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Coronavirus disease 2019 (COVID-19) has emerged as a new public health
crisis, threatening almost all aspects of human life. Originating in bats,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is trans-
mitted to humans through unknown intermediate hosts, where it is
primarily known to cause pneumonia-like complications in the respiratory
system. Organ-to-organ transmission has not been ruled out, thereby raising
the possibility of the impact of SARS-CoV-2 infection on multiple organ sys-
tems. The male reproductive system has been hypothesized to be a potential
target of SARS-CoV-2 infection, which is supported by some preliminary
evidence. This may pose a global threat to male fertility potential, as men
are more prone to SARS-CoV-2 infection than women, especially those of
reproductive age. Preliminary reports have also indicated the possibility of
sexual transmission of SARS-CoV-2. It may cause severe complications in
infected couples. This review focuses on the pathophysiology of potential
SARS-CoV-2 infection in the reproductive organs of males along with
their invasion mechanisms. The risks of COVID-19 on male fertility as
well as the differences in vulnerability to SARS-CoV-2 infection compared
with females have also been highlighted.

1. Introduction
In early December 2019, several pneumonia cases of unknown aetiology were
reported in Wuhan, China. Genome sequencing studies confirmed these to be
the result of a novel viral infection named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-
19) [1]. As of 22 December 2020, the viral outbreak has spread globally across
as many as 222 countries, thereby infecting more than 76 million people and
causing over 1.6million deaths [2]. SARS-CoV-2mainly enters the cell by binding
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to angiotensin-converting enzyme 2 (ACE2), a receptor found
predominantly on the surface of epithelial cells in the lungs [3].
This is believed to be the main reason behind the vulnerability
of the respiratory system to SARS-CoV-2 infection. However,
ACE2 is also expressed in various other tissues of the body,
and as a result, there is a high probability of SARS-CoV-2 infec-
tion of otherorgan systems, including thedigestive, urogenital,
circulatory, central nervous and reproductive systems [4].

Due to the high expression of theACE2 receptor in testicular
tissue in both somatic and germ cells, such as seminiferous duct
cells, Leydig cells, Sertoli cells and spermatogonia, there is
increasing concern about the possible impact of SARS-CoV-2
infection on male fertility [5,6]. Moreover, ACE2-mediated
SARS-CoV-2 invasion may lead to viral infection, which may
also cause damage to testicular tissues [7]. This indicates that
the testis is a potential target of SARS-CoV-2 invasion and that
damage to testicular cells may severely hamper the process of
spermatogenesis. A recent study reported significant impair-
ment of sperm quality in a COVID-19 patient [8]. Moreover,
young men, if infected, may be at a greater risk of testicular
damage due to higher expression of the ACE2 receptor in com-
parison to patients more than 60 years of age, who show
comparatively lower levels of expression and are hence less
prone to such testicular damage [9]. Single-cell RNAsequencing
data of adult human testes indicated a higher positive rate of
ACE2 in infertile men. The authors further suggested that such
men with reproductive disorders may be susceptible to SARS-
CoV-2 infection through a pathway activated by ACE2 [9].
However, infection in testicular organs does not necessarily
mean direct damage to sperm cells. In a recent study, a semen
sample of only 15.8% of COVID-19 patients under surveillance
was found to be positive for SARS-CoV-2 particles, even in reco-
vering patients [10]. By contrast, in situ hybridization studies
could not confirm the presence of any viral genetic material in
testicular tissues, and the damagewas attributed to the infiltra-
tionof inflammatorymolecules in the testicular tissueduring the
immunological response of the virus [11]. Recently, another
group of researchers have also reported the absence of SARS-
CoV-2 in the semen and testis of men in the acute infection
and recovery phases [12]. This review discusses the origin of
SARS-CoV-2and itsmechanismof invasionalongwithpotential
infection of the reproductive system of the affected male.

2. SARS-CoV-2: history, origin and
transmission

Coronaviruswas first observed during themid-1930s [13], and
the earliest human infection of coronavirus was documented
in 1960 as a cold [14]. Much later, in 2002, a new species of cor-
onavirus, originating from bats and transmitted to humans
through palm civet cats as intermediate hosts, occurred and
was named SARS-CoV (figure 1). In 2012, another coronavirus
of bat origin, namely, Middle East respiratory syndrome coro-
navirus (MERS-CoV) emerged, with camel as an intermediate
host [19]. Very recently, SARS-CoV-2 has caused the largest
pandemic in recent human history and the first documented
coronavirus pandemic of such a large magnitude [20].

Coronaviruses are divided into four genera, comprising α-,
β-, γ- and δ-coronaviruses, ofwhich only α- and β-coronaviruses
are capable of infecting animals. SARS-CoV-2 is a β-coronavirus
belonging to the family Coronaviridiae and the subfamily
Orthocoronavirinae. It is an enveloped and non-segmented

positive-sense, single-stranded RNAvirus [21]. Human corona-
viruses generally have zoonotic origins, and the genome
sequence of SARS-CoV-2 shares 96.2% identitywith the bat cor-
onavirus RaTG13. This suggests that SARS-CoV-2 originated in
bats and was transmitted to humans through unknown inter-
mediate hosts (figure 1) in the Wuhan seafood market in
China in December 2019 [22,23]. Metagenomic sequencing
has revealed that pangolins might have acted as intermediate
hosts between bats and humans because of the similarity of
the pangolin coronavirus to SARS-CoV-2 [24,25]. However, no
intermediate host sample could be obtained in an initial cluster
of infection from the Wuhan seafood market, and the earliest
symptomatic patients did not have any exposure to the wet
market of Wuhan [26]. This left the matter of intermediate
host of the virus unresolved, warranting more confirmatory
evidence to settle the argument [20].

3. Possible mechanism of SARS-CoV-2
invasion into host cells and immune
pattern of infection

According to existing clinical data, COVID-19 is not limited
to respiratory ailments, but it may also give rise to compli-
cations such as acute renal injury and renal necrosis in
some patients [27,28]. During the earlier coronavirus out-
break in 2002–2003, SARS-CoV-infected men presented
with orchitis as a major complication, which led to reproduc-
tive dysfunctions in such men [11]. SARS-CoV and SARS-
CoV-2 are similar in that both viruses invade host cells
through the ACE2 surface receptor present in the host cell,
and it is worth mentioning that ACE2 exists not only in res-
piratory tissues but also in reproductive tissues, including
spermatozoa, seminiferous tubules, Leydig cells and Sertoli
cells [29]. This evidence fuelled the possibility of SARS-
CoV-2 infection in the male reproductive tract and potential
damage to male fertility [30].The expression of ACE2 was
also reported in the proximal regions of the heart, kidney,
lung, ileum and bladder [31]. Inside the lung, epithelial cells
have a higher expression of ACE2. The binding of SARS-
CoV-2 with the ACE2 receptor (ACE2-R) allows its entry
into cells and completes its replication [6]. This may, in turn,
activate direct viral invasion and cause tubular epithelial
and podocyte damage, resulting in acute cardiac and lung
injury. This is because of the potential SARS-CoV-2-mediated
downregulation of ACE2 expression, which may further con-
tribute to an increase in angiotensin 2 (Ang-II)-induced lung
injury [6].

In coronaviruses, the entry process is mediated by sur-
face-located spike (S) glycoproteins, which are embedded
in the viral envelope [32]. The S protein of SARS-CoV-2
resembles the typical characteristics of the coronavirus S
protein, which is divided into two subunits, S1 and S2,
responsible for receptor recognition and membrane fusion,
respectively. The S1 subunit can be further subdivided into
an N-terminal domain (NTD) and a C-terminal domain
(CTD). Immunostaining and flow cytometry assays identified
the S1 CTD as the key region in SARS-CoV-2 that interacts
with the ACE2 receptor. SARS-CoV also uses the S1 CTD
as the receptor-binding ligand, and the overall mode of bind-
ing is similar to that of the SARS-CoV-2 receptor-binding
domain. However, the SARS-CoV-2 CTD has higher atomic
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interactions with the receptor than the SARS-CoV CTD,
which indicates that the SARS-CoV-2 CTD has a higher affi-
nity for the ACE2 receptor [33]. This evidence is important
to establish the fact that SARS-CoV-2 is much more infectious
than SARS-CoV.

Recent studies have indicated that a particular transmem-
brane serine protease, designated transmembrane protease/
serine subfamily member 2 (TMPRSS2), has a major role in
viral entry. ACE2 and TMPRSS2 interact in cellular exocytic
pathways and at cell surfaces, resulting in the cleavage of
the ACE2 receptor. Proteolysis of the ACE2 receptor by
deglycosylation enhances the capability of coronaviruses to
enter the cell [34]. SARS-CoV-2 uses the serine protease
TMPRSS2 for S protein priming in cells, which significantly
increases the cell susceptibility of the virus [35]. ACE2 is

highly expressed in spermatogonia, Leydig cells and Sertoli
cells, whereas its expression is low in spermatocytes,
spermatids and other somatic cells. In a recent study, SARS-
CoV-2 RNA was measured in throat and semen samples of
infected men. The organ distribution of ACE2 mRNA and
protein in human tissue in The Human Protein Atlas Portal
revealed relatively high levels of ACE2 protein and RNA
expression in the testis [36]. However, the expression of
TMPRSS2 is concentrated in spermatogonia and spermatids,
with relatively low levels of expression in other cell types.
Thus, SARS-CoV-2 may pose a real threat to male fertility
due to the expression of both ACE2 and TMPRSS2 in
testicular cells [37].

The immune patterns of SARS-CoV-2 infection include
abnormalities of granulocytes and monocytes, lymphopenia,
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Figure 1. Origin of coronavirus and potential routes of transmission of SARS-CoV-2. (a) The origin of coronavirus. Similar to SARS and MERS, coronavirus is an emerging
virus that has crossed the species barrier from wild animals to humans. The origin of SARS-CoV-2 is also suspected to be from an intermediate animal host, and the
likelihood of crossing the species barrier for a fourth time cannot be ruled out. The current COVID-19 outbreak caused by SARS-CoV-2 has already been predicted and will
also be contained sooner or later, similar to earlier outbreaks [15]. However, the real issue is how we plan to counter the next zoonotic CoV pandemic that is likely to
occur in the next 5 to 10 years, if not sooner. (b,c) The potential routes of transmission of SARS-CoV-2. SARS-CoV-2 is alleged to have zoonotic (animal-to-human) origin
with further human-to-human transmission [16], and the likelihood of food-borne transmission should be ruled out pending further investigation [17]. In addition, it
can potentially be transmitted through direct contact, as in other respiratory viruses, such as by shaking contaminated hands or exposure to contaminated surfaces
(fomite transmission). Nevertheless, other possible routes of SARS-CoV-2 transmission, such as accidental exposure to the laboratory, blood transfusion, organ
transplantation [18], and transplacental and perinatal routes, need to be adduced more concretely. SARS-CoV: severe acute respiratory syndrome-related coronavirus,
MERS-CoV: Middle East respiratory syndrome-related coronavirus, SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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lymphocyte activation and dysfunction, enhanced produc-
tion of cytokines and increased antibodies (figure 2).
Lymphopenia is a key feature of COVID-19 patients,
especially in severe cases. CD44, CD69 and CD38 are
highly expressed on CD4+ and CD8+ T cells of patients,
and virus-specific T cells from severe cases exhibit a central
memory phenotype with high levels of IL-2, TNF-α and
IFN-γ. However, lymphocytes show an exhaustion phenotype
with killer cell lectin-like receptor subfamily C member 1
(NKG2A), programmed cell death protein-1 (PD1), and
T-cell immunoglobulin domain and mucin domain-3
(TIM3) upregulation (figure 2). The percentages of eosino-
phils, basophils, and monocytes are reduced in severe
patients, while neutrophil levels are significantly elevated.
Increased cytokine production, especially of IL-6, IL-1β and
IL-10, is another key characteristic of SARS-CoV-2 infection
and severe COVID-19. IgG levels are also increased, and
there is a higher titre of total antibodies [38].

4. Effect on the male reproductive system
Several important findings have already been reported
regarding the pathology of COVID-19 on the respiratory
system as well as other organ systems. Data on the histo-
pathological changes in various other organ systems due to
SARS-CoV-2 infection are also emerging [39]. Figure 3 sum-
marizes the potential impact of SARS-CoV-2 infection on
the reproductive system in males. As mentioned earlier, the
presence of the ACE2 receptor on germ cells, Leydig cells
and Sertoli cells recently indicated the testis as a potential
target of SARS-CoV-2 infection [29]. The serine protease
receptor TMPRSS2 is also present in male reproductive tis-
sues and plays a crucial role in mediating the entry of
SARS-CoV-2 [42]. By contrast, another recent study reported
a normal testicular appearance in COVID-19 patients [43].

Pathological studies conducted on deceased COVID-19
patients aged 42–87 years confirmed that Sertoli cells are
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Figure 2. The immunopathology of SARS-CoV-2 infection. SARS-CoV-2 uses the ACE2 receptor to gain entry into the cell (airway epithelial cells), leading to an
increase in pro-inflammatory cytokines and the development of cytokine storms, which lead to infection and augment COVID-19 severity. In addition, SARS-CoV-2
infection includes abnormalities of granulocytes and monocytes, lymphopenia, lymphocyte activation and dysfunction, enhanced production of cytokines and
increased antibodies [38]. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, IL: interleukin, TNF-α: tumour necrosis factor alpha, IFN-γ: interferon
gamma, MIP-1α: macrophage inflammatory protein-1alpha, MCP1: monocyte chemoattractant protein-1, GM-CSF: granulocyte-macrophage colony-stimulating
factor, G-CSF: granulocyte colony-stimulating factor, IP10: interferon gamma-induced protein 10, NKG2A: killer cell lectin-like receptor subfamily C member 1,
PD1: programmed cell death protein 1, TIM3: T-cell immunoglobulin and mucin domain-3, CD: cluster of differentiation, OX40: secondary costimulatory
immune checkpoint molecule, 4–1BB: a member of the tumour necrosis factor receptor superfamily T-cell costimulatory receptor, NK: natural killer.
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mostly affected, showing swelling, vacuolation, cytoplasmic
rarefaction and detachment from the tubular basement
membrane. A wide range of changes can be observed in the
seminiferous tubules along with a reduction in their number.
One major change has been a loss and sloughing of the intra-
tubular cell mass into the lumen. The extent of severity varies
from patient to patient, with mild tubular injury in the
majority of cases. The number of Leydig cells in the intersti-
tium is also significantly reduced in SARS-CoV-2-infected
patients compared to healthy individuals. Various degrees
of alterations in spermatogenesis can be observed with con-
siderable consistency in patients of different age groups
[5,44]. An immunohistochemical study validated the presence
of oedema and mild inflammatory infiltrates composed of
CD3-positive T-lymphocytes in the interstitium [44]. It is
worth mentioning that viral particles can hardly be traced in
the testicular tissues of infected patients. Thus, it may be
hypothesized that viral membrane proteins might play a role
in injury to seminiferous tubules and Leydig cells. There is

also a possibility of hyperthermia due to fever, secondary
infection, hypoxia and steroids being the key mediators of
testicular damage in SARS-CoV-2 patients [44].

Viral membrane proteins of SARS-CoV-2 may reach the
testicular interstitium via blood, and Leydig cells may be
one of the first target sites of infection. In the case of extreme
viraemia, the virus itself may infiltrate testicular tissues. Inva-
sion by either the virus or its proteins in Leydig cells is
followed by alterations in steroidogenic pathways, which
may cause Leydig cell dysfunction and a decrease in the
ratio of serum testosterone and luteinizing hormone (LH)
[45]. SARS-CoV-2-mediated induction of cytokines and che-
mokines in non-reproductive tissues may be transported to
Leydig cells and Sertoli cells. It is likely to be followed
by the recruitment of peripheral immune cells, including
macrophages and virus-specific T-cells, which may cause
inflammation and orchitis [46]. Segmental vascularization of
the testis may also account for an orchitis-like syndrome [47].
However, orchitis is not a common symptom reported in
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Figure 3. Possible mechanism of SARS-CoV-2 invasion in the reproductive system of infected men and the potential health impacts associated. SARS-CoV-2 gains
entry into the reproductive system through the ACE2 and TMPRSS2 receptors present on testicular tissues. The immune response triggered by viral entry produces
various inflammatory substances, such as cytokines, which induce OS in testicular cells, which in turn damages the DNA of developing spermatozoa. Various psycho-
logical stresses due to SARS-CoV-2 infection may also lead to the production of ROS. SARS-CoV-2 also causes damage to Leydig cells, lowering the production of
testosterone, which may ultimately hamper the proper functioning of Sertoli cells. Impaired functioning of Sertoli cells may further disrupt the process of sper-
matogenesis. However, recent studies have reported low testosterone levels in SARS-CoV-2-infected men with other comorbidities [40,41]. This suggests that normal
testosterone may reveal antiviral immune responses to combat SARS-CoV-2 infection in men. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, ACE2:
angiotensin-converting enzyme 2, TMPRSS2: transmembrane protease/serine subfamily member 2, IL: interleukin, G-CSF: granulocyte colony-stimulating factor,
TNF-α: tumour necrosis factor alpha, O2•: superoxide radical, OH•: hydroxyl radical, H2O2: hydrogen peroxide.
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COVID-19 patients due to the immunosuppressive properties
of Sertoli cells and testicular macrophages, which may play a
critical role in suppressing inflammation and limiting virus-
associated testicular damage to some extent [48]. Sertoli cells
elicit immune privilege to germinal cells with the help of the
blood-testis barrier, which includes tight junctions between
adjacent Sertoli cells [49]. Apart from working as a barrier
between maturing germ cells and immune cells, Sertoli cells
can also modulate the immune response by expressing several
immunoregulatory factors [50]. However, this immunosup-
pression is believed to be compromised when there is severe
infiltration of viral particles in testicular tissues, as in extreme
cases of SARS-CoV-2-associated inflammation. The transient
adverse effects on blood-testis barrier integrity may sub-
sequently hamper the normal process of spermatogenesis
[48]. This is in contrast to SARS-CoV infection, wherein the
elicited immune response is stronger. High fever associated
with SARS-CoV infection might add up to the cause of
developing orchitis followed by testicular dysfunction.
In SARS-CoV-infected testes, leucocyte infiltration has been
shown to damage the blood–testis barrier along with the
subsequent loss of immune-protective properties [11]. Further-
more, the development of pro-inflammatory cytokines and
IgG antibodies in the germinal epithelium, basement mem-
brane, interstitium, vascular endothelium and degenerated
germ cells may predispose SARS-CoV-infected men to
autoimmune orchitis [11].

Some recent studies have reported the presence of SARS-
CoV-2 particles in human semen. Although their route of
entry into semen is not fully understood, it may be hypoth-
esized that the virus may reach semen via the impaired
blood-testis barrier in the presence of systemic local inflam-
mation. In some patients, viral infiltration into the semen may
be manifested by increased viraemia [10]. However, there are
contradictory findings, as some other studies failed to detect
any viral protein or DNA in the semen of infected COVID-19
patients [8,51]. Hence, it may be suggested that there is a possi-
bility of transmission of the virus from infected men to their

female partners during sexual intercourse, although more
evidence is necessary to arrive at a definitive conclusion.

Furthermore, SARS-CoV-2 infection has recently been
implicated in the disruption of the normal process of autop-
hagy in the testis [30]. Autophagy is believed to aid in the
process of degradation of damaged organelles and needless
metabolites from the cell apart from elimination of intracellu-
lar pathogenic microorganisms, which is of paramount
importance. Autophagy is especially important in the repro-
ductive system of men, as it ensures the smooth conduction
of spermatogenesis by helping in the formation of specific
components and by preventing the unnecessary accumulation
of cytoskeleton in sperm cells [52]. Recent studies have found
increased expression of autophagy receptor SQSTM1/p62 in
SARS-CoV-2-infected cells, thereby suggesting a decrease in
autophagic flux [53]. Apart from the virus itself, viral proteins
may either induce or inhibit the autophagy pathway directly
to achieve viral survival [30]. This suggests that SARS-CoV-2
may limit the level of autophagy, eventually impairing repro-
ductive function in males. The potential health impacts of
SARS-CoV-2 infection on the male reproductive system are
summarized in table 1.

5. SARS-CoV-2 and male fertility
These are still early days for understanding the effect of SARS-
CoV-2 on male fertility due to the lack of sufficient short- and
long-term studies. However, emerging evidence indicates the
possibility of testicular damage due to SARS-CoV-2 infection,
which in turn may compromise the fertility potential of such
men. Both the reproductive and general well-being of patients
infected by SARS-CoV-2may be at risk, as large proportions of
vulnerable men are of reproductive age [55]. Proper hormonal
balance is an important prerequisite to male fertility potential
aswell as outcome. Improper endocrine functioningmay com-
promise reproductive health. SARS-CoV-2 is known to induce
inflammatory responses that may disrupt the activity of the

Table 1. Pathophysiology of SARS-CoV-2 infection on the male reproductive system. The specific receptors present in various tissues as well as the
immunological response in the form of cytokines elicited by the virus are also highlighted. ACE2, angiotensin-converting enzyme 2; TMPRSS2, transmembrane
protease/serine subfamily member 2; IL, interleukin; FGF, fibroblast growth factor; GCSF, granulocyte colony-stimulating factor; GMCSF, granulocyte-macrophage
colony-stimulating factor; IFN, interferon; IP, inflammatory protein; MCP, monocyte- chemoattractant protein; MIP, macrophage inflammatory protein; PDGF,
platelet-derived growth factor; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor; ROS, reactive oxygen species; OS, oxidative stress.

features references

reproductive tissues showing

receptor expression

(i) ACE2: seminiferous tubule, Leydig cells, Sertoli cells, spermatozoa [42]

(ii) TMPRSS2: epididymis, prostate gland, seminal vesicles [52]

immunological response increase in IL-1β, IL1RA, IL-7, IL-8, IL-9, IL-10, basic FGF, GCSF, GMCSF, IFN-γ, IP10, MCP1,

MIP1α, MIP1β, PDGF, TNF-α and VEGF

[54]

effect on reproductive system testis:

testicular epithelium damage

seminiferous tubules damage

Leydig cells and Sertoli cells dysfunction

inflammation due to infiltration of pro-inflammatory cytokines

hamper in spermatogenesis leading to decreases in sperm count

increased ROS production leads to OS, which affects semen parameters, such as sperm

function and motility; lipid peroxidation; and DNA damage

[42]
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hypothalamic–pituitary–testicular (HPT) axis, leading to
reduced LH, follicle stimulating hormone (FSH) and testoster-
one levels [42,56]. However, there are contradictions to this
theory, as lower serum testosterone levels, higher LH levels
and lower testosterone to LH ratio in COVID-19 patients
have recently been reported in comparison to healthy men
[45]. This exposes the missing links in the association of
SARS-CoV-2 infection with modulation of sex hormones,
which needs prompt attention to clarify our understanding
of SARS-CoV-2 infection and fertility in males.

Oxidative stress (OS) is widely regarded as an important
aetiology of male infertility [57–60]. OS is induced when the
balance between oxidants and reductants (antioxidants) is
disrupted due to increased production of reactive oxygen
species (ROS) or reduced generation of the latter. Elevated
levels of ROS can affect sperm structural and functional integ-
rity, including motility, morphology, count and viability [61].
High OS is also a threat to sperm DNA integrity, as high
ROS concentrations have been linked with DNA fragmenta-
tion and chromatin packing. Moreover, the capacity to repair
sperm DNA damage is also severely compromised during
excessive viraemia, which is attributed to the disruption of
the nucleoprotein-mediated defence system that the spermato-
zoa originally had [62]. This may in turn decrease fertilization
rates, reduce implantation, impair embryonic development
and increase the rate of pregnancy loss [63,64]. Increased pro-
duction of ROS is further manifested by the disruption of
sperm membrane integration and induction of apoptosis in
spermatozoa [65,66]. SARS-CoV-2 can activate oxidant-sensi-
tive pathways via inflammatory responses, thereby inducing
OS [42]. As already discussed, this virus has the potential to
cause orchitis, which can also trigger disruption of oxidative
balance in the testis. According to a study conducted on
adult male Sprague–Dawley rats, OS impairs sperm quality
even after one complete cycle of spermatogenesis, which is
suggestive of its long-term consequences on fertility. It has
also been found that the epididymis is largely affected by
OS, in contrast to the testis, and it is in the epididymis,
where spermatozoa are renderedmore vulnerable to oxidative
damage [67]. This may be because the developing spermato-
zoa are somewhat protected in the testes due to the nutritive
effects of Sertoli cells and antioxidant protection through
superoxide dismutase [68,69]. These observations have been
supported by previous studies that concluded that spermato-
zoa collected from the epididymis of OS-induced rats after
24 h of treatment still had increased DNA oxidation and
reduced motility, indicating their long-term effects [70].
From these observations, it may be hypothesized that SARS-
CoV-2-induced OS may elicit long-term deleterious effects
on male fertility, particularly on developing spermatozoa,
but only concrete evidence can settle this argument.

Various side effects conferred by some of the drugs used
for the treatment of COVID-19, including ribavirin and gluco-
corticoids, may serve as a potential aetiology ofmale infertility
[71]. Ribavirin is a broad-spectrum antiviral drug, and as
reported in animal experiments, ingestion of this drug resulted
in a decrease in testosterone concentration and impairment of
spermatogenesis [72]. This drug has also been found to cause
sperm abnormalities in rats [73]. As confirmed by clinical
studies, ribavirin can cause sperm DNA fragmentation, and
when combined with interferon treatment, this antiviral
drug can hamper male fertility by decreasing sperm count
[74–76]. Glucocorticoids are steroidal drugs that are only

used for a short time in COVID-19 patients with progressive
deterioration of oxygenation indicators and excessive acti-
vation of inflammatory reactions in the body. Small doses of
glucocorticoids administered over a short period of time do
not have any negative impact on the male reproductive tract,
but overdose may expand the interstitial space of the sperma-
togenic epithelium, followed by destruction of cell connections
and the blood-testis barrier, thus making the testicular tissue
vulnerable to harmful substances [71].

The rapid global emergence of COVID-19 has created a
situation of socio-economic crisis and psychological distress
among people across many parts of the world. Modern-day
humans are not used to current restriction protocols, and
social distancing and isolation regimes often lead to feelings
of frustration, stress, anxiety and even depression [77–79].
This forms an important consideration from the perspective
of male infertility, as the relationship between stress and
infertility has been a topic of serious debate over the years
[80]. A prevalence study of psychological symptoms of infer-
tility concluded that 25–60% of infertile individuals report
psychiatric symptoms and that their levels of anxiety and
depression are significantly higher than those of fertile men
[81]. SARS-CoV-2-infected men should be provided with
psychological consultation in time to avoid irrational fear
and excessive stress, as these may indirectly affect their repro-
ductive health and well-being [77]. Poor fertility potential
during psychological stress may be linkedwithmanifestations
of lower sperm quality and sexual dysfunctions, which ulti-
mately interfere with the probability of a couple conceiving.
Stress and anxiety have been able to influence semen
parameters such as lower sperm count and concentration,
lower semen volume and higher sperm DNA fragmentation
[82,83]. Poor fertility performance in men with psychological
disorders is also due to less sexual activity, hypoactive
sexual desire and erectile dysfunction [84]. This evidence
suggests that SARS-CoV-2-mediated psychological stress
may also play an important role in male infertility.

Viral infection might be associated with androgen secretion,
andhence an appropriate treatment regimen should consider the
androgen levels of the patients [9]. Management strategies such
as cryopreservation and assisted reproductive technology (ART)
mayalso be considered vital approaches in tackling specific clini-
cal conditions of male infertility. To employ these strategies for
COVID-19 patients, extra precautionary measures should be
undertaken during the handling of semen to reduce the chances
of viral transmission [85]. Some of the measures for the elimin-
ation of the risk of cross-contamination and transmission
through cryobanking services include testing both partners for
SARS-CoV-2 before initiating treatment, use of closed-carrier
cryodevices and sanitary cryostorage protocols [86]. Some
embryologists have advocated placing all new cryopreserved
specimens into aquarantine tankuntil patients aredetermined to
have negative viral test results at some future time, especially
when dealing with donor semen. Furthermore, all gametes
and embryos should go through extensive washing to dilute
out potential viral contamination to reduce the possibility of con-
tamination with SARS-CoV-2 [86,87]. The use of high-security
straws may also minimize the risks associated with cryopreser-
ving sperm during the pandemic. During the pandemic, a
thorough evaluation (especially in the setting of amultidisciplin-
ary team) and molecular confirmation of the absence of SARS-
CoV-2 in seminal fluid from asymptomatic cancer patients
may assist in ensuring the safety of sperm cryopreservation [88].
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6. Gender-based susceptibility
Epidemiological studies conducted across different parts of
the world have reported higher COVID-19 morbidity and
mortality rates in men than in women [89–91]. A recent
meta-analysis of 3 111 714 reported global cases also con-
firmed three times higher demand of intensive treatment
unit in male patients as compared to that of female [92].
The vulnerability of men to this disease may be explained
by analysing the genetic, immunologic and behavioural
differences in both males and females [93].

A positive correlation between ACE2 expression and
SARS-CoV-2 infection is already well established. Moreover,
there are studies quantifying the expression of ACE2 receptors
in human cells based on sex. Single-cell RNA sequencing
revealed that males have higher expression of ACE2 in the
lungs than females [94]. Another report reported higher circu-
lating levels of ACE2 in healthy and diabetic men as well as in
renal disease patients in comparison towomen [95]. TMPRSS2
is another protein necessary for SARS-CoV-2 invasion, and its
expression has been found to be several-fold higher in prostate
epithelium than in other tissues, leaving SARS-CoV-2-infected
men more vulnerable to the disease [96].

Immunological studies concluded that sex-based differences
contribute to variations in susceptibility to infectious disease and
response to vaccines [97]. Experiments conducted in animal
models suggested that male mice were more susceptible to
SARS-CoV than female mice of similar age, and the enhanced
susceptibility was attributed to the accumulation of inflamma-
tory monocytes, macrophages and neutrophils resulting in
vascular leakageandalveolaroedema.By contrast, thedecreased
vulnerability of female mice was probably due to the protective
effect of oestrogen receptor signalling [98]. Human studies
have also indicated stronger humoural and immune responses
against viral infection in females than in males, which holds
true in the case of SARS-CoV-2 infection as well [99].

In fact, gender-based differences in behaviour and lifestyle
have been considered responsible for the sex-based variation in
the pattern of vulnerability to SARS-CoV-2 infection and
COVID-19 [84]. Higher smoking and consumption of alcohol
amongmen compared towomenmay be considered an impor-
tant factor behind this hypothesis [90]. Recent studies have also
reported that women have amore responsible attitude towards
the COVID-19 pandemic, which affects their level of compli-
ance with the guidelines issued by the governments and in
undertaking preventivemeasures such as frequent handwash-
ing, using masks and maintaining social distancing protocols,
resulting in lower chances of SARS-CoV-2 infection [100].

7. Conclusion
Preliminary findings so far suggest the possibility of both direct
and indirect infectionof SARS-CoV-2 in the reproductive system
of males and possible impact on general health and well-being
potentially leading to infertility. Evidence indicates a possible

long-term effect of the pathogenicity of SARS-CoV-2 infection
on testicular tissue,whichmay further impact reproductive per-
formance. Moreover, the possibility of sexual transmission of
SARS-CoV-2 cannot be ruled out.

8. Future perspective
The presence of SARS-CoV-2 nuclei has been confirmed in the
testicular tissue of infected men using RT-qPCR technique,
which is indicative of the direct viral invasion on themale repro-
ductive system [101]. However, the evidence is not yet
considered to be conclusive enough to definitely determine as
to whether there are asymptomatic patients who need to
avoid sexual intercourse with their female partners in order to
prevent possible viral transmission [102]. SARS-CoV-2-infected
men should be provided with psychological consultation in
time to avoid irrational fear and excessive stress, as these may
indirectly affect their reproductive health and well-being [71].
The effects of SARS-CoV-2 on the reproductive system of such
men may also be elicited by viral infection-mediated immuno-
modulation and progressive inflammation [103]. Further
research is also needed to develop specific treatment strategies
for men with an impaired male reproductive system resulting
from SARS-CoV-2 infection. In this regard, several therapeutic
methods have been developed recently for the treatment of
COVID-19 patients, such as mesenchymal stem cells [104],
miRNA-based therapy (responsible for changing ACE-2
expression) [105] and hormone therapy [106]. Therefore, treat-
ment regimens should also consider the androgen levels of
men, as SARS-CoV-2 infection is believed to be associated
with androgen secretion [9]. Management strategies such as
cryopreservation and ART may be considered vital approaches
in tackling specific clinical conditions of male infertility. To
employ these strategies for COVID-19 patients, extra precau-
tionary measures should be undertaken during the handling
of semen to reduce the chances of viral transmission [85].
Accordingly, clinical trials should be conducted on SARS-
CoV-2-infected male subjects of reproductive age, along with
longitudinal studies in paediatric patients to understand the
long-term effects of SARS-CoV-2 infection on testicular func-
tions and spermatogenesis in such men [85]. In summary,
existing evidence on the impairment of the reproductive
system in men who have suffered and/or are suffering from
COVID-19 is still preliminary in nature, and further research
can only reveal the exact mechanisms and impacts of
SARS-CoV-2 infection clearly together with specific short- and
long-term approaches for the management of these men.
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