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Abstract: This paper studied the applicability of the Roamer-R4DW mobile laser scanning (MLS)
system for road rut depth measurement. The MLS system was developed by the Finnish Geospatial
Research Institute (FGI), and consists of two mobile laser scanners and a Global Navigation Satellite
System (GNSS)-inertial measurement unit (IMU) positioning system. In the study, a fully automatic
algorithm was developed to calculate and analyze the rut depths, and verified in 64 reference
pavement plots (1.0 m × 3.5 m). We showed that terrestrial laser scanning (TLS) data is an adequate
reference for MLS-based rutting studies. The MLS-derived rut depths based on 64 plots resulted
in 1.4 mm random error, which can be considered adequate precision for operational rutting depth
measurements. Such data, also covering the area outside the pavement, would be ideal for multiple
road environment applications since the same data can also be used in applications, from high-
definition maps to autonomous car navigation and digitalization of street environments over time
and in space.

Keywords: road rut depth; road mapping; road maintenance; laser scanning; point cloud; MLS;
TLS; photogrammetry

1. Introduction

Road network maintenance takes an extensive share of public expenditure in many
countries. In the US alone, the estimated countrywide road maintenance backlog is
$420 billion [1]; the corresponding value in Finland is €2.5 billion [2]. The common causes
of road distress include overloading, frost, use of studded tires, driving speeds, the thick-
ness of surfacing, traffic volume, the type of surfacing material, improper or poor road
surface drainage, lack of proper road maintenance, and improper design. Road distresses
disturb traffic flow and safety, and cause an increase in fuel and service costs, time delays
with increased pollution, and other trouble for road users.

Early identification of road distress is essential, because it provides invaluable infor-
mation about the development of damage due to weathering and wear, and also offers an
early warning for detecting deeper structural problems due to heavy traffic in combination
with climate effects such as increased winter rain, accelerated freeze-thaw cycles and soft-
ening road foundation due to excessive water runoff. Thus, improved methodologies to
allow faster and objective/reliable pavement condition data for informed and optimized
pavement maintenance have potentially enormous economic and environmental benefits.
Proper, timely, and selective road maintenance extends the lifespan of the pavement, re-
duces the cost of road maintenance, lessens vehicle damage and accidents, and minimizes
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sustained traffic disturbance. An automated, accurate and robust distress detection system
is essential to quantify the quality of road surfaces and assist in optimizing the mainte-
nance of the road network. The automatic detection system should be able to detect early
pavement degradations, such as transverse and longitudinal cracks, potholes, rutting, road
fretting, road deformation, and standing water, for minimized maintenance and timely
and informed renovations.

State-of-the-art automated pavement distress detection methods are discussed in
multiple reviews, such as [3–6]. In the past two decades, many research groups have been
developing pavement distress detection and recognition algorithms, using 2D passive
imaging systems (e.g., [5,7]). Over time, increasing attention has been drawn to the devel-
opment of active laser-based 3D data acquisition systems for road distress mapping [8–12].
Despite this fact, there are only a few published papers on measuring road rutting using
mobile laser scanner (MLS). For example, MLS has been studied for off-road driving ca-
pabilities in robotics [13] as an assisting means of navigation. Zhang et al. [14] performed
experimental tests for road distress, and briefly mentioned the possibility of rut analysis.
Gézero and Antunes [15] applied ten manually-measured road cross-sections, showing
that it is possible to measure road rut depths with better accuracy than the nominal 5 mm
precision of the MLS system used.

In the current operational road inspection, human raters travel all over the road
measuring its distress elements, but these surveys are too laborious, slow, costly, and
unsafe to perform at the scale of the whole network even if prioritized based on road
class or traffic load, and they are prone to subjective errors. For example, manual rut
depth measurement is performed by placing a straight edge across a rut and the distance
between the straight edge and the rut bottom is measured [16] as applied also in Gézero
and Antunes [15]. Quantitative analysis of road rut depths is for the most part missing
from the scientific literature due to lack of accurate and extensive field reference. Therefore,
in the previous rut depth studies, reference has been very limited. Since the phenomena
under our scrutiny is affected by road surface roughness (grain size of the gravel used
and wear of bitumen) and laser ranging accuracy, statistical in-depth analysis are missing.
This has led to the situation that road administrations are mainly using old-fashioned
profilometers for rutting measurement in their operations. Profilometer laser systems
typically include a fairly limited number of laser detectors (e.g., 13 or 17) installed on a
bar perpendicular to the direction of the road [17–19], as shown in Figure 1, which further
illustrates the operating principle of such a laser profilometer for rutting measurements.
The shortcoming of such a special rut measuring system includes a low capability in
finding the actual maximum left and right ruts due to limited point spacing across the
lane. As a result, despite high range accuracy, such systems tend to underestimate the rut
depths [15]. Another shortcoming is that such systems are incapable of measuring any
road distress other than ruts. While sparse sampling does not permit detection of other
surface defects, it biases individual measurements, in effect leading to false rut depth
estimation. Even today, such profilometer systems are considered as de facto reference for
new sensors, shown recently by Virtala et al. [19].
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the left rut. Such a system can cover a 3.2-m-wide area of the pavement, with point spacing of 11–
30 cm across the road [20]. 

Additionally, there are no international standards for rut depth definition and calcu-
lation [21]. In many countries, studded tires cause rutting, and yearly rutting measure-
ments are needed to optimize road maintenance frequencies. In Finland, pavements are 
updated when rutting depth is over 15 mm, when safety of the road is suffering or when 
correction becomes topical. Main roads with high traffic flows are paved every 2–5 years, 
whereas suburban and residential streets can have 30–40 year updating cycles. All roads 
are classified into quality classes based on rut depth, traffic speed and volume. These clas-
ses are determined with 1 mm rut depth intervals. Rut depths are provided with 100 or 
1000 m averages, and in future with 10 m averages. It can be seen that rut depths should 
be measured with 1 mm precision at 10 m averages, providing submillimeter accuracy on 
100 m averages [22,23]. 

In our study, we incorporate several innovative elements. We will show that carefully 
conducted terrestrial laser scanning (TLS) measurements can be used to serve as reference 
data for rutting studies. To verify the accuracy of the TLS data, three validation areas with 
approximate sizes of 2.4 m2 (a 1-m wide rectangle across the lane) were measured by a 
stereo-photogrammetric technique, which offers higher accuracy. Besides, a total of 64 
one-meter-wide pavement plots across the lane are utilized for the rut depth study, which 
are large enough to investigate the feasibility of MLS data for rut depth. Operationally, 
road rut depth measurement results at 10 m intervals will be requested in the near future 
[2] and we will show that MLS can provide the precision needed in operational nation-
wide rut measurements. We based our measurements on relatively standard but high-end 
MLS technology since it provides multiple use of road environment surveying data in 
applications beyond rutting measurements including navigation, traffic noise modeling 
and mitigation, nearby city 3D modeling, and in the production of high-definition (HD) 
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2. Materials and Methods 
2.1. Test Site 

The survey area was located (60°09′46″ N, 24°32′21″ E) in the municipality of Kirkko-
nummi, Southern Finland, where a 3-km-long section of a two-lane regional road was 
selected as a test road. The speed limit in the area is between 40 and 50 km/h. This section 
of the road was selected because of the condition of the pavement, with a varied state of 
rut offering a good living laboratory for comparative measurement system analysis and 
computational methodology. The road pavement at the site exhibits different properties 
such as new and old asphalt, different depths for ruts, and various types and sizes of 
cracks and potholes. 

Figure 1. Measurement principle of laser profilometer for rutting measurements. The measurement
area is determined by the Finnish standard in the way that laser beams 3–7 should locate at the left
rut. Such a system can cover a 3.2-m-wide area of the pavement, with point spacing of 11–30 cm
across the road [20].

Additionally, there are no international standards for rut depth definition and calcula-
tion [21]. In many countries, studded tires cause rutting, and yearly rutting measurements
are needed to optimize road maintenance frequencies. In Finland, pavements are updated
when rutting depth is over 15 mm, when safety of the road is suffering or when correction
becomes topical. Main roads with high traffic flows are paved every 2–5 years, whereas
suburban and residential streets can have 30–40 year updating cycles. All roads are classi-
fied into quality classes based on rut depth, traffic speed and volume. These classes are
determined with 1 mm rut depth intervals. Rut depths are provided with 100 or 1000 m
averages, and in future with 10 m averages. It can be seen that rut depths should be
measured with 1 mm precision at 10 m averages, providing submillimeter accuracy on
100 m averages [22,23].

In our study, we incorporate several innovative elements. We will show that carefully
conducted terrestrial laser scanning (TLS) measurements can be used to serve as reference
data for rutting studies. To verify the accuracy of the TLS data, three validation areas
with approximate sizes of 2.4 m2 (a 1-m wide rectangle across the lane) were measured
by a stereo-photogrammetric technique, which offers higher accuracy. Besides, a total
of 64 one-meter-wide pavement plots across the lane are utilized for the rut depth study,
which are large enough to investigate the feasibility of MLS data for rut depth. Opera-
tionally, road rut depth measurement results at 10 m intervals will be requested in the near
future [2] and we will show that MLS can provide the precision needed in operational
nationwide rut measurements. We based our measurements on relatively standard but
high-end MLS technology since it provides multiple use of road environment surveying
data in applications beyond rutting measurements including navigation, traffic noise mod-
eling and mitigation, nearby city 3D modeling, and in the production of high-definition
(HD) maps for the needs of autonomous cars, to be discussed in Section 4.3 of this paper.

2. Materials and Methods
2.1. Test Site

The survey area was located (60◦09′46′′ N, 24◦32′21′′ E) in the municipality of Kirkkon-
ummi, Southern Finland, where a 3-km-long section of a two-lane regional road was se-
lected as a test road. The speed limit in the area is between 40 and 50 km/h. This section
of the road was selected because of the condition of the pavement, with a varied state of
rut offering a good living laboratory for comparative measurement system analysis and
computational methodology. The road pavement at the site exhibits different properties
such as new and old asphalt, different depths for ruts, and various types and sizes of cracks
and potholes.
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2.2. Experiment Description

The road section was signaled by painting white hourglass shaped signal patterns on
the road surface at the edge of the carriageway (Figure 2) about every 50 m, on opposing
sides of the road. Sixty-two signals were painted per lane, totaling 124 signals altogether.
Real-time kinematic (RTK) Global Navigation Satellite System (GNSS) measurements
were performed for each signal center to serve as reference points for georeferencing and
validation of MLS data, using the Topcon HIPER HR RTK GNSS system (Topcon Positioning
Systems Inc., Livermore, CA, USA). The receiver was set to take five measurements per
signal to compute the signal position. The purpose of the signals was to allow alignment
between the point cloud datasets collected with the different instruments, enabling a
comparative analysis.
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Figure 2. Ground target painted on the pavement. The location for the target was measured to the
center between the two triangles.

Because this study focused on evaluating the accuracy of the MLS system in road
pavement rut depth derivation, the MLS data had to be compared with other, assumedly
more accurate, measurement methods. The purpose of the TLS measurements was to
serve as reference data for MLS measurements; the purpose of the photogrammetric
measurements was to verify the accuracy of the TLS data.

Since TLS and photogrammetric measurements were static, the evaluation of the
TLS instrument was limited to selected study plot areas. The painted signals served as
indicators for the test plots, which were defined as one-meter long and 3.5-m (width of
one driving lane) wide rectangular sections around the signals for each lane. As a result,
in total 64 TLS plots (1.0 m × 3.5 m) were scanned and used in this study for the analysis.
Measurements by photogrammetric methods were performed to validate the TLS data on
three of the pavement plots covering an approximate area of 2.4 m2 each.
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2.3. Data Acquisition
2.3.1. MLS Data Acquisition

The MLS data were collected in June 2018 using the FGI Roamer-R4DW mobile
mapping system developed at the Finnish Geospatial Research Institute (Figure 3). The
system provides kinematic 3D laser scanning measurements, and panoramic imagery, at
high resolution, enabling mapping and modeling for road asset management. Roamer-
R4DW consists of two profiling scanners (the first is used in the experiment in this paper),
a positioning system mounted on a modular aluminum truss structure for versatility and
a high sensor elevation for enhanced visibility behind street-side objects. The two 2D
scanners mounted on Roamer-R4DW were Riegl VUX-1HA and Riegl miniVUX-1UAV
(RIEGL Laser Measurement Systems GmbH, Horn, Austria) (referred to as VUX and
miniVUX in the following), operating at two distinctive wavelengths, 1550 and 905 nm,
respectively. Correspondingly, the beam divergences were 0.5 mrad and 0.5 × 1.6 mrad,
while the ranging accuracy specifications were 5 mm and 15 mm for 3 mm and 10 mm
precision, respectively.
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Figure 3. Roamer-R4DW system is a vehicle-mounted mobile laser scanning (MLS) system for road
environment mapping. The unit offers unique dual-wavelength sampling of objects. In the image
on the right, the Global Navigation Satellite System (GNSS) antenna is on top, with the inertial
measurement unit (IMU) and VUX-1HA and miniVUX-1UAV scanners back-to-back to provide
cross-track scanning over the road surfaces. The system could also be fitted with a panoramic camera
for georeferenced images.

The positioning subsystem consists of a NovAtel ISA-100C inertial measurement
unit (IMU) and a Pwrpak7 global navigation satellite system (GNSS) receiver to obtain
the position and orientation of the sensors as a function of time. The IMU output data
rate was 200 Hz, and GNSS range observations were recorded at 5 Hz. The trajectory
solution is typically computed in multi-pass differential post-processing to obtain the best
accuracy possible at the given GNSS constellation during the survey and the environment,
specifically in terms of GNSS visibility.

The test area was driven once in both directions for MLS data calibration, but only the
data collected on the eastbound lane was used in this study. The average driving speed
during the measurements was 40 km/h. The scan settings used were 250 and 100 LPS
(lines per second), and 1017 and 100 kHz PRF (pulse repetition frequency) for the VUX
and miniVUX, respectively. At the given speed, this resulted in about 44 mm and 111 mm
profile spacings for the respective scanner data (i.e., ~22 and ~9 lines per each 1 m wide
validation plot). Point spacing along the profile was 4.3 mm immediately below the VUX
scanner at a minimum distance of about 2.9 m from the road surface, which corresponded to
the actual laser beam spot size at the same distance. The general point density on the road
surface was approximately 5000 points/m2 in the middle of the lane immediately behind
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the measurement vehicle. For miniVUX at 2.7 m above the road surface, the corresponding
point spacing was 17 mm, and the density was about 500 points/m2. Beam size was not
specified for short ranges, but was expected to be similar to that of VUX, although slightly
elliptical in shape. However, miniVUX data was not used in this study.

2.3.2. TLS and Photogrammetric Measurements

TLS measurements were performed using the FARO Focus S 350 (FARO Technologies,
Inc., Lake Mary, FL, USA). The scanner uses the phase-shift principle for measuring
distances. Its measurement speed is up to 976,000 points/second. It has a ranging accuracy
of ± 1 mm, and it uses 1550 nm wavelength. The field of view (FOV) for the scanner is 360◦

in the horizontal axis, and 300◦ in the vertical axis. For this study, scanning parameters
were set to provide a point spacing of 7.7 mm in both vertical and horizontal directions
at a distance of 10 m from the scanner, resulting in 2.3 mm point spacing on the plot road
surface. The measurement time for a single scan was approximately three minutes. The
scanner was mounted on the roof rack of the car so that the blind spot of the scanner was
pointing in the driving direction, allowing full visibility of the road surface below the
scanner (see Figure 4A). During the TLS measurement, the vehicle was stationary in the
center of the lane, placing the scanner about 2.8 m above the plot (Figure 4B). The aim
of this setup was to get the scanner as close as possible to the plot area so that the point
density remained as high as possible and to ensure that the whole plot was fully visible
for the scanning. The measurement was then repeated for each plot. The point density
for the measured plots was about 150,000 points/m2. Stationary TLS measurements were
performed at night between 11 PM and 5 AM, when the traffic flow was minimal, and
there was no heavy vehicle traffic. This was to ensure that passing vehicles did not cause
the measuring system to move, and measurements could be carried out with minimum
disturbance to the public.
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Figure 4. (A) Measurement system for TLS. (B) TLS point cloud from one measurement. (C) Pho-
togrammetric measurement system.

Photogrammetric measurement was conducted with a custom-built and automatically
operated stereo camera system (Figure 4C). The system was built around Nikon D850
cameras equipped with Sigma Art 50 mm 1.4 G prime lenses. The cameras were mounted
on a remotely controlled and electronically operated camera rig. The average ground
sampling distance (GSD) of the three plots varied between 0.079 and 0.100 mm. The
mean reprojection error varied between 0.090 and 0.116 pixels. All the image blocks were
processed without 3D control points. The scale of the blocks was determined by utilizing
eight scale bars in each block. The sigma of the scale varied between 0.014 mm and
0.021 mm. 3D point densities on the test plots varied between 163 and 230 points/mm2.

2.4. MLS Data Pre-Processing

The pre-processing of the MLS data had three steps: (1) trajectory computation;
(2) MLS system calibration; and (3) point cloud georeferencing.
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The trajectory, i.e., the measurement path of the MLS, was computed using the No-
vAtel Waypoint Inertial Explorer (version 8.80) (NovAtel Inc, Calgary, AB, Canada). For
the differential GNSS, we used a virtual GNSS base station generated at the site from
the Trimnet service (Geotrim Oy, Vantaa, Finland). The 1 Hz virtual base station data
were interpolated to meet the 5 Hz records of the Roamer-R4DW positioning system. A
15-degree elevation angle was used to reduce multipath effects in the GNSS signals, and
the static initialization method was used for the IMU. The final trajectory was computed in
a multi-pass process with three forward and reverse computations, and the solutions were
combined and smoothed for the final result.

The trajectory data were associated with the raw laser scanning data (18 leap sec-
onds were also applied to match the time systems), and initial system internal bore-sight
parameters (three translations and rotations between the system IMU and each scanner)
were applied. The initial point cloud was then generated using RiProcess software. After
this step, we ran a scan alignment tool in the RiProcess to improve the initial bore-sight
rotations for mounting, but the translations were considered as known parameters. Robust
distance weighted estimation was used to solve the parameter values for planar features
automatically extracted from the point cloud data and matched at locations with data
from multiple visits. After solving the fine-tuned orientation bore-sight parameters, we
generated the final point cloud for rut study method development and rut depth analysis.

The trajectory accuracy was estimated in the post-processing software by computing
the mean, standard deviation, and the root mean square (RMS) in the 3D position and the
attitude (square root of the mean value of the squared observed values, e.g., differences
in position and attitude between the forward and reverse trajectory solutions to their
combined and smoothed solution) over the timespan of the data. The estimated position
mean accuracy was 4.5 mm with 1.2 mm standard deviation. The corresponding RMS was
4.6 mm. The average attitude accuracies were −0.0711, −0.0687, and −0.3139 arcminutes
for Roll, Pitch, and Yaw, respectively. The corresponding standard deviations were 0.0584,
0.0286, and 0.2193 arcminutes, and the RMS values 0.0920, 0.0744, and 0.3829 arcminutes
for Roll, Pitch, and Yaw. The Yaw/Heading angle uncertainty dominates the solution, but
the effect of this at a range of 10 m from the scanner (Yaw RMS) results in 1.1 mm point
displacement, and the maximum absolute uncertainty (0.8179) yields a 2.4 mm spatial error.

The bore-sight calibration resulted in 7800 planar pair matches and, eventually, a
10.2 mm error (standard deviation) in the estimation. The values applied to the final
data georeferencing were −0.03501, −0.03877, and −0.18758 for Roll, Pitch, and Yaw,
respectively. The plot of the histogram of the residuals (Figure 5) shows that the majority
of the observations were within 30 mm around the mean (note the logarithmic scale of the
plot), and the orientation of the observations was well distributed for a reliable solution.
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accuracy and reliability of the solution.

The pre-processed MLS data were compared against RTK measurements at the targets
on the road, clearly visible in the reflectance data from the scanners, and the study con-
cluded that the MLS positioning system was sufficiently accurate for georeferencing. The
RTK measurements were used to confirm the success of the georeferencing with the MLS
system. Subsequently, the data measured by the other instruments for the study were geo-
referenced with the MLS data: the TLS data were georeferenced in CloudCompare (version
2.10.2, http://www.cloudcompare.org/ (accessed on 15 January 2021)), using the georefer-

http://www.cloudcompare.org/
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enced MLS data, and the photogrammetric data were aligned with the georeferenced TLS
data using the same software.

Test plots were created in Bentley MicroStation (v.10.00.00.25) by cutting the data from
the road surface into one-meter wide slices (Figure 6) according to the MLS scan profiles.
The scan profile pattern of the pavement seen at the top of Figure 6 was formed when the
scanner mirror rotated at high speed (each mirror rotation creates one scan profile) while
the car was moving forward. The scan plane was slightly tilted to a 15-degree nominal
angle, as can be seen in Figure 3. The rotation speed of the scanner and driving speed
determined the space between two scanning profiles. The number of scan profiles within
the plots therefore varied between 19 and 22. An illustration of the scan profiles from
Plot 2 can be seen in Figure 6, where the MLS point cloud contains 22 scan profiles for the
particular plot.
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2.5. TLS Preprocessing and TLS Accuracy as Reference

To evaluate the accuracy of the TLS measurement, the photogrammetric and TLS data
were aligned using CloudCompare’s registration tools, followed by the use of the Cloud-
2-Cloud (C2C) distance comparison tool. C2C is a method in which distances between
predetermined reference point clouds and corresponding point clouds are calculated. The
method can be used to detect changes between point clouds, and it can also be used to
evaluate accuracy when the method is combined with CloudCompare’s Local Statistical
Test (LST) tool. Here, the C2C tool calculates distances between two point clouds from the
same area, after which the LST tool draws a histogram of the distances between each point
pair and calculates a Gaussian distribution, providing the mean distance and standard
deviation for each plot.

The RMS value for TLS and MLS data alignment (3D distances between the two
datasets) for each plot was between 4 and 7 mm, depending on the road environment;
georeferencing was usually more accurate when there were also corresponding points
from objects above the pavement, such as streetlamps, fences, and road signs. TLS and
photogrammetric datasets were aligned using the same method as TLS and MLS. Here, the
RMS value for registration was around 0.5 mm for all the three validation plots.

The TLS accuracy was evaluated using photogrammetric data and by using the cloud-
to-cloud (C2C) distance tool in CloudCompare. The mean absolute C2C distances between
the TLS and photogrammetric point cloud were 0.85 mm (±0.47 mm, standard deviation)
for Plot 1, 0.82 mm (±0.50 mm, standard deviation) for Plot 2, and 0.72 mm (±0.39 mm,
standard deviation) for Plot 3 (Figure 7). Thus, better than 0.5 mm precision for TLS
was confirmed.
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Figure 7. Distances between TLS and photogrammetric point cloud points. The y-axis represents
the number of corresponding points, and the x-axis represents the absolute distance (in millimeters)
between corresponding points. (A) (Plot 1): Cloud-to-cloud absolute distance for 390,000 points (road
surface of 2.4 m2). (B) (Plot 2): C2C absolute distance for 390,000 points (road surface of 2.4 m2).
(C) (Plot 3): C2C absolute distance for 330,000 points (road surface of 2.2 m2).

The TLS scan pattern was much denser than the MLS point cloud (see Figures 6 and 8
for reference) and, as the 3D scan was stationary, the scan pattern on the ground in general
differed from that of the MLS. The normally vertical rotation axis of the TLS scanner was
tilted 75 degrees backward, and while the scanner rotated across the lane, the scanning
mirror cast scan profiles roughly oriented along the longitudinal axis of the road. Given
the scan settings and the approximate 2.8 m distance to the road surface, the average point
spacing within the plot was approximately 2.3 mm.
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To generate a high-accuracy rut depth reference, down-sampling of the TLS data
was performed to generate road profiles at the locations of the profiles generated by the
MLS. The down-sampling was conducted by averaging the neighboring TLS data around
the MLS data. More specifically, at the position of each MLS point, the surrounding TLS
points were selected within a horizontal distance of 5 mm (black circle in Figure 8). The z
coordinates of the down-sampled TLS points were the average elevation values within the
neighborhood, and the horizontal coordinates were equal to those of the corresponding
MLS data. In this way, the rut depth estimation with TLS data and MLS data can be
performed at exactly same locations, which help avoid possible variation errors introduced
by location. The down-sampling matches TLS data with MLS data to guarantee accurate
TLS reference (Figure 9).
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2.6. Applied Signal Processing and Statistical Methods

A digital low-pass filter, which only allows a signal with a frequency of less than
the preset cut-off frequency to pass [24,25], was applied to reduce data noise, therefore
eliminating short-term fluctuation in the ruts. Low-pass filters can be designed with various
algorithms, and in our study a finite impulse response filter with a Hamming window was
applied [26], in which the two most important factors were the filter order and the cut-off
frequency. Similar filters were applied to both the MLS and the down-sampled TLS data,
while the filter order, which determined the filter window length, was 25 for the MLS data,
and 15 for the TLS data.

In addition, some statistical tools were used to assess the performance of the MLS rut
depth analysis. The bias, random error, and root-mean-square error (RMSE) of a variable x
are evaluated using the following equations:

bias =
1
N ∑N

i=1(x̂i − xi), (1)

random error =

√
1

N − 1 ∑N
i=1(ei − bias)2, (2)

RMSE =

√
1
N ∑N

i=1(x̂i − xi)
2, (3)

where N is the number of observations, x̂i is the observation, and xi is the reference value.
Variable ei is the difference between the observation and reference value.

The corresponding relative bias (biasrel) and RMSE (RMSErel) are defined as follows:

biasrel =
bias

x
∗ 100%, (4)

RMSErel =
RMSE

x
∗ 100%, (5)

where x is the mean reference value, which is defined as

x =
1
N ∑N

i=1 xi, (6)

3. Computational Algorithms

In this section, the computational methods for the rut depth and crossfall calculation
are described. Figure 10 briefly presents the process for obtaining the rut depth and the
crossfall, while the details of each process block are explained in the following sections.
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Figure 10. The process of rut depth and crossfall calculation.

3.1. Rut Depth Estimation

To guarantee the accuracy of the rut depth and crossfall estimation, the points of each
profile were transformed into a new local scan-profile-specific 2D coordinate system. In
more detail, the horizontal axis corresponded to the horizontal distance along the scan
profile with respect to the first point on the scan profile. The vertical axis coincided with
the original z axis. Figure 11 illustrates one filtered (see Section 2.6) scan profile of the MLS
and reference data in the new local scan-profile-specific coordinate system.
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Figure 11. Comparison of MLS and reference data for one scan profile.

In the Nordic countries, rut depths are estimated using the wire method [20,27]. The
wire method determines the rut depth as the maximum distance between a tensed wire
and a road surface measurement point on a profile (see, e.g., Figure 1).

For each plot, rut depths were estimated from each scan profile independently, and
the rut depths were then averaged over all the scan profiles in the plot, resulting in the
final rut depths of the plot. Each scan profile was a cross section of the whole lane, thus
containing two ruts in the left and right parts respectively (Figure 12). The depths of the
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left and right ruts, as well as the maximum rut, were determined in accordance with the
standards of the Nordic countries [20,27].
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Figure 12. TLS point cloud from test plot that illustrates left and right ruts (rainbow colors). Below is
a side view that shows one TLS profile extracted from the plot.

Figure 13 presents how the rut depths were estimated in one scan profile. For each
rut, an ideal road virtual line without rutting was represented by a line passing through
start and end points of the rut (black solid line and dash line in Figure 13). The selection of
the start and end points of the rut is described below. All points between the rut start and
end points were selected, and the perpendicular distances from each selected point to the
virtual line were calculated. The maximum distance was used as a rut depth estimate.
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To find the start and end points of the ruts, a convex hull of the road data for each
profile was computed. The vertices making up the convex hull (green stars in Figure 13)
were first classified into upper and lower hull points, and then the upper hull points were
further assigned into left, middle, and right groups, according to their locations. More
specifically, a least squares fitting line for the whole profile was generated (orange dash
dotted line in Figure 13), and all the vertices located above the fitting line were selected.
The selected vertices were then assigned into the left, middle, and right groups based on
cluster center position and using k-means clustering. The vertex groups acted as candidates
for the start and end points of the ruts.

It was assumed that the start and end points of the ruts corresponded to the local
minima of the absolute value of the tangent slope along the profile. We sought three
local minima, one from each of the left, middle, and right groups (red square, diamond,
and circle in Figure 13), which are referred to as the left, middle, and right edge points,
respectively, in the following. The left edge point was the start point of the left rut and the
right edge point was the end point of the right rut. The middle edge point was both the
end point of the left rut and start point of the right rut.

The tangent slope for point (xi, yi), where i ∈ Iprof = {1, · · · , n}, where Iprof is the
index set of all points on the profile and n is the number of points on the profile, was
estimated using the following formula:

mi =
yi − yi−1

xi − xi−1
(7)

Let Ileft, Imiddle, and Iright denote the index sets of the points in the left, middle, and
right vertex groups, that is, Ileft, Imiddle, Imiddle ⊂ Iprof. The indices of the left, middle, and
right edge points, denoted by ileft, imiddle, and iright, respectively, were retrieved using the
following equations:

ileft = argmin
i
{|mi|}i∈Ileft

(8)

imiddle = argmin
i
{|mi|}i∈Imiddle

(9)

iright = argmin
i
{|mi|}i∈Iright

(10)

In a real situation, the road geometric shape varies in distinct files, and the points
around the peaks are sometimes not contained in the data due to data segmentation, which
leads to an issue that the slope of the tangent at the edge point is found not to be the
smallest. Consequently, before calculating the rut depth, the start and end points of the
rut were verified to avoid errors in the selection of edge points. In other words, the other
non-selected convex hull points in the left group were checked as to whether they were
below the line composed by the start and end points of the left rut. If not, the start point
was changed to the neighboring point, and the rest of the points in the instance were
checked again with the newly assigned start and end points. The same verification was
also performed for the middle and right rut point groups.

When conducting the rut depth study, one issue that needed consideration was
presence of cracks in the pavement. In some cases, the road surface pavement not only had
ruts, but also cracks (or other such damage in general) like the one on the right rut shown
in Figure 14. Using the implemented rut depth calculation algorithm, the rut depth for the
right rut was observed as B, which was obviously affected by the presence of a crack, while
the rut depth determined by A was the actual rut depth. As this paper focuses on rutting,
only plots with small amounts of cracks were adopted for the analysis of the performance
and robustness of the rut depth estimation method. The crack detection was performed in
all the plots automatically using a method developed for the purpose, though we will talk
more about crack detection algorithms in a subsequent paper.
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Besides the plots spoiled with cracks, there were also plots where the pavement had
no obvious ruts, i.e., smaller in depth than the detection capability of the MLS data. As
this paper focuses on the rut depth measurement accuracy, these good plots were excluded
after they had been identified. Consequently, a total of 34 out of 64 plots was adopted for
the rut analysis in this study. As the left and right ruts were treated separately, and the rut
depths were averaged over the profiles of each plot, we had a total of 68 rut depth samples
from the 34 plots.

3.2. Crossfall

Crossfall is an important geometric road surface safety indicator. It is defined as a
transverse slope along a horizontal distance [20]. In normal situations, the elevation of
the road surface is planned to be highest at the middle, and the slope drains towards the
edges. The road slope should be neither too small nor too large; the former slows the
rainwater run-off from the road surface, while the latter may result in high heavy vehicle
roll vibration. In Finland, the crossfall design is ±15%.

Different measurement methods are used for crossfall [28]. In Finland, this is calcu-
lated based on linear regression [20]. For a group of 17 measurement points, inherently
from the pavement survey system, a regression line is fitted, based on the least square
method (line AC in Figure 15). The line is then compared with the horizontal line, and
the lateral slope is calculated. In detail, for any point (C) on the regression line, the per-
pendicular distance from the point to the horizontal line is called Rise (|BC|), and the
distance from the start point (A) of the fitting line (AC) to the cross point (B), where the
rise perpendicular interacts with horizontal line is called Run (|AB|). The crossfall is then
calculated and expressed as a percentage:

crossfall =
rise
run
∗ 100%, (11)
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When the crossfall was measured using MLS and TLS data, a regression line was
fitted to each profile using the least squares method. One example using MLS data is
presented in Figure 16. Then the slope of the fitting line was calculated and converted into
percentages according to Equation (11). Similar to the rut depth estimation, crossfall values
were averaged over all the profiles for each plot. However, there was only one crossfall
measurement, in contrast to the two ruts in each plot. Therefore, 34 crossfall values were
acquired in total from 34 plots.
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4. Results and Discussion
4.1. Rut Depth Analysis

Figure 17 presents the accuracy of the rut depth estimates. The rut depths ranged
from 4.7 mm to 26.2 mm, and for most rut samples the residuals were small—on average
0.66 mm.
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Figure 17. Rut depth estimation results.

Figure 18 demonstrates the bias and random errors inside each rut, calculated from
the profiles of the plot. The random errors ranged from 0.28 mm to 2 mm. In addition, the
biases from all the 34 plots were between −1.6 mm and 2.7 mm. Bias is mainly caused by
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the variability of the road surface (grain size, small differences in georeferencing) and how
bias can be decreased should be dealt with in future studies. For the 68 sample ruts, the
average bias of the rut depth estimation was 0.66 mm, with a 1.4 mm random error, and
the RMSE was 1.5 mm. This proves that the rut detection and depth measurement with
the MLS data point density, 5 mm ranging accuracy and 3 mm precision specification was
sufficiently accurate for the road rutting measurement.
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Figure 19 presents the relative bias and RMSE for the individual ruts. The biasrel and
the RMSErel over all the plots were 5.0% and 11.3%, respectively. The highest biasrel and
RMSErel occurred at the same rut (in the red rectangle marked with ‘Outliers’ in Figure 19),
which were 51.2% and 54.5%, respectively, and the corresponding reference rut depth
was only 4.8 mm. However, at the 44th rut (in the red rectangle marked with ‘Good’ in
Figure 19), the reference rut depth was 4.9 mm, but the relative bias and RMSE were 13.8%
and 19.4%, respectively, which were much better than the outliers. The relative bias and
RMSE are not important when the measured rut depth is less than 10 mm. In Finland,
maintenance is targeted when rut depth exceeds 15–20 mm.
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4.2. Crossfall Analysis

As mentioned above, the elevation of the road surface is usually designed to be the
highest at the middle, and the pavement surface drains towards the edges (Figure 16).
However, when pavement settlement happens, the elevation of the road surface is changed,
leading to crossfall with distinct angles. We therefore assumed that the crossfall was zero
when the elevation of the road surface remained the same along the horizontal axis from
the middle position of the road to its edge. We also assumed that the crossfall was a
positive value when the elevation was lowest in the middle of the road and rose to the
edge. Otherwise, the crossfall was a negative value, which fulfilled the design purpose.

As expected, the calculated crossfalls of all the profiles within each plot rectangle were
similar. They were therefore averaged as the final crossfall estimation for each particular
plot. The mean crossfall of all plots calculated from both the MLS and reference data are
presented in Figure 20. The crossfalls measured from the MLS data matched well with
the reference. The maximum and minimum errors were 0.02% and −0.12%, respectively.
Moreover, the crossfall bias was −0.0153%, and the random error was 0.0257%.
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4.3. Discussion

Rutting is the most significant distress caused to asphalt pavement in the Nordic
countries because of the use of studded tires in the winter season. Rutting can significantly
deteriorate road safety since rainwater may fill ruts, leading to a loss of wheel grip and
vehicle traction. Maintenance operations to remove ruts should, therefore, be timely.
According to Virtala et al. [2], the rutting rate during winter is 0.5–1.3 mm/year on average,
depending on the traffic volume class. Similarly, excessive compacted snow on the road
surface could lead to centimeters deep temporary ice ruts with similar effects.

Currently, the most commonly used standard in rutting measurements relies on laser
systems with a discrete number of laser detectors installed on a vehicle-mounted bar
perpendicular to the direction of the road. From such discrete measurements, the most
common rutting features calculated are the maximum rut, the slope, the left and right
ruts, the distance between ruts, the ridge, and the cross-sectional area of ruts. In addition,
Virtala et al. [2] proposed ratio indicators such as the ratio of the left rut to the right rut, the
ratio of the maximum rut to the ridge, and the ratio of the rut and the ridge to the area. Such
features could be used, e.g., in change-based rutting studies. Precisely georeferenced MLS
data provide good possibilities for future studies on change-based rutting development
and evolution of other deterioration of paved surfaces.
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There are multiple error sources regarding the measurements. Due to the actual
roughness of the road surface, correct elevation level is non-trivial to determine. Therefore,
in the current process using a profilometer, there was a bias found in measurements [15],
allegedly because not enough samples were taken. Another error source is the laser ranging
accuracy. When using an MLS system, the major error source is the laser ranging error,
which potentially causes both bias and random errors. Since there are hundreds of samples
from the road cross-section, it is possible to calibrate the bias provided that there is an
accurate reference to be used. Since rutting measurements are conducted annually, the key
parameter is precision (the variation within a repeated observation). Further averaging
at 10 m or 100 m intervals reduces the obtained random errors. At best, 100 m statistics
reduces the random errors obtained for one-meter-plots shown in the paper by 90%, if
error sources are independent.

In our study, the bias was 0.66 mm, while the random error and RMSE were 1.4 mm
and 1.5 mm, respectively, showing that sub-millimeter accuracies can be obtained with
100 m averages. On the other hand, using MLS, Gézero and Antunes [15] reported rutting
RMSE of 3.2, 5.6, 7.9, and 8.3 mm, with different computational strategies.

There are also high-end pavement measurement systems under development allowing
the measurement of thousands of points in each profile with high ranging accuracy (at
best, submillimeter level), but they are still very expensive, cover only the road surface and
therefore do not allow multipurpose use of the data. Such systems are provided, e.g., by
Pavemetrics (Québec, QC, Canada) and Fraunhofer Institute (Munich, Germany).

Currently, there are multiple needs to map roads and the road environment. In
Finland alone, measurements for multiple services and geospatial information systems are
performed on the same roads separately. The national Digiroad covers the center lines of
the roads and streets with key attribute information. Ruts are measured with dedicated
service cars, equipped with profilometers. Other distresses are monitored separately by
human recognition.

The road environment is increasingly being mapped using MLS for navigation, traffic
noise modeling and mitigation, nearby city 3D modeling, and other applications. MLS can
even be used to produce high-definition (HD) maps for the needs of operating autonomous
cars in the future. In many cases, HD maps consist of the point clouds of the environment,
captured with autonomous vehicles or high-end mobile mapping systems. Autonomous
positioning is performed using matching algorithms, such as variants of iterative closest
point techniques [29–32].

To decrease the costs of such road and road environment surveys, and increase the
multiple use of road environment surveying data, it would be beneficial to be able to
conduct all imaginable road maintenance related measurements with a single mobile laser
scanning (MLS) survey.

5. Conclusions

To decrease the costs of road and road environment surveys, and increase the multiple
use of road environment surveying data, it would be beneficial to be able to conduct all
road related measurements with a single MLS survey. In this paper, the pavement rut depth
and road slope measurement capability of an MLS system was investigated using terrestrial
laser scanning (TLS) measurements as a reference. To verify the accuracy of TLS data,
the TLS data were analyzed with geometric models obtained with stereophotogrammetry,
resulting in standard deviations less than 0.5 mm for the verification plots. The MLS
and TLS data were collected in a short time interval, and in total 34 one-meter-long road
plots were qualified for evaluation in the end. Using the implemented fully automatic rut
analysis, we found that the bias and random errors were 0.66 mm and 1.4 mm for the rut
depth estimation using Roamer-R4DW MLS (based on Riegl VUX-1HA). The mean error of
the crossfall measurements of the road surface was −0.0153%, with a standard deviation
of 0.0257%.
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The results proved that rut depth and crossfall slope measurements using MLS are
highly accurate and feasible for operational application in many countries especially in busy
roads where maintenance cycles are short. This offers the potential to develop a mobile
road surface management system supporting various road environment applications with
a high level of automation, and the possibility to use commercial off-the-shelf (COTS)
LiDAR sensors for road asset inventories.
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