with time, Luo et al. (Luo et al., 2019) 

found the effect of long-term thermal history could last for 3 years. Studies also showed that thermal 

comfort was affected by the short-time (Ji et al., 2017) and immediate (Ji et al., 2019) thermal 
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experience, but another study argued that short-time exposure was negligible (Buonocore et al., 2019). 

Generally, occupants’ long-term thermal histories in a non-neutral warm/cold climate can make the 

climate more acceptable (Yasmeen et al., 2020). In our preliminary study in winter conditions (Wu et 

al., 2020; Wu et al., 2019b), significant differences in thermal sensation and local skin temperatures 

were found in two groups with different thermal histories. However, all these studies focused on the 

difference between two groups of occupants from different climate areas or with different levels of 

thermal histories. There is no effort available to quantify the impact of thermal history on thermal 

comfort prediction. 

Many factors would affect the thermal history of occupants, including air temperature, metabolic 

rate (Zhang et al., 2020), mean radiation temperature, humidity (Cai et al., 2020), wind speed/draught 

(Wu et al., 2021b), and clothing insulation (Liu et al., 2018). For the comprehensive indoor 

environments, the standard effective temperature (SET) (DA., 1980), which was calculated from the 

Gagge two-node model (Gagge, 1986), was used to consider these factors with a standardized index. 

The SET is the value of air temperature when assuming that the mean radiation temperature equal to 

the air temperature, no wind, relative humidity is 50 % and occupants seated quietly (1.0 met) with 

standardizing clothing insulation (0.6 clo), in which the human body has the same heat loss/stress in 

actual thermal environment. In practice, a previous study in Hot summer and cold winter climate zone 

of China (Liu et al., 2017a) showed that the air temperature was the dominating factor that affected the 

thermal history and behaviors of occupants indoors. Because the metabolic rate and clothing insulation 

of most occupants were stable in most indoor time in winter, and the measured indoor air velocity was 

very small in winter. Thus, the air temperature and standard effective temperature (SET) were used as 

the potential parameters to represent thermal history in this study.  
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In existing studies, although the effect of thermal history on people’s thermal sensation and 

physiological responses has been widely revealed, it has not yet been included in existing prediction 

models. To fill this gap, this study has proposed a method to quantify people’s individual thermal 

history and applied it in the prediction of their thermal comfort requirements, based on both physical 

and physiological parameters. Thirty-two subjects with different indoor and outdoor thermal histories 

were involved in the survey, which was carried out in a climate chamber with a controllable indoor 

thermal environment. During the survey, participants’ thermal sensation vote (TSV), as well as their 

local skin temperatures, blood pressure, and heart rate, were recorded for the model development.  

 

2 Methodology  

2.1 Testing subjects and thermal history  

The sample size of this study was selected according to the idea of power analysis that was 

introduced by Lan and Lian (Lan and Lian, 2010). In this method, the minimum sample size was 

calculated by the priori power analysis using G*Power 3.1 (Faul et al., 2009; Faul et al., 2007) based 

on three indices: 1) the requested significance level P (i.e. possibility of α error); 2) the power level (1-

β error) and 3) the effect size (d). In this study α and (1-β) were set at 0.05 and 0.8, respectively, as 

suggested in (Cohen, 1988). For a T-test, the minimum total sample sizes were 27 for a medium defect 

size (d = 0.5) of the studied parameters (Lan and Lian, 2010). To make sure the analysis powerful, a 

sample size of 32 healthy adults, who meet the requirements of experimental criteria, has been adopted 

to meet the minimum sample size.  

The experiment was conducted in late February 2019, during the wintertime of Chongqing, China, 

with a mean outdoor air temperature of around 11.9°C (China Meteorological Administration, 2019). 
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Basic information about potential subjects was collected before the experiment, such as their name, 

gender, birthplace, place stayed last month, living history in naturally ventilated (non-heated) or heated 

buildings, and the average time spent per day indoors and outdoors. To study subjects with a variety 

of thermal histories, the subjects from different climate zones were needed. Thus, the recruitment 

ended until the required number for gender balance subjects from the different areas were fulfill, i.e. 

eight females and eight males from Northern China; eight females and eight males from Southern 

China, with the final 32 participants. The subjects from different climate areas just arrived in 

Chongqing for less than a week before the experiment.  

In this study, the thermal history of subjects was quantified using historical air temperature (TH), 

calculated based on the time-weighted air temperature and corresponding exposure time in previous 

days, using Equation,  

T𝐻 =  
ℎ𝐴𝐶

24
× T𝑎,𝐴𝐶 +

ℎ𝑁𝑉

24
× T𝑟𝑚,𝑁𝑉 +

ℎ𝑜𝑢𝑡

24
× T𝑟𝑚,𝑜𝑢𝑡              [1] 

where, TH is the value of HAT (ºC); hAC is the average time per day staying in air conditioning (AC) 

space in the previous 30 days (h/d); hNV is the average time per day staying in naturally ventilated (NV) 

space in the previous 30 days (h/d); hout is the average time per day staying outdoors in the previous 

30 days (h/d); Ta,AC is the average indoor air temperature in space with heating (21°C for the 

investigated city according to existing data (Li et al., 2018a)); Trm,NV is running mean indoor air 

temperature in space without heating (ºC); Trm,out is the running mean outdoor air temperature (ºC).  

The values of hAC, hNV and hout were self-stated by the participants in the survey. Considering the 

different weighting factors of outside air temperature in previous days to people’s thermal history, the 

running mean outdoor air temperature (Nicol and Humphreys, 2010) was decided by Equation 9,  

Trm,out =  lim
𝑛→∞

∑ (𝛼𝑖−1∗𝑇𝑜𝑑−𝑖)𝑛
𝑖=1

∑ 𝛼𝑖−1𝑛
𝑖=1

                        [2] 
where, α is a constant value (<1, set to be 0.8 in this study, which is recommended by the standard ); 
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Tod-i is the daily mean outdoor temperature for the previous days (ºC).  

Similarly, the historical standard effective temperature (SETH) could be expressed as: 

SET𝐻 =  
ℎ𝐴𝐶

24
× SET𝑎,𝐴𝐶 +

ℎ𝑁𝑉

24
× SET𝑟𝑚,𝑁𝑉 +

ℎ𝑜𝑢𝑡

24
× SET𝑟𝑚,𝑜𝑢𝑡              [3] 

The indoor metabolic for seated occupants is about 1.2 met, the outdoor metabolic for walking is 

about 2.0 met (ISO, 2005). The clothing insulation for heated and NV space was about 1.0 clo and 1.3 

clo, respectively (Liu et al., 2017a). The mean radiation temperatures were also close to the air 

temperatures when there is no obvious heating or cooling source indoors. There was no wind indoors 

in winter. In this study, the previous daily mean outdoor temperatures and relative humidity in 30 days 

(i.e. n=30) from the climate station of China Meteorological Administration (China Meteorological 

Administration, 2019) are used to calculate the running mean outside air temperature and relative 

humidity. The running mean indoor air temperature in NV space was calculated based on the 

relationships between indoor and outside air temperature defined from one previous study (Li et al., 

2018a), as shown in Table 1. The indoor relative humidity was equal to the outdoor value for the NV 

buildings. 

Table 1: The relationships between indoor and outside air temperature in NV space (Li et al., 2018a) 

Climate zones Regression   R2 

Cold winter climate zone  Trm,nv = 0.75 Trm,out + 5.8 0.98 

Warm winter climate zone  Trm,nv = 0.74 Trm,out + 6.3 0.98 

Temperate climate zone   Trm,nv = 0.62 Trm,out + 8.5 0.94 

2.2 Experimental setup  

The experiment was conducted in a climate chamber, with a room dimension of 4.0m (L) × 3.0m 

(W) × 2.7m (H), as shown in Figure 1. The chamber was well insulated by a 100mm thick, double 

color steel plate and polyurethane filling, to minimize the effect from the ambient environment. 

Perforated ceiling panels and sidewall panels were used to supply and exhaust air, respectively. The 
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air-conditioning system could adjust indoor air temperature (Ta) within the range of –5°C and 40°C, 

with an accuracy of ±0.30°C, and relative humidity within the range of 10% and 90%, with an accuracy 

of ±5%. Before the experiments, the subjects stayed in the preparation room as Figure 1 shows, which 

is air-conditioned using a split air conditioning unit. The control and observation room was used by 

the test personnel to monitor the conditions of the thermal environment and subjects in the climate 

chamber. 

 

(a) Plan view of experiment rooms                   (b) Control and observation platform 

 

(c) Experimental subjects 

 

LSI 

Subject 1 Subject 2 

4.50 5.15 

4.00 

4.20 
Preparation room  

3.00 
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Figure 1: Experimental conditions of the chamber 

During the study, a Thermal Comfort Monitoring Station made by the LSI in Italy has been used 

to measure environmental parameters, including air temperature, relative humidity, air velocity and 

black-bulb temperature. Thus, the mean radiant temperature (Tr) was calculated based on air 

temperature (Ta), air velocity (Va) and black-bulb temperature (Tg) as follows: 

𝑇𝑟 =  [(Tg + 273)4 + 0.4 × 108(Tg − Ta)
5

4]1/4 − 273         for Va < 0.2 m/s       [4] 

The station was placed in the middle of the two subjects involved in each test, with a height of 

0.6m (ASHRAE, 2017). The CO2 level indoors was measured using a portable GE Telaire-7001 device. 

Before the experiment, the subjects’ height, weight and body fat rate were also measured using a height 

and SUHONG weight scale and a TANITA BC-601 body fat meter. 

To measure the skin temperature of subjects, thermocouples were used and connected to a four-

channel HOBO UX120-006M data logger (Onset, 2019), with an accuracy of ±0.15°C. Subjects’ local 

skin temperatures covering four clothed body parts which mostly representing mean skin temperature 

(Liu et al., 2011) and two unclothed surfaces were measured, namely, chest, upper arm, thigh, calf, 

head and hand, as Figure 2 shows. To measure their blood pressure, a HEM-6021 electronic 

sphygmomanometer was used. Because the blood pressure cannot be measured continuously, the 

readings from the instrument were recorded three times, namely, right before, during and right after 

each questionnaire survey (see Section 2.4). The average value of these three readings was finally used 

in the data analysis. When doing the measurement, the sphygmomanometer was tied to the forearm 

(which close to the wrist, as Figure 2 shows) and lifted to the same height as the heart. The heart rate 

was measured continuously for the whole experiment and it was recorded every 15s using a Polar 

RS400 heart rate telemeter. Before the study, all instruments were calibrated to meet the specifications 

shown in Table 2. 
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Figure 2: Measurement points of the physiological parameters on the subject  

 

Table 2: Ranges and precision of instruments in the climate chamber study 

Brand/model Equipment Variables Range Accuracy 

GE Telaire-7001 CO2 detector CO2 concentration 0–10000 ppm ± 50 ppm 

LSI Thermal Comfort 

Monitoring Station 

Air temperature −25 to 150°C ±0.1°C 

Relative humidity 0–100% RH ±2% (15–40%) RH 

±1% (40–70%) RH 

±0.5% (70–98%) RH 

Air velocity 0.01–20 m/s ±0.05 m/s（0–0.5 m/s） 
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±0.1 m/s（0.5–1.5 m/s） 

4% (> 1.5 m/s) 

Black-bulb temperature −10 to 100°C ±0.15°C 

TMC6-HD Thermocouple Skin temperature −40 to 100°C ±0.15°C 

HEM-6021 Electronic 

sphygmomanometer 

Blood pressure 0–299 mmHg ±3 mmHg 

Polar RS400 Heart rate telemeter Heart rate 15–240 bpm 1 time/min 

 

2.3 Experimental conditions and procedures  

Using the climate chamber, the experiment mimicked two typical types of winter indoor 

conditions in the hot summer and cold winter (HSCW) climate region: 1) a temperature dropping 

condition (24 - 16°C) for buildings with heating or with partial heating (MOHURD, 2016); and 2) a 

constant temperature of 12°C (severe cold condition), which has been found in an existing study to be 

the mean indoor temperature for buildings with no heating (this type of building is still quite common 

the HSCW climate zone of China (Liu et al., 2017a). The relative humidity was set as 55% ± 5%, with 

air velocity lower than 0.15m/s. 
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Figure 3: Experimental conditions and procedures (Q – Questionnaire) 

During the experiment, all testing subjects wore winter clothing that was typical for the region, 

generally including underwear with long sleeves and legs, trousers, sweater, jacket, socks and shoes, 

with an overall level of insulation approximately to 1.0clo. The subjects were allowed to adjust their 

clothes before the test (i.e. 0 min) but not during the test, with their final clothing insulation in the test 

recorded using the checklist available in ASHRAE 55 (ASHRAE, 2017). 

As Figure 3 shows, before the test, all subjects arrived at the preparation room and rested for 

approximately 15 minutes, with an ambient temperature of 20°C. They then entered the climate 

chamber for the following 15 minutes to wait for all parameters to become stable. During the 

preparation time, they adjusted their clothing insulation and provided their personal information. 

Additionally, they were also instructed about how to use all physiological monitors and the procedures 

of the experiment, with the consent of data usage. After the required time for the stabilization of 

measurement devices, the experiment started and the physiological data recorded from this time were 

used for analysis. 

Each subject participated in the experiment for one time in each condition. All 32 participants of 
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this study involved in the experiments of both temperature dropping and severe cold conditions, on 

two different days, with at least one-week interval to ensure that the earlier test did not affect the latter 

one. Every individual session was lasting for about 3 hours including the preparation time. Each 

session had two subjects, as shown in Figure 1. Once the test began, both participants were asked to 

fill out a questionnaire every 15 minutes. The work carried out complied with the Code of Ethics of 

the World Medical Association (Declaration of Helsinki) (WMA, 2013) for experiments involving 

human subjects. The university's ethics committee has approved all experiment protocols. 

2.4 Questionnaire and data processing  

During the experiment, all subjects evaluated their surrounding thermal environment using some 

scales representing their instant thermal perceptions and preferences, including Thermal Sensation 

Vote (TSV), Thermal Pleasure Vote (TPV), and thermal preference. According to ASHRAE standard 

55 (ASHRAE, 2017), seven-point scales were used to assess TSV. Participants’ thermal comfort (TC) 

was evaluated using the TSV vote by classifying into Cool-Discomfort (TC = -1 with TSV = -3 or -2), 

Comfort (TC = 0 with TSV =-1, 0 or +1), and Warm-Discomfort (TC =1 with TSV = +2 or +3), as that 

defined in the previous studies (Chaudhuri et al., 2020; Chaudhuri et al., 2018b). 

 

Figure 4: ASHRAE 7-point thermal sensation scale and corresponding Thermal Comfort Index. 

The Thermal Pleasure Vote (TPV) was proposed by Parkinson and Richard de Dear (Parkinson et 

-3 -2 

Thermal comfort 
(TC) 

Thermal sensation  
vote 

(TSV) 

Cold 

0 -1 1 3 2 

-1 
Cool-Discomfort 

Slightly-cool Cool Slightly-Warm Warm Hot Neutral 

1 

Warm-Discomfort 
0 

Comfort 
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al., 2016) to explore the hedonic tones attached to thermal transients and stimuli The difference 

between thermal comfort and thermal pleasure is that the thermal pleasure was mainly used to express 

the thermal alliesthesia, which was also explained to the test subjects before the experiments. Thermal 

preference was assessed by a three-point scale, namely, cooler (-1), no change (0), warmer (+1), 

available in ISO standard 10551 (ISO, 2002). The thermal demand (TD) was proposed and defined in 

this study as follows: when TPV ≥ 0, TD = 0; and when TPV < 0, TD equaled to thermal preference 

vote, as Figure 5 shows. That means the thermal demand defined in this study only existed when 

subjects felt slightly unpleasant, unpleasant, or very unpleasant. 

 

 

Figure 5: The thermal pleasure and preference scale and corresponding Thermal Demand Index. 

 

Physiological responses measured by different devices were used to predict the thermal state of 

each subject. To obtain good prediction performance, it should consider not only the difference in 

physiological responses at various thermal states but also the inherent characteristics of physiological 

responses. Therefore, some indicators were developed to evaluate the physiological parameters. 
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(1) Sensitivity (whether a physiological response can sensitively reflect the change of thermal state): 

two methods were used to evaluate the sensitivity, 1) the spearman’s rank correlations and 2) the 

significance test. The spearman test was applied to see if there was a relationship between 

physiological responses and thermal states, and the significant test was used to see if there was a 

significant difference between different sample groups for one physiological response under 

different thermal conditions.  

(2) Reliability (the relative accuracy and stability of physiological response at different thermal states): 

two indexes were used to evaluate the reliability, 1) the Relative Accuracy (RA – Equation 3) and 

2) the effect size (d – Equation 4), 

                                       RA =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

𝑎
                              [5] 

where, a is the accuracy of the device for a physiological parameter, and xi is the mean value of the 

physiological parameter at thermal state i, 

                                       d =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

𝑆
                                [6] 

                                 S = √
(𝑛1−1)𝑆1

2+(𝑛2−1)𝑆2
2

𝑛1+𝑛1
                           [7] 

where d is the effect size; S is the standard deviation; n is the number of samples, and subscripts 1 

and 2 refer to the two groups with different thermal states.  

 

2.5 Classification model 

Data mining is a powerful method of revealing existing relationships behind large datasets (Yu et 

al., 2015). To evaluate the prediction performance of thermal states from different feature sets, a data 

mining tool named as SPSS Modeler 20.0 was used. It is a popular computational tool offering a variety 

of classification and regression models based on machine learning techniques. Among these models, 
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the C5.0 model has been proven as being suitable for predicting people’s thermal comfort (Du et al., 

2019), with high accuracy and low memory usage (Pandya and Pandya, 2015). Therefore, it has been 

adopted in this study.  

The C5.0 model is an improved decision tree algorithm based on information theory. It was 

developed by Quinlan from the C4.5 model. The C5.0 works by splitting the samples into subsets using 

the value of a single feature providing maximum information gain. This process is repeated on each 

new subsample and continues until the subsample cannot be separated. The information gain based on 

entropy is used to evaluate how well one attribute splits the training data according to the target model 

(Sharma and Mukherjee, 2012). The information gain ratio is defined by Equation (Pang and Gong, 

2009; Patil et al., 2012), 

                             𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝐴)  =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡(𝐴)
                        [8] 

where A is an attribute; Gain(A) is the information gain of attribute A; Split(A) is the test with at least 

average gain. 

To avoid abnormal data which may be due to measurement errors or experimental influences, all 

data were preprocessed using Tukey‘s test (Abdi and Williams, 2010) before the analysis, with 

anomalous (i.e. far outside of the normal range of instruments measurement or experimental conditions) 

values deleted. After that, the SPSS Modeler 20.0 also has a functional interface to demonstrate each 

step in the training and analyzing process, as shown in Figure 6. The types of features are defined in 

the step of “Variable Setting”, such as nominal, ordinal, and continuous variables. The algorithm C5.0 

was selected from “Model selection”. After selecting the set of input features, the types and the target 

variables, the dataset was randomly split into the training group (80%) and testing groups (20%) in the 

SPSS Modeler 20.0. The prediction performance would be calculated using the testing group. 
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Figure 6: Analysis process in SPSS Modeler using experimental data 

The results of different feature physiological responses were compared based on their accuracy of 

predicting personal thermal comfort. Besides that, the overlap between the target variables, i.e. thermal 

comfort and thermal demand, was also analyzed using precision and recall metrics. The three metrics 

were defined in Equations 7-9, 

                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                            [9] 

                              𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               [10] 

                                𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                [11] 

where TP means the true positive (i.e. the number of correctly classified positive samples); FP is the 

false positive; TN is the true negative, and FN is the false negative.  

 

3 Results 

3.1 Measured environmental data 

During the tests, the mean radiant temperature was close to room air temperature, for there is no 
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heating source in the climate chamber. The relative humidity was 57% ± 2%, and the air velocity was 

less than 0.15 m/s during the experiment. The measured CO2 concentration was about 570 ± 80 ppm. 

The actual air temperatures were deviated to the designed values within 0.5°C in temperature dropping 

condition and slightly higher (about 12.76 ± 0.07°C) in the severe cold condition. The actual thermal 

environments could be considered to have met the requirement of experiment designs. 

3.2 Performance of PMV index for individual prediction 

The PMV values were calculated based on environmental parameters recorded during the 

experiment, and only the integer of PMV was kept to compared with the individual thermal sensation 

vote, as Figure 7 shows. The proportion of individual thermal sensations correctly predicted by PMV 

model could also be found in Figure 7. The accuracy of TSV predicted by using the PMV index is 

relatively low. The overall accuracies in temperature dropping and cold conditions are 30.8% and 28.9% 

respectively. That is because the PMV index is based and only suitable for a group of average persons. 

Another reason for the poor performance of the PMV index was these unstable and extreme thermal 

conditions.  

 
(a) Temperature dropping condition 

  PMV (Predicted Value) 

  -3 -2 -1 0 1 2 3 

TSV 

(Actual 

value) 

-3 0 0.03 0.05 0 0 0 0 

-2 0 0.09 0.14 0.01 0 0 0 

-1 0 0.33 0.19 0.08 0 0 0 

0 0 0.36 0.34 0.44 0.39 0 0 

1 0 0.09 0.15 0.23 0.48 0 0 

2 0 0.09 0.12 0.19 0.10 0 0 

3 0 0 0 0.02 0.02 0 0 
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Figure 7: Proportions of the actual individual thermal sensation vote in the predicted value of PMV  

3.3 Analysis of the historical temperatures 
Table 3 shows the information about the test subjects, including anthropometric data and historical 

air temperature (TH). The values of TH ranged from 8.0 to 20.2°C in this study, with an average value 

of 15.7±2.8°C. To reveal the variations of thermal histories of the subjects in this study, the TH could 

be divided into three levels with similar sample size: high TH group (TH = 18.3±1.2°C), medium TH 

group (TH = 15.6±0.9°C), and low TH group (TH = 12.0±2.3°C), as shown in Figure 8. 
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Figure 8: Variations of the historical air temperatures of the subjects  

 

(b) Cold condition 

  PMV (Predicted Value) 

  -3 -2 -1 0 1 2 3 

TSV 

(Actual 

value) 

-3 0.30 0.09 0.22 0 0 0 0 

-2 0.25 0.24 0.24 0 0 0 0 

-1 0.24 0.44 0.44 0 0 0 0 

0 0.17 0.18 0.18 0 0 0 0 

1 0 0.03 0.03 0 0 0 0 

2 0.01 0.01 0.01 0 0 0 0 

3 0 0.01 0.01 0 0 0 0 
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Table 3: Information of test subjects 

 TH (°C) Age (year) Weight (kg)  Height (cm) BMI (kg/m2) Body fat (%) 

Mean 15.7 22.9 60.0 169.2 20.8 20.8 

SD  2.8 0.9 10.7 7.4 2.3 6.0 

Min 8.0 21 43.5 158 17.4 5.0 

Max 20.2 24 93 183 28.4 30.2 

Note: SD-standard deviation; BMI – body mass index 

As Table 3 lists, the test subjects were all young college students with a mean age of 22.9±0.9 

years. Their body mass index was about 22.8±2.3 kg/m2, which was within the normal range. Their 

body fat was about 20.8±6.0%. The Spearman test was used to see if there was a strong relationship 

between anthropometric data of test subjects and historical air temperature (TH). Generally, there is a 

strong relationship between two variables when the coefficient of the Spearman’s rank rs>0.3 or rs<-

0.3. Figure 9 showed the results of the Spearman test, which revealed that none of the anthropometric 

data was significantly related to the values of TH. The height, weight and BMI had weak relationships 

with TH, which might due to the fact that subjects from Northern were slightly taller than that from 

Southern China. 
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Figure 9: Relationships between anthropometric data and historical air temperature (NS- no significant 

correlation). 

3.4 Physiological parameters  
3.4.1 Brief summary  

All physiological parameters of subjects measured from the experiment have been summarized in 

Table 4. The systolic and diastolic blood pressures were 109±14 mmHg and 71±11 mmHg, respectively. 

The mean heart rate was 76 bpm with a Standard Variation (SD) of 11bpm. The local skin temperatures 

from highest to lowest were chest (32.9±1.8°C), arm (32.5±2.0°C), thigh (31.4±2.0°C), head 

(30.3±2.3°C), calf (28.0±2.7°C) and hand (25.5±4.8°C). The SD was increasing with the decrease of 

the mean value, and it was highest at hand and lowest at chest. 

Table 4: Summary of physiological parameters  

Parameter Mean  S.D. Min. Max.  

BPmax (mmHg) 109  14  81  144  

BPmin (mmHg) 71  11  46  121  

HR (bpm) 76  11  48  117  

Thead (°C) 30.3  2.3  25.3  34.5  
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Tchest (°C) 32.9  1.8  28.3  36.0  

Tarm (°C) 32.5  2.0  27.1  36.1  

Thand (°C) 25.5  4.8  15.1  34.7  

Tthigh (°C) 31.4  2.0  25.6  35.5  

Tcalf (°C) 28.0  2.7  19.6  33.5  

 

3.4.2 Relationships between physiological parameters  

The coefficients of spearman’s rank correlation between different physiological parameters are 

shown in Figure 10, reflecting weak correlations between air temperature and other parameters 

including maximum blood pressure (BPmax), minimum blood pressure (BPmin), and heart rate (HR). 

However, it showed a strong correlation with local skin temperatures (LSTs). The BPmax. was strongly 

correlated with BPmin, and there was no correlation between blood pressure and heart rate. The heart 

rate was slightly correlated to LST at limbs, e.g. hand and calf, because the skin temperature of these 

parts was corelated to blood flowrate or aerobic thermogenesis. The blood pressure was only correlated 

negatively to LST at the thigh, because the skin temperature at thigh was highly affected by 

vasoconstriction. The LSTs had strong correlations with each other, which the reduced number of skin 

temperature locations for thermal comfort prediction. The LST of the head had the strongest and the 

thigh had the weakest correlations with other LSTs.  
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Figure 10: Coefficient of Spearman’s rank correlation between different physiological parameters 

 

3.4.3 Feature selection of physiological responses 

The sensitivity and reliability tests of physiological parameters in different states of thermal 

comfort (TC = -1 or 0) and thermal demand (TD = -1 and 0) are listed in Table 5. According to (Lan 

and Lian, 2010), a large effect size (d > 0.4) could be used for thermal comfort studies. Based on the 

significant level (P), coefficient of spearman’s rank (rs) and effect size (d), the optimal localized skin 

temperatures for predicting thermal comfort were decided to be at hand (Thand), calf (Tcalf), head (Thead) 

arm (Tarm) and thigh (Tthigh). The coefficient of spearman’s rank (rs) is lower at the chest, which are also 

more inconvenient to be measured than most of the other body parts because of the covering of clothes. 

The coefficient of spearman’s rank (rs) between minimum blood pressure (BPmin) and thermal demand 

is significant. However, the relative accuracy (RA) of blood pressure is much lower than other 

Ta 1          

BPmax. -0.200 1         

BPmin -0.316 0.833 1        

HR 0.264 0.018 0.045 1       

Thead 0.629 -0.117 -0.253 0.154 1      

Tchest 0.474 -0.174 -0.222 0.004 0.540 1     

Tarm 0.490 0.036 -0.108 0.003 0.518 0.537 1    

Thand 0.786 -0.129 -0.261 0.291 0.648 0.447 0.467 1   

Tthigh 0.365 -0.407 -0.472 0.082 0.248 0.294 0.285 0.294 1  

Tcalf 0.649 -0.057 -0.176 0.296 0.512 0.354 0.292 0.685 0.253 1 

 Ta BPmax. BPmin. HR Thead Tchest Tarm Thand Tthigh Tcalf 
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physiological parameters, and it is difficult to measure blood pressure continuously in practice. As a 

parameter to predict TC or TD, the heart rate (HR) is better than blood pressure in terms of coefficient 

of spearman’s rank (rs), effect size (d), and relative accuracy (RA). Therefore, it was chosen as the 

potential physiological parameter to be further analyzed.  

 

Table 5: Sensitivity and reliability tests of physiological parameters with subjective responses  

 Thermal comfort (TC = -1 or 0). Thermal demand (TD = -1 or 0). 

Parameter rs P  d RA rs P   d RA 

BPmax (mmHg) -0.087 0.31 0.06 0.43 -0.023 0.56 0.07 0.47 

BPmin (mmHg) -0.162 0.01 0.21 1.04 -0.196 ** 0.28 1.40 

HR (bpm) 0.331 ** 0.31 4.56 0.214 ** 0.33 4.90 

Thead (°C) 0.405 ** 0.53 11.41 0.473 ** 0.64 12.95 

Tchest (°C) 0.248 ** 0.23 3.75 0.272 ** 0.35 5.64 

Tarm (°C) 0.385 ** 0.53 9.52 0.354 ** 0.46 8.28 

Thand (°C) 0.482 ** 0.73 28.57 0.537 ** 0.83 32.33 

Tthigh (°C) 0.321 ** 0.35 6.85 0.212 ** 0.27 5.17 

Tcalf (°C) 0.386 ** 0.53 12.06 0.430 ** 0.55 12.84 

 Note: **P<0.001 

 

3.5 Prediction performance of the classification model 

Figure 11 shows the general prediction accuracies with different physiological parameters. With 

the thermal history temperature as an additional input, the general accuracies using a single parameter 

in the classification tree model C5.0 increased up to 15.5% for thermal comfort prediction and 29.8% 

for thermal demand prediction. The general prediction accuracy for TC was lowest when using local 

skin temperature of the arm, and higher when using other physiological parameters. For the TD, the 
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general prediction accuracy was lowest when using heart rate, and not quite different among other 

physiological parameters. Generally, the prediction accuracy based on physiological parameter was 

higher by using the historical SET (SETH) than the historical air temperature (TH). However, when the 

skin temperature of the hands and calves (feet) was used as an input to predict thermal comfort, the 

models with historical air temperature performed better. This result implied that the local body parts 

of hands/feet were affected more significantly by air temperature rather than SET which also included 

the effect of clothing insulations and so on. 
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Figure 11: General accuracies of thermal comfort and thermal demand prediction with or without 
indexes of thermal history  

 

Figure 12 shows the performance evaluation for the thermal comfort prediction model with 

historical air temperature. With a single physiological parameter, the accuracies for predicting both TC 

and TD were ranging between 72% and 82%. However, the precision and recall of TC prediction were 

much unstable, with the worst when using local skin temperature of the arm (Tarm). The local skin 

temperatures of the calf (Tcalf) and hand (Thand) were more stable than other parameters, regarding 

accuracy, precision, and recall of TC prediction, and they were the only two parameters with all indices 

higher than 60%. For TD prediction, the local skin temperatures of the head (Thead) and hand (Thand) 

were the only two parameters with all accuracy, precision, and recall of TD prediction higher than 75%. 

Therefore, the local skin temperatures of the calf (Tcalf) and hand (Thand) could be used for predicting 

thermal comfort, and the local skin temperatures of the head (Thead) and hand (Thand) are best for 

predicting thermal demand. 
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Figure 12: Performance evaluation of different parameters with historical air temperature. 
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4 Discussions 

4.1 The underlying significance of thermal history and physiological parameters 

Results showed that thermal history plays an important role in the thermal comfort prediction 

models. In view of human thermal physiology, these physiological parameters are related to the cold 

mitigation functions of the human body (Jessen, 2012). The vasoconstriction in cold environments 

could affect the blood pressure of subjects, and a higher blood pressure means a more intense 

vasoconstriction. The heart rate is related to the blood flowrate and aerobic thermogenesis of the human 

body. Thermal perception is affected by skin temperature (Wu et al., 2021a), which is recognized by 

thermosensitive afferents expression ion channels in thermosensitive nerves of skin (Mckemy, 2005; 

Story et al., 2003). Besides that, the thermal history of indoor conditions also affected subjects’ 

expectations. Thus, the higher thermal sensation of occupants with thermal history of low temperature 

might cause by the insensitivity of thermosensitive nerves and lower thermal expectations due to cold 

adaptation. 

In the previous studies about thermal history, either the study (Ji et al., 2017) did not measure the 

physiological parameters or most of them only measured the skin temperatures (Li et al., 2010; Wu et 

al., 2018; Zhang et al., 2016). It is still difficult to build a universal individual thermal comfort model 

based on these physiological parameters. Because cold adaptation was a long process, the conclusions 

about the significance of thermal history could be quite different in different studies. A study (Wu et 

al., 2019c) showed that warm indoor thermal history only affects thermal sensation but not affects the 

physiological responses. But the effect of thermal history on the relationships between TSVs and 

physiological responses were similar in different studies. Thus, the methods of this study are believed 

to be suitable for occupants with thermal history in cold conditions. 
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4.2 Practical application and limitations 

In the previous studies about personal thermal comfort predictions (Chaudhuri et al., 2020; 

Chaudhuri et al., 2018a, b; Choi and Yeom, 2017; Dai et al., 2017; Li et al., 2018b; Liu et al., 2019; 

Salehi et al., 2020), the average prediction accuracies are between 70% and 90%. However, the thermal 

history levels of test subjects in these studies were not reported, and it is highly possible that the test 

subjects with the similar thermal history level were recruited in each study. Thus, the accuracies of 

these methods could reduce due to the variety of thermal histories of the occupants in the “real-world” 

buildings (Luo et al., 2016a; Luo et al., 2016b; Luo et al., 2018; Ning et al., 2016a; Ning et al., 2016b). 

This study reveals that the accuracy of thermal comfort prediction could be improved if we consider 

thermal history as an input. That means that when the thermal comfort models were applied to the 

occupants with different thermal histories, revisions needed to be made. Thus, more sophisticated 

thermal comfort models that include index reflect thermal history could be more applicable. However, 

it is still difficult to accurately quantify the actual thermal history in reality by using available data.  

In most cases, the models using the historical thermal comfort might perform better than the 

models with historical air temperatures. However, using historical air temperature is much more 

convenient. Results show the skin temperature of the hands and calves (feet) in a cold environment 

could be used as a good index to predict thermal sensation, as these are the body parts most sensitive 

to cold (Hong et al., 2018). When the skin temperature of the hands and calves (feet) was used as an 

input, the models with historical temperature performed better. This result implied that the local body 

segments of hands/feet were affected more significantly by air temperature rather than SET. That’s 

because the hands were directly exposed to the surrounding air in most time, but the values of SET 

indeed reflected the effect of clothing insulations and whole-body thermal stress. These parameters 

were also easier to be measured, e.g. by devices being attached to the wrist or ankle, which should be 
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adopted first. From the view of the practical application, the heart rate (Choi et al., 2012) 

(Nkurikiyeyezu et al., 2018) could be a good monitoring parameter to predict thermal comfort which 

worth to be further studied. 

The accuracy of predicted individual thermal comfort could be interfered with by many factors 

such as body mass, gender, health conditions, psychological difference of occupants and so on. 

Because the individual prediction model in this study was only tested in winter conditions in the range 

of 12 -24℃. The application of this model in other seasons or thermal conditions remains to be verified 

in the future. Besides that, thermal comfort/demand in relatively short-time climate chamber tests 

might also be different to that in “real-world” buildings where occupants stay a longer time. Other 

factors, such as occupation, age, culture, and so on, might also affect the conclusions (Wu et al., 2019a). 

Those are needed to be further studied. 

 

5 Conclusions  

In this study, experiments in the climate chamber were conducted to investigate the thermal 

responses of human subjects in cold environments during winter. Thirty-two subjects with different 

indoor and outdoor thermal history were studied. A simplified method by using historical air 

temperature to quantify the individual thermal history was proposed and used to predict thermal 

comfort and thermal demand from physical or physiological parameters.  

Results show the accuracies of individual thermal sensation prediction was low to about 30% by 

using the PMV index in cold environments of this study. With the historical air temperature as an 

additional input, the general accuracies using classification tree model C5.0 were increased up to 15.5% 

for thermal comfort prediction and up to 29.8% for thermal demand prediction. The analysis shows 
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the local skin temperatures of calf and hand could be the optimal parameters to predict thermal comfort, 

while the local skin temperatures of head and hand were the optimal parameters to predict thermal 

demand.  

Thus, the proposed quantification of historical temperature is recommended to be used in the 

thermal comfort model when predicting thermal demands from physical or physiological parameters 

in winter. 
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