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Understanding quality of analytics trade‑offs 
in an end‑to‑end machine learning‑based 
classification system for building information 
modeling
Minjung Ryu1*, Hong‑Linh Truong2  and Matti Kannala1

Introduction
In the architecture, engineering, and construction (AEC) industry, Building Informa-
tion Modeling (BIM) is a key technology for the digital transformation of the indus-
try. BIM offers a framework for communication and collaboration with consistent and 
coordinated information to all project participants, including architects, engineers, 

Abstract 

Optimizing quality trade‑offs in an end‑to‑end big data science process is challeng‑
ing, as not only do we need to deal with different types of software components, but 
also the domain knowledge has to be incorporated along the process. This paper 
focuses on methods for tackling quality trade‑offs in a common data science process 
for classifying Building Information Modeling (BIM) elements, an important task in the 
architecture, engineering, and construction industry. Due to the diversity and richness 
of building elements, machine learning (ML) techniques have been increasingly investi‑
gated for classification tasks. However, ML‑based classification faces many issues, w.r.t. 
vast amount of data with heterogeneous data quality, diverse underlying computing 
configurations, and complex integration with industrial BIM tools, in an end‑to‑end 
BIM data analysis. In this paper, we develop an end‑to‑end ML classification system in 
which quality of analytics is considered as the first‑class feature across different phases, 
from data collection, feature processing, training to ML model serving. We present our 
method for studying the quality of analytics trade‑offs and carry out experiments with 
BIM data extracted from Solibri to demonstrate the automation of several tasks in the 
end‑to‑end ML classification. Our results have demonstrated that the quality of data, 
data extraction techniques, and computing configurations must be carefully designed 
when applying ML classifications for BIM in order to balance constraints of time, cost, 
and prediction accuracy. Our quality of analytics methods presents generic steps and 
considerations for dealing with such designs, given the time, cost, and accuracy trade‑
offs required in specific contexts. Thus, the methods could be applied to the design of 
end‑to‑end BIM classification systems using other ML techniques and cloud services.
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and constructors. As a result, it reduces time, cost, and errors and increases efficiency 
compared to the conventional manual processes [1, 2]. One of the most used standard 
formats of exchanging digital building data is the Industry Foundation Classes (IFC) 
format, which is an open international standard (ISO 16739-1:2018) developed by 
buildingSMART for BIM interoperability [3]. In IFC files, all building elements, such 
as doors, walls, furniture or columns, are represented as BIM elements with semantic 
and geometric information, as shown in an example in Fig. 1. The semantic informa-
tion contains characteristics of the elements that are defined according to the IFC 
schema. The semantic information, such as material types, product codes, and tags, 
is added by users as properties of building elements. Such information is usually in 
the format of a number, a Boolean truth value, and text. Along with semantic descrip-
tions, geometric information is represented by surfaces and volumetric solids [4].

To help the stakeholders in the AEC industry to keep control over the vast amounts 
of data, classification plays an important role in BIM to identify and organize building 
elements by grouping them into multiple categories and adding labels to them based 
on specific matching characteristics. End-to-end systems for the above-mentioned 
classification have been increasingly developed as a common, important data science 
process for the AEC domain. And such systems help automate tasks, reduce effort 
and improve the resulting quality for structural analysis, cost estimation, and qual-
ity assurance. Despite an extensive use for grouping and filtering building elements 
throughout the entire stages of design, construction, and operation, a remaining 
critical problem in current classification techniques is that the classification does not 
always exhaustively assign all elements to the corresponding categories. Therefore, it 
may leave some elements unclassified or misclassified due to the several data quality-
related risk factors in the AEC domain:

Fig. 1 Visualization of semantic, geometric information of a BIM element (Door) in an IFC file with Solibri 
software
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• Misuse of data: Elements are not used as planned due to users’ misunderstanding 
about classification. For example, ceiling elements are used to represent floor ele-
ments because they have similar shapes and properties.

• Inaccurate data: Users could make a mistake when they manually fill the value of 
property fields, such as from typos. The users often download the BIM elements 
from an internet website or copy elements from their old projects. The reused ele-
ments may still contain unintended values in specific property fields that are not 
related to the new project.

• Missing data: Properties can be missing while users define entities. Sometimes, not 
all detailed information is available. Then, semantic information or geometry infor-
mation is incomplete and abstract.

If the classification is incomplete or inaccurate, the issue checking in the quality assur-
ance process cannot detect object clashing, or cost estimation can erroneously exclude 
certain elements. For tackling such risk factors, domain knowledge must be incorpo-
rated into the data science processes.

Another issue is that existing BIM software products require human expertise and 
time for manually assigning the right category or defining classification rules. Machine 
learning (ML) methods are studied to complement existing classification tools to avoid 
this tedious and manual work. As an ML model can learn the classification rules by uti-
lizing the rich amount of data in BIM, ML could bring the cost-down and time-saving 
so that human experts can focus on other valuable tasks, increasing the overall quality 
of BIM models. ML model accuracy can be strongly influenced by the quality of input 
data and training time; this is a well-known challenging issue in ML generally. However, 
this has not been researched well in big data analytics/ML for BIM classification. Hence 
understanding the trade-offs between factors of Quality of Analytics (QoA) [5, 6], such 
as quality of data, execution time, and resulting prediction accuracy, is of paramount 
importance for ML classification systems for BIM, especially because building models 
are heavily created by professionals through manual design-experiment tasks. In this 
paper, we contribute (i) the design of an end-to-end BIM classification system with QoA 
and (ii) methods and extensive analysis of trade-offs of BIM classification pipelines con-
sidering QoA. To our best knowledge, we are not aware of QoA trade-offs study for end-
to-end ML-based BIM classification.

The rest of this paper is organized as follows: "Background and related work" sec-
tion presents related works and background of the overall approach. "Tasks in machine 
learning classification pipelines for BIM" section presents an overview of tasks in the 
proposed end-to-end classification system. "End-to-end BIM classification system" sec-
tion describes the architecture and system components. "Experiment designs for under-
standing QoA" section shows designs, settings, and environment of experiments, and 
"Analysis of QoA Trade-offs" section presents a detailed result and analysis of the experi-
ments. Finally, "Conclusions and future work" section concludes the research and out-
lines future improvements.



Page 4 of 30Ryu et al. J Big Data            (2021) 8:31 

Background and related work
Big data processes for BIM element classification

With BIM, there are three major approaches to assigning category labels to building ele-
ments: information reuse, manual assignment, and automatic assignment. The infor-
mation reuse is when building elements are copied from previous BIM projects into a 
new BIM project. In this case, the elements keep the previously defined properties of 
building elements, including the category labels assigned in the old project. The manual 
assignment can be accomplished by humans (mostly BIM professionals) in many BIM 
tools. Examples of software products providing manual classification tools are Archi-
CAD Classification Manager [7] and Revit Classification Manager [8]. These products 
allow users to map selected elements to the desired category from a pre-defined or cus-
tom classification database. However, these tools require manual assignment, meaning 
that users need to select the element and assign the target category label manually. The 
automatic assignment is provided by Solibri software product [9], which automatically 
selects the target elements that satisfy classification rules and adds the category label to 
the elements according to the rule definition.

There have been several studies to attempt to improve the existing tools for BIM ele-
ment classification. In [10], a rule-based algorithm using hand-crafted 3-dimensional 
(3D) shape features is proposed to classify IFC objects into pre-defined categories using 
geometric properties. The study experimented with three elements, and the scope of 
the experiment was limited to the cone frustum-shaped objects. For identifying these 
objects, manual rule definitions for each different shape of the objects are required. 
However, it is challenging to define the mathematical rules because it requires human 
expertise and significant time, given a large number of elements in building models. ML-
based approaches were also studied in [11] and [12]. The work in [11] presented an ML 
approach to anomaly detection for miscategorized wall elements in a single BIM model 
using gyradius, volume, and area information. The work in [12] extended the study of 
[11], using a Support Vector Machine, to classify IFC classes based on geometric features 
including width, height, length, orientation, area, volume, and gyration. They experi-
mented on specific IFC classes, IfcWallStandardCase and IfcDoor entities from three 
architectural models, and IfcWallStandardCase and IfcColumn from six infrastructure 
models. Deep learning and Convolutional Neural Networks (CNNs) have been applied 
to classification problems in BIM data, but the application is limited to specific object 
types or non-object level categories. For example, the work in [13] studied using multi-
view CNN methods to classify indoor point clouds into office furniture objects in the 
context of Facility Management [14]. The work in [15] applied 2-dimensional (2D) CNNs 
to classify building structure into one of three categories, namely apartment building, 
industrial building or other.

Previous works on BIM element classification limit the experiments to only a few spe-
cific categories from a small number of BIM models [11, 16]. Besides, the experiments 
require a manual rule definition [10]. In most cases, users define their custom classifica-
tions either based on IFC classes or international classification standards, such as Uni-
format [17] or Omniclass [18]. It means each classification case has its own rules that 
need to work independently. Our work presents a system that utilizes big data and auto-
matically learns the custom rules that users defined. In this way, the system supports 
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different kinds of classification rules flexibly, instead of only specific rules or standards. 
It considers 3D shape information, numeric attributes, and textual descriptions about 
each BIM element for an ML-based classification model.

ML‑based 3D object classification for BIM

CNNs are one of the most popular algorithms for solving 3D object classification prob-
lems in ML. CNNs process data with a known grid-like topology [19, 20]; thus, images 
that can be represented as a 2D grid of pixels have been successfully analyzed by CNNs 
[19]. Recently, the approach for 2D CNNs is also applied to classify 3D objects in many 
computer vision publications [21, 22] using a grid of 3D voxels instead of 2D pixels. This 
method is called volumetric CNNs, while another popular approach for 3D image rec-
ognition is multi-view CNNs. Multi-view CNNs aggregate the result of 2D projections 
of 3D shapes from different angles. Therefore, it can leverage the advances in 2D object 
classification and benefit from the complicated structure of neural networks that are 
already trained from a large-scale image database such as ImageNet [23, 24]. However, 
the set of 2D projections in multi-view CNNs cannot represent the 3D shape fully as 
some detailed information (e.g., curvatures) can be lost during the conversion from 3D 
to 2D shape [25]. In our paper, volumetric CNNs are utilized as a part of a Neural Net-
work structure to process the 3D shape of building elements because this method can 
fully represent the actual 3D shape for BIM. We use VoxNet [22] instead of a custom-
made structure to focus on building an end-to-end pipeline. The pipeline can take other 
CNN structures and adjust parameters to achieve higher performance, but this will be 
left as future work.

Understanding the quality trade‑offs in end‑to‑end BIM object classification

There are many research studies for identifying big data performance criteria and evalu-
ating the performance of big data frameworks and ML algorithms, such as [26–30]. The 
major differences between our work and other big data performance evaluation are in 
two aspects. First, our work is focused on methods for understanding and studying qual-
ity trade-offs in end-to-end pipelines of data science [6]. In the end-to-end pipeline, the 
quality of one phase, such as data pre-processing and feature engineering, will strongly 
influence the quality of another phase, such as training and serving. Furthermore, the 
quality can be captured through multiple aspects, such as data quality, performance, and 
cost. Different phases also employ various technologies and big data frameworks. There-
fore, the performance of a single big data framework used is related only in a single phase 
of the pipelines. Second, our work supports multi-dimensional quality trade-offs, espe-
cially data quality with other performance criteria, for the AEC domain, in which quality 
trade-offs evaluation methods must be designed suitable with the domain knowledge.

Our previous work outlines challenges in QoA [5] and issues of quality in big data ana-
lytics [31]. The main tenet of QoA is that, in an end-to-end data processing system, one 
must consider various trade-offs of quality of data, processing time, cost, result accuracy, 
underlying computing capabilities, to name just a few, based on specific analysis context. 
Dealing with trade-offs in ML is one of the important research directions [32, 33]. In our 
previous work, we also have examined QoA for common ML pipelines [34]. The role of 
robustness, reliability, and elasticity for end-to-end ML pipelines has been studied in [6]. 
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However, in BIM classification there is a lack of research investigating the QoA issues 
in ML pipelines, robustness, and reliability in end-to-end manners. Clustering [35] and 
classification [36] have not studied QoA (and they do not focus on the end-to-end ML 
pipelines in AEC).

Other works have presented how to optimize big data analytics for specific applica-
tion domains [37, 38]. They focus on common trade-offs, like response time and model 
accuracy, and evaluate suitable algorithms. However, they lack methods for dealing with 
data quality and other trade-offs in an end-to-end pipeline. Algorithms are just one part 
of the end-to-end pipelines. We did not evaluate existing algorithms, but our work com-
plements existing research by presenting experiences and design methods in studying 
quality trade-offs.

Tasks in machine learning classification pipelines for BIM
Generic end-to-end ML pipelines have common key components for different phases 
consisting of several tasks, such as data collection, data pre-processing, feature selection, 
model training, and prediction (inference). The support for QoA must be embedded 
into different activities of several phases. Figure 2 describes the significant phases in our 
QoA-aware pipelines. Figure  2a shows the configuration in which classification train-
ing and inference happen. Figure  2b shows the configuration with an inference phase 
only, where a pre-trained classification model can be reused. Two configurations were 
devised for the experimental end-to-end classification of BIM elements in two different 
situations. 

1. Configuration 1 trains a neural network based on the classified elements in a BIM file 
and then predicts the unclassified elements in the same file. It is useful when unclas-
sified building elements remain after manual or rule-based classification. It also 
improves upon the classification rate of the existing classification tools.

2. Configuration 2 trains a neural network based on the classified elements in one BIM 
file and then makes a prediction using the classifier on all the elements in other BIM 
files. It is more useful than Configuration 1 when users apply the same classification 

a

b

Fig. 2 Activities in Machine Learning‑based BIM element classification



Page 7 of 30Ryu et al. J Big Data            (2021) 8:31  

rules to multiple BIM models. This configuration can also detect misclassified ele-
ments by comparing the actual category and the predicted category.

Both configurations are designed to assign correct categories for unclassified elements. 
Once there is a trained model, re-training is required only when a new category is added 
to the classification system.

Data collection

The Data Collection component receives IFC files and SMC files1 as source data. The 
data collection component will extract the numeric attributes (dimensions and location), 
textual attributes (descriptions), and 3D shape attributes of BIM elements from both 
semantic and geometry data in IFC files.

Each BIM element is characterized by many single numeric attributes such as size, 
weight, amount, count, and index. These numeric values are either continuous or dis-
crete numbers that can be used to distinguish one element from another. They are 
passed to the training component as input data for ML algorithms. As with numeric 
attributes, textual values are used to describe the properties of the building elements. All 
the textual properties for an element are extracted, although not all elements have the 
properties. The training can use all the textual properties to classify the elements.

Often a BIM element also contains a description of its type or name as textual proper-
ties. However, sometimes the element has insufficient information to be classified into 
the correct category. In this case, the only reliable information of the building element is 
geometric information represented as a 3D shape in BIM. From this geometric informa-
tion, single numeric properties, such as size and volume, can be calculated. However, 
small details that describe the shape of the element are not easily converted to a sin-
gle numerical value. For example, a cube with a height of 10 cm and a sphere with a 
diameter of 10 cm have the same bounding box height, width, and length in numeric 
size attributes, although they are different shapes. In order to deal with this difficulty, 
our classification system utilizes 3D shape information as well. 3D shape information is 
represented as a set of voxels on the occupancy grid as experimented in the work of Wu 
et al. [21]. They partition the 3D-space of the shape into 24 × 24 × 24 cubes since this 
would have the same size of information as the high-resolution 2D 165× 165 images 
[21]. In our work, different resolutions of the 3D array will be experimented with in 
addition to 24 × 24 × 24 resolution. If the cube overlaps the 3D shape, the tensor ele-
ment has a value of 1 (true) in the corresponding location in the grid. The information 
is used as an input variable for the 3D deep neural network. Since 3D CNNs can use a 
3D array as training data, the geometric shape is extracted as a simplified representation 
(a 3D voxel grid, as shown in Fig. 2). It consists of 24 × 24 × 24 sizes of binary variables 
that indicate the occupancy of a BIM element in a 3D space [21, 22]. Before calculating 
the occupancy grid, the 3D shape is first rotated so that it is aligned in a cube in local 
coordinates independently of how the BIM element is placed in the global space. Then, 
the voxel occupancy is set to 1 if the shape occupies the voxel or 0 otherwise.

1 SMC is a native format of the Solibri software product [9]. SMC files contain exported information from IFC files with 
further information about building models that are either processed by Solibri software or defined by users.
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The full pipeline of each type of data is described in Fig. 3.

Data pre‑processing

Before ingesting collected data into a training for a classification model, the data pre-
processing component handles data cleansing and data transformation tasks:

• Missing value: If numeric attributes or 3D shape attributes are missing, the data 
is automatically filled with 0. Filling the data with 0 instead of replacing it with a 
guessed value, such as an average, will make the neural network model ignore the 
missing value completely. This filling might lead to lower accuracy in general, but it 
allows us to compare accuracies of using original values from different data types.

• Unit conversion: All length properties are converted to mm, area to  m2, and volume 
to  m3. Numeric values in text format are converted according to the standard units 
above.

• Standardization: All numeric attributes are standardized to have mean 0 and stand-
ard deviation 1. Followed the best practice using normalized input, this allows more 
efficient and easier to train a neural network model [39].

• Text tokenization: All descriptions in textual attributes are tokenized before training. 
Tokenization splits textual attributes into each term (token) on white spaces. Stem-
ming or stop-word ignoring is not performed since most of the textual values are 
independent basic-form words that are not in sentences. However, unique IDs and 
special characters are removed from the tokens.

In the previous step, three different types of attributes–numeric attributes, textual 
attributes, and shape attributes–were collected from BIM elements. The numeric attrib-
utes and the shape attributes contain only numeric data; however, the textual attributes 
cannot be processed by a classification model since only numeric data is taken as an 
input of neural networks. Therefore, the textual attributes need to be transformed into 
suitable numeric values beforehand.

To decide the method for the transformation, it was worth noting that a textual attrib-
ute in BIM exists in a pair of a key and a value, and the key name can differ for different 
BIM elements since the name is defined by an AEC professional or a designing tool.

Similar textual values can be under many different keys, therefore, the classifica-
tion algorithm will focus on the occurrence of each textual value, not their location 
or name of the keys. The conventional classification tools are based on the rules that 

Fig. 3 Data extraction, transformation, and learning
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check textual values in specific properties. Therefore, users need to specify which 
property to look up in order to classify the building element. Let us consider an exam-
ple in Fig.  4. To find Wall elements, the user would create a rule that checks if the 
property Name contains Wall. However, this rule-based classification has the down-
side that the property name is not always in a fixed location. Depending on the mod-
els, the property to look up can be Property name or Short name. In this case, the rule 
cannot find the term Wall from the pre-defined property Name. It is possible to add 
more rules that check other properties. However, this still does not guarantee that 
all related properties are checked. In this regard, essential terms about the elements 
are described as a textual value, but these terms are scattered everywhere in different 
properties. Therefore, all the terms should be combined into one document to gather 
this information, which is transformed and represented as a bag-of-words model [40] 
that simply represents the frequency of each term. The bag-of-words model trans-
forms the document (in this case, a list of terms) into simple term-number pairs, 
where the number indicates the frequency of the terms in the document. By using 
only the occurrence, the ordering of the terms is ignored. Since the documents used 
in this paper are originally formed by simple concatenations of words and, therefore, 
lack positional information, the bag-of-words model is suitable for this case. The con-
version of textual attributes to numeric values in the bag-of-words model is visual-
ized in Fig. 3. Additional data pre-processing steps, such as outlier detection, could 
be considered for cleansing the data. However, the paper focuses on validating quality 
factors from the perspective of QoA, and further data cleansing steps to improve the 
overall prediction accuracy are left as a future study.

Feature selection

BIM models can have a large number of properties, and all properties are not related 
to the classification task. In terms of QoA, we need to determine only suitable data 
from BIM for features used in ML. Furthermore, to reduce the dimension of feature 
space and improve training efficiency and performance, not all attributes are used as 
input data. Using a few selected features also enables generalization and avoids prob-
lematic overfitting. This is one issue in QoA, w.r.t. quality and size of data, across dif-
ferent tasks in the end-to-end ML classification system.

One BIM element can have different numeric properties. However, generally, BIM 
elements do not have the same set of properties. If all BIM elements do not have the 

Fig. 4 Example textual attributes of BIM elements
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same properties, ML training cannot be applied. Among other numeric properties 
that BIM elements have, length, width, height, volume, bottom area, and bottom ele-
vation are selected as numeric attributes since most of the building elements have 
them.

To find important terms that characterize the BIM element well and predict the cor-
rect category, a dictionary as a collection of terms needs to be created. This will be based 
on the bag-of-words model containing the occurrence frequency of each term in each 
category generated in the data pre-processing phase. Later, only the selected terms 
from the dictionary will remain in the bag-of-words model so that the terms that can-
not distinguish BIM elements are not included as input data. Only a few important term 
features are selected using two well-known, widely used vocabulary feature selection 
techniques: Term Frequency-Inverse Document Frequency (TF-IDF) thresholding, a 
simple technique for vocabulary reducing, and Chi-Square test, one of the most effec-
tive feature selection methods [41]. Before the Chi-square test is applied, TF-IDF thresh-
olding will be carried out to reduce the number of vocabularies, enabling the expensive 
Chi-square test to be performed on fewer data. This aspect is within the QoA trade-off 
between data size, execution time, and cost. TF is calculated by

where t is the number of term occurrence in category c and d is the total number of doc-
uments in category c. Terms used in less than 20% of all documents in the same category 
will be removed from the bag-of-words model. Also, IDF is calculated by

where n is the total number of categories and c is the number of categories where the 
term t occurs in. Terms that are used in more than 90% of all the categories will be 
removed from the bag-of-words. After thresholding, the Chi-square test is applied to 
measure the dependence between two variables, each feature, and categories [40]. Then, 
terms with the top 200 Chi-square values are selected.

Training

To focus on end-to-end classification and QoA, instead of exploring different ML mod-
els, we start with a neural network model to construct a classifier for each classifica-
tion rule in a building model. This machine-trained classifier will learn from the BIM 
elements that are already classified by users and pre-defined rules. The neural network 
architecture has two branches for two different types of inputs: 1-dimensional (1D) 
array that contains numeric values and bag-of-words values and a 3D array for geomet-
ric occupancy grid. CNN for 3D data and multi-layer perceptron neural network for 1D 
numeric data are combined for the mixed types of input data. For 3D data, VoxNet [22] 
is adopted and tested since it is one of the earliest studies in volumetric CNNs for 3D 
object classification, which showed the significant success of 3D CNN with a compara-
tively basic structure [42]. The implemented neural network structure for combining the 
3D shape, bag-of-words representation and numeric properties is presented in Fig. 5.

(1)TF(c) =
t

d

(2)IDF(t) = log
(n

c

)
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Input layer:  The input layer takes two different types of data: a 3D shape and numeric 
data, which consist of size measure and text information. The occupancy grid data is 
sent to the CNN structured layer, and numeric input is sent to the fully connected layer 
separately.

Convolutional Neural Network: 3D shape information is processed as input for CNN. 
The structure for CNN in our work follows VoxNet suggested in [22] as it is fast and 
accurate for its complexity of the structure:

• Convolutional layer This layer receives a 3D array of voxel occupancy. In the first 
convolutional layer, 32 filters of size 5× 5× 5 are applied to the 3D array with a 
stride of 2. The second convolutional layer has 32 filters of size 3× 3× 3 with stride 
1. These layers learn the filters that look for the specific patterns in the 3D shape clas-
sification resulting in feature maps.

• Max pooling layer Max-pooling with downsampling is used in the network to reduce 
dimensionality. The max-pooling takes the maximum value in the 2× 2 size of fil-
ters from the feature map. Downsampling the feature map reduces parameters, and 
improves performance, and reduces overfitting.

Fully connected layer: In the CNN structure, the fully connected layer flattens the pool-
ing layer’s outputs so that it can be merged with numeric inputs. This has 128 outputs 
that are connected to all neurons from the previous layer. The fully connected layer for 
numeric inputs computes matrix multiplications as in a regular neural network. The last 
output layer after concatenating two fully connected layers is also a fully connected layer 
that calculates the classification scores. The last output layer has a softmax function, 
which outputs a list of the probability of each category in the multi-class classification 
problem.

Validation

Since the problem is multi-class classification, a common weighted F1-score is used to 
evaluate the accuracy of the model. In this paper, we have

where TP is the number of true positives and FP is the number of false positives, and

(3)Precision =
TP

(TP + FP)

Fig. 5 Structure of the neural network in our system
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where TP is the number of true positives and FN is the number of false negatives. There 
is a trade-off between recall and precision such that the model cannot have both 100% 
precision and 100% recall. Therefore, F1-score

is used as the harmonic mean of recall and precision. The weighted F1-score is an aver-
age of F1-score in all categories weighted by the number of elements (support) in each 
category. In this paper and experiment results in "Experiment designs for understand-
ingQoA" section, accuracy refers to weighted F1-score.

Prediction

The trained ML model makes predictions on how likely an unclassified BIM element 
could be in each category. The category with the highest prediction score is suggested to 
users as a result. Using common techniques like file-sharing or message broker services, 
the system can send the result different types of receivers–either professionals or soft-
ware components.

Configuring pipelines for quality of analytics

For testing QoA of ML classifications, different data inputs and data pre-processing 
strategies will be applied to understand the relationships between data quality, data vol-
ume, and classification model accuracy. W.r.t feature selection, we will also have to apply 
different strategies. We will elaborate on them further in detail in "Experiment designs 
for understandingQoA" and "Analysis of QoA trade-offs" sections.

End‑to‑end BIM classification system
The classification system, together with techniques capturing important metrics for 
understanding QoA, must be deployed in a large-scale computing infrastructure in 
order to enable automation among phases. Therefore, besides typical ML components, 
we have to introduce other components for automating tasks in an end-to-end manner. 
As shown in Fig. 6, the prototype system consists of three components: Data Storage, 
Notification Service, and Classification Engine. Our current prototype is deployed on 
Amazon Web Services (AWS).

Data storage

All data, including BIM files, are stored in the Data Storage component. Data Storage 
is deployed in Amazon Simple Storage Service (S3), which is a cloud data storage and 
retrieval service with storage management features [43]. In S3, files are contained as S3 
objects in S3 buckets. We use three S3 buckets to store different types of files from the 
system architecture:

(4)Recall =
TP

(TP + FN )

(5)F1 =
2× Precision× Recall

(Precision+ Recall)
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• Input Bucket contains BIM files that are submitted to the system. These files are orig-
inal IFC files or SMC files that have classified and unclassified building elements.

• Extract Bucket is used as intermediate storage for the extracted data of building ele-
ments that need to be retrieved for classification model training and prediction. 
Extracted data includes 3D shape and size data from geometry information, textual 
descriptions from semantic information and classification mapping information.

• Output Bucket keeps the files of prediction results. The prediction files are retrieved 
from this bucket.

Notification service

The Notification Service enables the execution ordering by emitting notification events 
between the Data Storage and the Classification Engine. The Notification Service is 
deployed in Amazon Simple Queue Service (SQS), and SQS offers a queue system that 
enables communication through messages. Two message queues in SQS are created to 
manage the data collection job and the ML job. When a BIM file is uploaded to the Input 
Bucket, a message for the Data Collection instance is delivered to the queue. Then, based 
on the message received, the Data Collection instance executes a new job. Similarly, the 
Machine Learning Queue adds an item when the Extract Bucket receives file upload 
events, and the queue delivers the event message to the Machine Learning instance. The 
Notification System makes sure that instances in the Classification Engine execute one 
job at a time in the pipeline, but multiple instances can individually run in parallel.

Classification engine

The Classification Engine component consists of two sub-components, Data Collec-
tion and Machine Learning component. Both are deployed as Amazon Elastic Compute 
Cloud (EC2) servers [44]. In our prototype, there is one EC2 instance of each for the sub-
components. The Data Collection application, Solibri software, is installed in the Data 
Collection instance. A data collection job is triggered when there is an unprocessed job 
in the Data Collection Queue. The Machine Learning instance is configured to perform 
neural network training and prediction based on the data that are extracted by the Data 

Fig. 6 System prototype for end‑to‑end QoA‑aware BIM elements classification
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Collection instance. When training is finished and prediction is completed, the instance 
uploads a result file back to the S3 Output Bucket so that it can be retrieved. Internally, 
EC2 instances keep polling the queue until there are unhandled messages and trigger the 
jobs one by one. The Data Collection component is implemented with Solibri software. 
The Machine Learning component is implemented with Keras and Scikit-learn library in 
Python.

Integration

The proposed classification system can be integrated with the existing classification tools 
in the Solibri software product. The input file can be uploaded to the S3 Input Bucket to 
trigger the Data Collection and Machine Learning jobs. The resulting file that contains 
element IDs and their category mapping suggestion will be displayed in Solibri software. 
Solibri classification shows the result in two big categories, Classified and Unclassified, 
in the current system. BIM elements that can be assigned to each category are included 
in the Classified group, and other elements all go to the Unclassified group. Based on the 
automatic classification engine’s suggestions, a new group Auto-classified can be created 
and reviewed by the user. The user can accept the result of the automatic classification, 
or the user can reject and perform the classification manually. In the early phase of the 
implementation, this user feedback on whether the classification satisfies the customer 
can be used to monitor the accuracy and further improve the classification algorithm 
and system performance.

Experiment designs for understanding QoA
Setting 1: The role of data quality in QoA trade‑offs

This experiment setting is for understanding how system performance changes accord-
ing to the quality of data. The following data quality metrics characterizing a BIM model 
are used: model size, data source, data completeness, and the number of categories.

Effect of model size on execution time

The model size is measured by the number of building elements in the BIM model. This 
metric is used to understand the execution time during classification. In general, when 
the amount of data is large, classification tasks require more time to process the data. 
This experiment measures the model size of BIM models and determines the change of 
the execution time of each phase of classification depending on the model size.

Effect of data source on prediction accuracy

The data source metric indicates whether the classification information in a BIM model 
is trustworthy or not; this is an important domain-specific aspect. The quality of clas-
sification information directly influences the performance of the ML system because the 
system trains the classification model based on the data on how each building element is 
classified. If a BIM model feeds erroneous data into the ML system, it pollutes the input 
data. As a result, the algorithm builds a low-quality classification model. Since the qual-
ity of BIM models is not validated, there is a chance of collecting BIM models with not 
only accurate data but also some invalid data. BIM models could have invalid, incorrect, 
or irrelevant data because of the following reasons.
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• Users lack understanding of the classification. Thus, some building elements are cat-
egorized into the wrong groups.

• Some classification information is added only for test purposes. For example, a user 
might want to try out how can s/he could add classifications to her/his BIM models.

• Some BIM tools automatically add classifications to BIM models when the file is 
imported or exported. In this case, users often leave the classification even when they 
do not use or maintain them.

This experiment considers whether the classification information is generated and main-
tained by a human or from unknown sources when evaluating the implemented clas-
sification system’s performance. However, sources from where the data were generated 
in the first place are undefined in BIM files. Instead, a metric is defined to be Well main-
tained by a human when the result of classification mapping is used to filter the building 
elements in BIM and Unknown otherwise. For example, the classification result is used 
in Rule Checking or Information Takeoff in Solibri software. Rule Checking is one of 
the main functionalities in Solibri software that examines problematic issues or require-
ments to which the model should satisfy. Classification is completed before rule check-
ing so that the category can be used as a filter. For example, to make sure all doors have 
names, the checking rule can be applied only to elements that are classified as doors. 
Information Takeoff (ITO) is a tool for collecting and reporting all the information in 
a BIM model. Using classification, ITO groups and quantifies building elements. This 
information can be used for cost estimation or scheduling. It can be assumed that if the 
classification information is used or mentioned as a reference in any of these functionali-
ties in SMC file format, the classification information is at least maintained by users, and 
the content is trustworthy. This experiment compares the relationship between the data 
source metric and prediction accuracy.

Effect of data completeness on prediction accuracy

Data completeness means whether all 3D shape, numeric information, textual informa-
tion is available in a BIM model. Our work utilizes all different types of data in a BIM 
model. However, some building elements have only geometry information without any 
numeric or textual attributes or only a limited number of attributes. The data complete-
ness metric indicates the quality of data according to whether the BIM model contains 
only the geometry of the BIM elements or if additional size, location, and text descrip-
tions are included. This experiment examines the effect of data completeness in BIM. 
This experiment compares the prediction accuracy when all three types of data are avail-
able, and when only limited one or two types of data are available.

Effect of number of categories on prediction accuracy

The number of categories is considered when the classification has hierarchical levels. 
For example, in Fig. 7, building elements are categorized into three major categories: fur-
niture, kitchen, and door. In some cases, however, these categories can be divided fur-
ther into multiple sub-categories, for instance, sofa, desk, chair in the furniture category. 
In this case, one element can have two labels, which are furniture in high-level classifica-
tion and sofa in low-level classification. Both are meaningful depending on the situation 
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where the classification is used. Generally, the high-level classification has fewer catego-
ries compared to the low-level classification. This experiment compares the prediction 
accuracy in two different levels of classification.

Setting 2: The role of input size in QoA trade‑offs

In ML models, the number of input features can affect performance and overall accu-
racy. As input data is extracted from the original BIM file by the data collection compo-
nent, the input data resolution can be adjusted to support the QoA study. Among the 
three different types of data (numeric attribute, textual attribute, and 3D shape), dif-
ferent representations of 3D shape and textual attributes will be examined. Metrics for 
input size are the dimension of the voxel grid and the size of the dictionary. The metrics 
can affect data collection time (DC time), machine learning time (ML time), and pre-
diction accuracy. Analysis of accuracy-time trade-off is carried out in this experiment. 
Two parameters are considered:

• 3D resolution: indicates how accurately the 3D representation is extracted from 
the original shape. A larger size of the 3D grid can contain more information, thus 
the 3D grid can have a smoother and much more accurate representation. Figure 8 
shows how 3D shapes are changed in different sizes of grid space. The resolution can 
be configured in the data collection component setting as a metric that indicates the 
quality of the extracted data.

• Dictionary size: indicates how many terms from the bag-of-words model are used as 
input data. During the data pre-processing phase, each term is ranked by its impor-
tance in the classification task, and only a fixed number of useful terms are selected. 
Like the 3D resolution metric, this metric is configured in advance to executing the 
system.

Fig. 7 Example of different classification levels

a b c
Fig. 8 Examples of different 3D resolutions
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Setting 3: The role of computing capabilities in QoA trade‑offs

The performance of the classification system varies depending on the underly-
ing computing capabilities, particularly when it comes to data collection, which is 
strongly dependent on available (industrial) tools, e.g., Solibri software utilizes par-
allel computation in Java. The Keras backend and Tensorflow in the ML component 
also utilize the GPU to optimize the calculations. The classification system executes 
data collection and ML in two different machines to examine the impact of the system 
capacity. This experiment is designed to compare the system performance in different 
machines with different numbers of CPU cores and GPUs during the data collection 
and machine learning phases:

• The implementation of data collection utilizes multi-threading in Java. This exper-
iment compares the performance of data collection with different numbers of 
CPU threads.

• Since computations in deep learning can be accelerated with GPUs, two different 
types of machine learning instances are launched: machines with only a CPU and 
machines with a CPU and a GPU.

Experiment data preparation

To study QoA trade-offs with our classification system, BIM models that include one 
or more classifications are used for training. Classifications with only one category or 
categories without any classified elements are not considered.

To automate the training of classifiers for each classification, classified elements 
from each category are split into two groups, a training set and a test set, according to 
the following rules. Since the actual categories of unclassified elements are not availa-
ble, it is impossible to verify the result manually. Therefore, the experiments consider 
only the elements that are classified in the BIM files. For training, the classified ele-
ments are divided into both training data and test data. When dividing the classified 
elements into training data and test data, the output label of test data is not used as 
training so that the label information can be used to validate the proposed classifica-
tion system. The existing classification information of how elements are classified is 
added by either using the designing tool, rule definition or manually. The pre-classi-
fied building elements are randomly split into 70% used for training and 30% used for 
testing. Since classified elements in a category are used for both training and testing, 
at least two classified elements are required for each category.

There is one extra pre-processing step for this test data. If the classification is car-
ried out automatically by Solibri software, the classification is already performed in 
original building models by rules. Therefore, the BIM elements could already con-
tain the key terms in their properties, and these terms can affect the performance 
of the result. Especially rule-defined building elements are classified already accord-
ing to the fields that are defined in rules. For example, if there is a rule that classifies 
building elements with the name Slab as Ceiling category, the term Slab should be 
removed from the mock test data to make sure that the elements cannot be classified 
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by the rule and remained as unclassified after rule-classification in Solibri software. 
To evaluate if the ML classifier predicts accurately without the pre-defined terms in 
the rules, all the terms mentioned in the rule are removed from the target properties.

Performance measurement

The experiment compares system performance in different settings. The performance 
means the accuracy of the classification and the execution time of the system. The accuracy 
is measured by F1-score, and the execution time is measured in seconds. Specifically, DC 
time and ML time are measured. The details of the execution time in each component 
are presented in Fig. 9.

Computing environments

Each component in the prototype system is configured in different environments for the 
different purposes of the experiments. Environment A (Env A) is a local machine used for 
developing and testing the system. Comparing the result of multiple BIM files is executed 
in batch in this environment. The CPU in this machine has six cores and twelve threads. 
Experiment setting 1 is performed in Environment A because this experiment aims to 
understand the quality of data and how it changes the system performance in one machine.

Environment B (Env B) and Environment C (Env C) are deployed EC2 instances on AWS. 
Different instance types for each component are configured to study QoA in different envi-
ronments. Env B and Env C have different settings for the Data Collection component and 
the Machine Learning component. Thread counts for AWS EC2 instances are converted 
from Virtual Central Processing Unit (vCPU) count since vCPU is the number of CPU 
cores multiplied by threads per core [45]. In Env B, data collection is on an r5.large EC2 
instance with two vCPUs and machine learning instance is on an r5.xlarge instance with 
four vCPUs. R5 instances are suitable for memory-intensive tasks. Env C has more com-
pute capacity for both components, which use an r5.xlarge instance for data collection and 
a g4dn.xlarge instance with a GPU [46] for machine learning. Performance of the Data Col-
lection component can be compared between two different settings in CPU threads and 
memory. It can also be examined on a machine without a GPU and on a machine with a 
GPU. These two environments are used for experiment setting 2. Details on the environ-
ments are listed in Table 1.

The experiments in this study are performed in three different environments. The exper-
iments do not consider all possible combinations of the local machine or EC2 instances. 
The experiments could be extended to use many different steps of computation powers, for 
instance, using ten different environments with one to ten CPU threads. However, for sim-
plicity, the scope of the experiments is limited to run in two environments that are enough 
to provide sufficient data to observe the potential factors and trends of the behavior of the 
system.

Analysis of QoA trade‑offs
Setting1: The role of data quality in QoA trade‑offs

Effect of model size on execution time

Figure  10 shows the system performance against the model size metric. The model 
size is defined as the total number of elements in a BIM model. As shown in Fig. 10a, 
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DC time that measures the execution time in the data collection phase shows an 
increasing trend as more elements are presented in the BIM model. However, the 
result does not show a linear relation between element count and DC time. There 
are reasons for this behavior, which could be explained by understanding how 

Fig. 9 Tasks in data collection time and machine learning time
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voxelization works in data collection. In reality, total execution time in the data col-
lection phase mostly comes from geometry extraction. Therefore, when there are 
many elements to voxelize, more time is required for data collection. However, vox-
elization is not executed for every element because many elements share a common 
geometry representation in a BIM model. The DC time correlates directly with the 
number of different geometric representations in the model. Multiple elements with 
identical geometric representation but with different rotation can be processed as fast 
as a model with one element only.

Figure  10b shows how DC time changes against the number of geometries in a 
BIM model. The relationship between DC time and geometry count is more linear 
than the relationship between DC time and element count. Still, the geometry count 
alone cannot be used to predict the actual time required for data collection. One rea-
son for this is that the voxelization time for one geometry varies depending on the 
complexity of the geometry shape. Voxelization requires more calculation steps and 
time when the geometry is for a sphere where the 3D voxel grid consists of different 
numbers of 1 and 0 compared to a simple cube, which is extracted as a 3D array that 
is filled with only 1.

Contrary to the relationship between model size and DC time, ML time has a lin-
ear correlation to the model size. In Fig. 10c, most data points lie on the diagonal line 
of the graph. This is because each element is considered as one input data instance 
with a fixed length of data for classification model training regardless of the complex-
ity of the shape. This result demonstrates that model size can be one of the data qual-
ity metrics that helps predict the execution time of the classification system based on 
the element count.

Table 1 Environment list and  specification for  Data Collection component and  Machine 
Learning component

Platform Component Threads Memory GPU

Env A Local Machine All 12 16 Nvidia GTX 1660

Env B AWS Data Collection 2 16 N/A

Machine Learning 4 32 N/A

Env C AWS Data Collection 4 32 N/A

Machine Learning 4 16 Nvidia T4

Fig. 10 Impact of element counts on DC time and on ML time 
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Effect of data source on accuracy

Figure  11 shows the results of system validation for different data sources. There are 
162 Used classifications and 236 Unused classifications. As a result, the BIM mod-
els that are maintained by the user (User-maintained Data) have better average accu-
racy than the BIM models for which the usage of the classification is unknown (Source 
Unknown Data). The mean and median of unused classifications’ accuracy are 0.81 and 
0.91, respectively, the and the mean and median of Used classifications’ accuracy are 
0.90 and 0.98 respectively. Also, from the figure, the position of the interquartile range 
of the Used classification is closer to 1 compared to the range of Unused classification. 
This result indicates that the implemented system performs better with BIM models that 
have well-maintained data. 

Effect of data completeness on accuracy

As shown in Fig. 12, the model prediction score is higher on average when many differ-
ent types of data are combined. This experiment is carried out with 585 classification 
cases, and the result of each case is shown in Fig. 12. The training model performs better 

Fig. 11 Average result of maintained classification and unknown classification

Fig. 12 Changes of prediction accuracy changes per data type
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when both 3D shape information and size information are used compared to when only 
3D shape information is used. Similarly, when the textual description information is 
used in addition to 3D and size information, the overall performance increases precipi-
tously. When only the shape information is used for classification, the average F1-score 
is 0.72, and when shape information and size are used for classification, the F1-score is 
0.75. Finally, when all the information—3D shape, size, and text—are available, the accu-
racy F1-score is improved up to an average of 0.87. This result shows that the availability 
of more training data has improved the classification performance. 

Effect of number of categories on accuracy

In order to find the effect of the number of categories on the prediction accuracy, two 
BIM models, Model A and Model B, that share the same classification rule, are used in 
this experiment. For this experiment, all the labels assigned manually to the elements 
in Model B are removed and the ML trained classifier assigns new labels based on the 
categories in Model A. In Model A, the classification is performed in Level 1 and Level 
2 with different hierarchies. Level 1 classification categorizes elements at a higher level, 
and Level 2 categorizes the elements into more specific categories using details of the 
elements. For example, Level 1 category Furniture can have two Level 2 categories, 
Furniture:chair and Furniture:desk. These two Level 2 categories are meant to classify 
Furniture, but they are for different types of furniture more specifically. Table 2 describes 
the number of categories within different classification levels in Model A and Model B.

Figure 13 and Table 3 present the result of this experiment. The prediction accuracy is 
always higher when there are a smaller number of categories in BIM models regardless 
of the available data types. With 3D shape, numeric, and textual attributes all available, 
Level 1 classification was trained with Model A to predict 194 categories and achieved 

Table 2 Number of categories in different classification levels

Level Model A Model B

Level 1 194 79

Level 2 418 84

Fig. 13 Accuracy improvements with different input data types
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99% accuracy in predicting 79 categories in Model B, whereas Level 2 classification was 
trained to predict 418 categories with Model A and achieved 73% accuracy in predicting 
84 categories in Model B. 

Setting2: understanding input resolution and system performance

The experiment results in this subsection are used to determine the effect of feature size 
and machine computing power on classification performance. As system configurations 
are adjustable, appropriate strategies of configurations are given as a trade-off analysis. 
The configurations are experimented with using 13 files2 described in Table 4.

3D resolution

Figure 14 shows that high-resolution input data extraction requires more time for both 
data collection and the machine learning phase. DC time is highly related to the num-
ber of geometries in the BIM file. When there are many elements in one file, the ele-
ments can share the geometric information, for example 100 different elements can have 
the same shape. In this case, DC time is calculated only for one geometry, not 100 
geometries. As shown in Fig. 14a, files with a higher DC time, such as Files 1–4 and 
File 12, contain more geometries for their number of elements. On the other hand, Files 
5, 9, and 13 also have many geometries, but DC time is notably low for these files. The 

Table 3 Prediction accuracy (%) in different classification levels and data types

Data Type Level 1 Level 2

3D 62.12 42.00

3D+Numeric 76.23 63.87

3D+Numeric+Text 99.28 73.11

Table 4 Data (in Files) and quantity metrics

File ID Number of elements Number of geometries Number 
of categories

File1 1718 943 110

File2 2384 1153 242

File3 2236 989 79

File4 2870 1196 179

File5 6651 1124 39

File6 1570 85 15

File7 299 102 2

File8 1490 756 19

File9 22278 3531 23

File10 601 118 29

File11 487 303 20

File12 6166 1125 51

File13 6210 2205 5

2 The data is collected from realistic BIM designs by various stakeholders. Due to client confidentiality, we are not 
allowed to reveal the source of data.
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reason may be due to the complexity of the shapes being low in these files. When the 
data collection component voxelizes the 3D shape, it takes more time for the elements 
with a more complex shape and more polygons. On the contrary, ML time is directly 
related to the number of elements in Fig. 14b. The reason is that the input data rows are 
created for each element even if multiple elements share the same geometry. In ML algo-
rithms, the input rows with duplicated data are often removed. However, the elements 
with the same geometry do not necessarily have the same data in BIM models since the 
elements with the same geometric shape can have a different size or properties. There 
are some exceptions where the accuracy fluctuates inconsistently. However, the average 
accuracy of the classifier increases as the voxelized 3D shape represents the original ele-
ment more accurately, as shown in Fig. 14c. 

Dictionary size

Figure 15b shows that the average accuracy tends to increase in concurrence with the 
increase of the dictionary size. However, the total time for processing a bigger diction-
ary does not increase significantly in Fig. 15a. The reason can be that the ML time is 

Fig. 14 Impact of different 3D voxel grid resolution
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related to the total term count in a BIM model, not the selected term count. Especially, 
the result for File 9 shows a significantly long ML time duration in Fig. 15c since the 
total number of terms in the file is much bigger than that in other files. It also requires 
more time for selecting useful and important terms out of all the terms during the pre-
processing phase.

Setting3: performance changes in different environments

We experimented the classification system with two different computing system envi-
ronments, Environment B (Env B) and Environment C (Env C). Env C has a more pow-
erful computing capacity compared to Env B for both the Data Collection component 
and Machine Learning component. In Fig. 16a, the overall performance is improved in 
Env C compared to Env B. Data collection is related to the number of threads in CPU 
since the extraction is executed in parallel. When doubling the thread number, the aver-
age DC time is reduced to around 55%, as shown in Table 5. It is shown in Fig. 16b that 
the average ML time seems to have more dramatic improvements in Env C. In Table 6, 
the average ML time in Env C was approximately 20% of the time spent in Env B. How-
ever, the improvement in File 9, which is only 42%, was not significant, compared with 
the improvement in as in other files, because the pre-processing did not utilize GPU; 
given more elements in the file, the time for pre-processing increases, leading to a longer 
overall ML time.

Fig. 15 Impact of different dictionary sizes
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Further discussion

The experiments found that the rich information of BIM, which consists of two 
main parts: geometry and semantic information, improves the accuracy of the 

Fig. 16 Impact of different compute capacities

Table 5 Improvements of DC time (in seconds) for different BIM data (in Files)

File ID Env B Env C Improvement(%)

File1 852 435 51.05

File2 944 465 49.25

File3 522 284 54.40

File4 557 303 54.39

File5 111 66 59.45

File6 55 32 58.18

File7 15 8 53.33

File8 138 73 52.89

File9 277 178 64.25

File10 256 131 51.17

File11 83 46 55.42

File12 871 511 58.66

File13 359 188 52.36

Average 54.99
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classification system. 3D shape, numeric attributes, and textual attributes are 
extracted from the geometry and semantic information for the ML pipeline. As a 
result, it is empirically proven that the BIM data enables automatic classification 
that does not require human intervention, unlike the conventional classification 
tools that require users to either assign the correct categories or define the classifi-
cation rules manually.

Key quality metrics of BIM models that characterize and represent the model are 
the number of elements in the model, the 3D voxelization dimension size, and dic-
tionary size. Experiment results showed that the accuracy of classification increases 
when using more accurate representations of the element. This means that when the 
system extracts data close to the original element shape or description, the accuracy 
increases. However, it brings significant increases in elapsed time in the data collec-
tion and machine learning phases. Furthermore, models with many elements tend 
to require more processing time. The rate of how many elements share the same 
geometry should also be considered since data collection time is dependent on this 
factor. The experiments showed how adjusting input resolution and the number of 
input features can improve accuracy, but with a trade-off with the time spent for the 
classification task. In particular, the time-accuracy trade-off is much more dramatic 
in the 3D dimension size compared to the dictionary size. Therefore, we recommend 
to adjust the dictionary size before increasing the dimensions of the 3D voxel grid.

The prototype system was deployed in different machines to study the improve-
ments in performance and accuracy. Clearly, more powerful machines may be costly 
but provide remarkable improvements in the performance of the system. If there is a 
large number of elements in a BIM model and it is too time-consuming, more pow-
erful machines can come in handy. Also, the trade-off between cost and accuracy 
must be considered in production systems.

Table 6 Improvement of ML time (in seconds) for different BIM data (in Files)

File ID Env B Env C Improvement(%)

File1 210 34 15.98

File2 279 48 17.41

File3 278 45 16.29

File4 358 63 17.75

File5 911 202 22.21

File6 198 31 15.64

File7 41 7 16.47

File8 183 26 13.98

File9 3934 1668 42.40

File19 75 12 15.87

File11 63 10 16.54

File12 837 185 22.16

File13 840 184 21.92

Average 19.59
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Conclusions and future work
Due to the complexity of information in BIM, ML-based classification systems are 
worth considering to improve the conventional classification approaches that require 
human manual work. However, such ML-based systems have to deal with multiple 
types of data and support end-to-end ML, including data collection, data pre-pro-
cessing, and other tasks. In this paper, we have presented our QoA-aware ML-based 
classification system for BIM models. The system automates several steps for the clas-
sification and incorporates various features dealing with QoA. Our extensive study 
with the integration with Solibri software product validated the average accuracy of 
the ML classification system. Our study has revealed many potential factors, which 
affect the performance and accuracy of classification. However, metrics such as model 
size, data source, data completeness, number of categories, and feature size can be 
used to estimate and predict the behaviors of the system and help users to decide the 
reasonable size of input data and suitable size of the computing resources. Therefore, 
it is essential to capture several metrics and understanding the trade-offs in QoA. 
However, utilizing such metrics requires in-depth domain knowledge to be integrated 
into the data science process. Our experiments have shown important QoA consid-
erations, which can help determine how to optimize ML classification for BIM in pro-
duction systems.

Our future works are concentrated on three aspects. In terms of quality of analyt-
ics, we need to optimize the ML algorithms/models depending on the BIM model 
quantity to achieve the best accuracy for each file with custom settings instead of the 
global configuration for all BIM files. Second, the system can be upgraded to auto-
matically choose suitable ML algorithms/models for each BIM model and optimize 
the ML training to improve accuracy. Similarly, the system can be extended auto-
matically to scale vertically or horizontally depending on the characteristics of BIM 
inputs. Lastly, the overall end-to-end system can be upgraded by utilizing ML tools 
and frameworks, such as MLflow [47] and Kubeflow [48], to manage better the ML 
life cycle, ML models, and QoA trade-offs.
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